1. Introduction 1. Introduction (cont'd) 1. Introduction (cont'd) 1. Introduction (cont'd) 1. Introduction (cont'd) 1. Introduction (cont'd) 1. Introduction (cont'd) 1. Introduction (cont'd) 2. Rayleigh-Ritz procedure 2. Rayleigh-Ritz procedure (cont'd) 2. Rayleigh-Ritz procedure (cont'd) 2. Rayleigh-Ritz procedure (cont'd) 2. Rayleigh-Ritz procedure (cont'd) 2. Rayleigh-Ritz procedure (cont'd) 2. Rayleigh-Ritz procedure (cont'd) 2. Rayleigh-Ritz procedure (cont'd) 2. Rayleigh-Ritz procedure (cont'd) 3. A simple element analysis 3. A simple element analysis (cont'd) 3. A simple element analysis (cont'd) 3. A simple element analysis (cont'd) 3. A simple element analysis (cont'd) 3. A simple element analysis (cont'd) 3. A simple element analysis (cont'd) 3. A simple element analysis (cont'd) 3. A simple element analysis (cont'd) 3. A simple element analysis (cont'd) 4. Higher-order elements 4. Higher-order elements (cont'd) 5. Assembly of system equation 5. Assembly of system equation (cont'd) 5. Assembly of system equation (cont'd) 5. Assembly of system equation (cont'd) 5. Assembly of system equation (cont'd) 6.1 Static problem 6.2 Undamped dynamic problem 6.2 Undamped dynamic problem (cont'd) 6.2 Undamped dynamic problem (cont'd) 6.2 Undamped dynamic problem (cont'd) 6.3.1 Modal analysis 6.3.1 Modal analysis (cont'd) 6.3.2 Time-domain analysis 6.3.2 Time-domain analysis (cont'd) 6.3.2 Time-domain analysis (cont'd) 6.3.2 Time-domain analysis (cont'd) 6.3.2 Time-domain analysis (cont'd) 47 of 47

6.3.3 Complex-valued analysis

\[\begin{align} \text e^{j \omega t} &= \cos \omega t + j \sin \omega t \\ \frac {\text d}{\text d t} \text e^{j \omega t} &= j \omega \text e^{j \omega t} \\ \frac {\text d^2}{{\text d t}^2} \text e^{j\omega t} &= - \omega^2 \text e^{j\omega t} \end{align} \]
\[ \mathbf K \mathbf u + \mathbf C \dot {\mathbf u} + \mathbf M \ddot{\mathbf u} = \mathbf f \]

For harmonic vibrations, the equation becomes \[\mathbf K \mathbf u + j \omega \mathbf C \mathbf u - \omega^2 \mathbf M \mathbf u = \mathbf f\] so for a given frequency it has the same form as the static case but with a complex-valued system matrix: \[( \mathbf K + j \omega \mathbf C - \omega^2 \mathbf M ) \mathbf u = \mathbf f .\]


Start

R. Funnell
Last modified: 2018-11-07 12:52:06

Slide show generated from fem.html by Weasel 2018 Nov 7