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Abstract

Early detection of hearing loss accompanied by appropriate early intervention is important in order to

avoid  problems  associated  with  delayed  language  development,  with  its  impact  on  daily

communication,  educational  achievement,  psychosocial  development  and  later  employment

opportunities. Current screening methods are associated with high false-positive rates, which can be

attributed to transient conditions in the external ear and middle ear in the first 48 hours post partum.

Tympanometry (input acoustic admittance measurement in the presence of a range of static pressures)

is a promising tool for evaluating the status of the middle ear in newborns.

Tympanometry involves both non-linear responses and viscoelastic (time-dependent) effects, and the

tympanic membrane contributes to the overall response more than other middle-ear components do. We

have therefore developed a non-linear viscoelastic model based on experimental data reported in the

literature  for  excised  strips  of  tympanic  membrane.  The  constitutive  equation  of  this  model  is  a

convolution integral, composed of the Ogden hyperelastic model and the exponential time-dependent

function of the Prony series. The model was validated by reproducing the measured hysteresis effect

with a single set of parameters. 

The  newborn  ear  is  anatomically  very different  from the  adult  one,  resulting  in  a  different  input

admittance than in adults.  We have developed a finite-element model to investigate the admittance

responses of the ear canal and middle ear in newborns for frequencies up to 2 kHz. The model was

validated  by  comparison  with  two  sets  of  clinical  data  and  provides  quantitative  insight  into  the

separate contributions of the outer and middle ear.  The results suggest that admittance measurements

could provide more information about the condition of the middle-ear if made at multiple frequencies
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around its resonance (around 1.8 kHz).

Wideband  stimuli  are  used  to  extend admittance  measurements  to  higher  frequencies.  Taking into

account the fluid-structure interaction (FSI) between the air inside the canal and middle-ear cavity and

the structure of the ear, we have extended the frequency range of our newborn model up to 10 kHz. The

first and second standing-wave modes in the canal were observed at 7.2 and 9.6 kHz, respectively, and

the  resonance  of  the  middle-ear  cavity  was  identified  at  6.1 kHz.  The  model  was  validated  by

comparison with two sets of clinical data and provides interpretations for features that exist in the

clinical data but whose significance was not clear.

Our  numerical  models  of  the  non-linear  viscoelastic  tympanic  membrane  and  of  the  admittance

responses of the newborn ear provide quantitative insight into the mechanics of the ear and establish a

groundwork for the clinical application and interpretation of admittance measurements in newborns.
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Modèles à éléments finis associés aux
tympanométries large bande chez les nouveau-nés

Résumé

Il est important de pouvoir dépister tôt une perte auditive chez les nouveau-nés et d’intervenir de façon

appropriée rapidement afin d’éviter les problèmes liés au retard du développement langagier et ses

conséquences sur la communication au quotidien, la réussite scolaire, le développement psychosocial et

les possibilités d’emploi ultérieures. Les méthodes de dépistage actuelles produisent des taux élevés de

résultats faux positifs que l’on peut attribuer au régime transitoire qui prévaut dans l’oreille externe et

moyenne durant les 48 heures qui suivent la période postnatale. La tympanométrie (c.-à-d. la mesure de

l’admittance  acoustique  d’entrée  en  présence  des  pressions  statiques)  est  un outil  prometteur  pour

évaluer l’état de l’oreille moyenne des nouveau-nés.

La tympanométrie comprend des réponses non linéaires et des effets viscoélastiques (dépendants du

temps).  La  membrane  tympanique  contribuant  davantage  à  la  réponse  globale  que  les  autres

composantes de l’oreille moyenne, nous avons donc développé un modèle viscoélastique non linéaire

basé sur des données expérimentales publiées dans la littérature et produites à partir de bandes excisées

de  membrane  tympanique. L’équation  constitutive  de  ce  modèle  est  une  intégrale  de  convolution

composée du modèle hyperélastique d’Ogden et de la fonction exponentielle dépendante du temps de la

série de Prony. Nous avons validé le modèle en reproduisant l’effet d’hystérésis mesuré au moyen d’un

ensemble unique de paramètres. 

Sur le plan anatomique, l’oreille du nouveau-né est très différente de celle de l’adulte. Pour étudier les 

réponses d’admittance du conduit auditif et de l’oreille moyenne des nouveau-nés à des fréquences 

allant jusqu’à 2 kHz, nous avons développé un modèle à éléments finis. Celui-ci, que nous avons validé
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en comparant deux ensembles de données cliniques, fournit une piste d’évaluation quantitative sur les 

contributions distinctes de l’oreille externe et de l’oreille moyenne. Les résultats obtenus semblent 

indiquer que les mesures d’admittance pourraient fournir des renseignements supplémentaires sur l’état

de l’oreille moyenne si elles sont faites pour de multiples fréquences au voisinage de la résonance de 

l’oreille moyenne (1,8 kHz).

Des stimulus large bande sont utilisés pour étendre les mesures d’admittance à des fréquences plus

élevées. En tenant compte de l’interaction fluide-structure entre l’air dans le conduit auditif et dans la

cavité de l’oreille moyenne, et la structure de l’oreille, nous avons étendu la gamme de fréquences de

notre modèle jusqu’à 10 kHz. Des observations du premier et du deuxième mode d’onde stationnaire

ont été effectuées dans le conduit auditif à des fréquences de 7,2 et de 9,6 kHz respectivement, et la

résonance de la cavité de l’oreille moyenne a été décelée à 6,1 kHz. Notre modèle, qui a été validé par

la comparaison de deux ensembles de données cliniques, permet d’interpréter des éléments dans les

données cliniques dont la signification auparavant n’était pas claire.

Nos  modèles  numériques  de  la  membrane  tympanique viscoélastique  non linéaire  et  des  réponses

d’admittance de l’oreille du nouveau-né offrent une piste d’évaluation des mécanismes de l’oreille, tout

en ouvrant la voie à l’utilisation et à l’interprétation en milieu clinique de mesures d’admittance chez

les nouveau-nés. 
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1 Introduction

1.1 Motivation
Hearing loss can be conductive, involving the outer and/or middle ear or sensorineural, involving the

inner ear, auditory nerve and brain, or a combination of these two types. Hearing loss in one of most

common birth defects– about 3 in 1000 babies are born with some degree of hearing impairment (e.g.,

Lang-Roth, 2014; Akinpelu et al., 2014). Most permanent newborn hearing loss is sensorineural, but its

detection and diagnosis are often affected by transient conductive losses (e.g., Akinpelu et al., 2014).

Early detection of hearing loss accompanied by appropriate early intervention is important in order

to avoid problems associated with language development that affect daily communication, educational

achievement, psychosocial development and later employment opportunities (e.g., Joint Committee on

Infant Hearing 1994 Position Statement; American Academy of Pediatrics, 2007). Hearing screening

aims to identify infants with of hearing loss. Currently, otoacoustic emission (OAE) and/or auditory

brainstem  response  (ABR)  tests  are  employed  as  screening  tools  in  newborn  hearing  screening

programs. However, high false-positive rates of 2.5% to 8% (e.g., Clemens and Davis, 2001) constitute

a major concern and are often attributed to the transient condition of the middle ear due to fluid and

other residual material in the first 48 hours postpartum (e.g., Akinpelu et al., 2014), which conflicts

with  the  desire  for  shorter  hospital  stays.  It  would  thus  be  very  valuable  to  be  able  to  identify

conductive losses quickly, right at the time of the initial screening just after birth.

In addition to the identification of hearing impairments by hearing screening, diagnosis of the source

of the hearing loss, including differentiation between conductive and sensorineural hearing loss is the

next  step  because  the  course  of  intervention  is  quite  different.  Hearing  assessment  techniques

(especially the cross-checking of results from multiple approaches) can help us to identify hearing loss

type and severity. However, since we cannot perform behavioural evaluations (such as speech and pure-
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tone audiometry) on infants, we have to rely on non-behavioural responses and physiological measures

(Stach, 2008, p. 221).

Admittance measurement is a promising tool for assessing middle-ear status in newborns. In this

method,  the acoustic  input  admittance  of  the outer  and middle ear  is  measured  in  response to  an

acoustic  excitation,  which  can  be  either  single-frequency  or  wideband.  Tympanometry  provides

additional information by introducing a range of quasi-static air pressures in the ear canal along with

the acoustic excitation. However, the admittance response of the infant ear is not at all well understood.

Differences in the interpretation of results in adults and newborns may be attributed to anatomical and

physiological  differences  occurring during maturation  (e.g.,  Saunders et  al.,  1983;  Eby and Nadol,

1986; Keefe et al., 1993; Qi et al., 2006). 

Understanding  the  mechanics  and  the  anatomical  maturation  of  the  middle  ear  after  birth  is

obviously essential  to understanding conductive hearing loss and to designing better  screening and

diagnostic tests. In recent years, a great deal of experimental work has been done around the world to

characterize and clarify middle-ear function (e.g., Keefe et al., 1993; Keefe and Levi, 1996; Merchant

et  al.,  2010).  Since  there  are  many factors  affecting  experimental  results,  outputs  are  difficult  to

interpret (e.g., Sanford and Feeney, 2008). With developments in software and medical imaging, three-

dimensional middle-ear finite-element models have become a valuable tool for studying the mechanical

behaviour of the ear, particularly the middle ear. Those models can help to interpret clinical data and to

predict  the  effects  of  abnormal  conditions.  Qi  et  al.  (2006,  2008) developed  static  models  of  the

newborn ear  canal  and middle-ear,  without  taking  into  account  the  dynamic  behaviour  of  the  ear

components. A preliminary study of the dynamic responses of the newborn ear canal and middle-ear,

limited to frequencies up to 2 kHz, was performed by Gariepy (2011).

2



1.2 Objectives
The overall objective of this study was to develop a better quantitative understanding of the mechanical

behaviour  of  the  newborn  outer  and  middle  ear,  particularly  their  admittance  response.  More

specifically, the objectives of this thesis are listed below:

1. Development  of  a  non-linear  viscoelastic  model  for  the  tympanic  membrane  (TM)  and

investigation  of  TM behaviour  relevant  to  the  conditions  involved in  tympanometry:  large,

sweeping ear-canal pressures applied over a period of a few seconds.

2. Development of  numerical  models  of  the newborn ear  canal  and middle ear,  to  investigate

features  in  clinical  wideband  immittance  measurements  and  to  provide  insight  into

tympanometry.

1.3 Thesis outline
This  thesis  is  based  on  three  manuscripts,  presented  in  Chapters  3,  4  and  5.  In  addition  to  the

background  information  and  literature  reviews  provided  in  the  introductory  sections  of  these

manuscripts, a general background is provided in Chapter 2 for ear anatomy and for numerical aspects

of the modelling. Chapter 3 presents a numerical approach for a non-linear viscoelastic model for the

tympanic  membrane  (Motallebzadeh  et  al.,  2013),  representing  its  non-linear  and  time-dependent

behaviour,  relevant  to  the  conditions  involved in  pressurized  admittance  measurements.  Chapter  4

presents  finite-element models of the newborn ear canal and middle ear to study their acoustic input

admittance response for frequencies of up to 2 kHz. In Chapter 5, taking into account fluid-structure

interactions, the frequency range is extended to 10 kHz to identify higher-frequency features in the

clinical admittance data.
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Chapter 2: Background and literature review

2.1 Anatomy of outer and middle ear

2.1.1 Introduction

The auditory system collects the acoustic information, modulates, transforms, amplifies and channels

them to the brain via neural path. In general, this system is divided into three main sections: outer,

middle and inner ear  (Fig. 2–1). The outer ear which consists of auricle (or pinna) and the external

acoustic meatus (or ear canal) collects the peripheral acoustical waves and transfers them to the middle

ear. The middle ear contains the tympanic membrane (or eardrum), ossicles (i.e., malleus, incus and

stapes)  suspensory  attachments  of  ligaments,  tendons  and  muscles  and  middle-ear  cavity.  The

acoustical waves vibrate the TM and the motion is passed through the ossicular chain into the inner ear.

Inner ear itself consists of two parts: the cochlea which transforms acoustical energy to neural signals

and the vestibular system which serves as a sensor of motion position. More detailed description of the

ear anatomy can be found in standard anatomy textbooks (e.g., Standring, 2008, chap. 36 & 37). In this

section we focus of anatomical characteristics of the outer and middle ear in human and anatomical

maturation during the growth.

2.1.2 Anatomy of outer ear

The outer ear is the lateral portion of the ear. It is composed of the auricle (or pinna) and the external

acoustic meatus (or outer ear canal ). The pinna has a quite complex anatomy and its growth is parallel

to  that  of  the other  components  of  the head and continues  approximately by 9 years  of  age  (e.g.,

Saunders et al., 1983, p. 4).

The ear canal is a tube that begins in the bottom of the concha and extends into the temporal bone

and terminates at the tympanic membrane (TM). In adults, its length is approximately 25 mm on the

posterior-superior wall and due to the obliquity of the TM, the length on the anterio-inferior wall is
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6 mm longer. (Anson and Donaldson, 1992, p. 146). The ear canal forms an S-shape curvature and one

third lateral portion is surrounded by soft tissue and the remaining medial two third of it is surrounded

by bone (Standring, 2008, p. 620).

The postnatal development of the ear canal continues by age of 7 years (e.g., Saunders et al., 1983,

p. 4). The cross-sectional at the birth is approximately oval and much narrower than that of adult. The

canal curvature is more straight than that in adults and the surrounding bony wall is developed during

the first 3 years of age (e.g., Eby and Nadol, 1986).

2.1.3 Anatomy of middle ear

The middle ear is located in the petrous part of the temporal bone, terminated laterally at the tympanic

membrane and medially at the stapes foortplate. The ossicular chain and its suspensory attachments are

located within middle-ear cavity. This cavity is channelled to the throat by the Eustachain tube which is

normally closed and equalizes the pressure on both sides of the tympanic membrane, when is opened.
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2.1.3.1 Tympanic membrane

The tympanic membrane (TM), is a conical shape shell with an apex pointing inward the middle-ear

cavity. Its longest and shortest diameters measure between 9 to 10 mm and 8 to 9 mm, respectively

(e.g., Lim, 1970; Anson and Donaldson, 1992, p. 147). The TM reaches the adult size before birth. It is

anchored to the tympanic sulcus thickened fibrocartilaginous ring or anulus.

The TM consists of two parts, namely the pars tensa and pars flaccida (Fig. 2–2). The pars tensa, the

larger portion of the TM, is composed of three layers: the lateral epidermal layer, the intermediate

fibrous layer and the medial muscosal layer. Lim (1970) reported the thickness of the pars tensa being

between 30 and 90 μm in adults. More recently, Kuypers et al. (2006) reported a thickness range from

40 to  120 μm for  the  pars  tensa.  The  pars  flaccida  is  approximately  one-tenth  of  the  TM and is

considered to be the extension of the skin of the external ear canal and its thickness varies between 30

and 230 μm in adults (Lim, 1970).

 Ruah et al.  (1991) reported morphological changes of the TM during post-natal development and

investigated  the  similarity  between  age-related  ultra-structural  changes  of  the  TM  and  changes
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observed in human skin. They also reported that the thickness of the pars tensa and pars flaccida is

significantly higher than that of adults. The tympanic ring is yet incomplete at birth  (e.g., Standring,

2008, p. 624). More details about the morphology and thickness of the newborn TM are presented in

Section 4.2.1.

2.1.3.2 Ossicles

Middle ear contains three bones, called malleus, incus and stapes. The malleus, the most lateral bone, is

the largest of the ossicles. It is composed of head, neck, manubrium and anterior and lateral processes

and measures between 7.6–9.1 mm in length (e.g., Wever and Lawrence, 1954, p. 417). The malleus is

attached to the TM along the length of the manibrium. 

The middle bone in the ossicular chain is the incus, shaped like and anvil. The anterior portion of the

incus articulates with the malleus in a saddle-shaped joint, called the incudomallear joint. The lengths

of the short and long processes of the incus are approximately 5 and 7 mm, respectively (e.g., Wever

and Lawrence, 1954, p. 417).

The most medial bone in the ossicular chain is the stapes. It has a head, neck, two crura and a

footplate. It articulates with the incus via the incudostapedial joint. The footplate is attached to the oval

window via the stapedial annular ligament. The surface area of the stapes footplate of 2.3 – 3.75 mm2

has been reported in the literature (e.g., Wever and Lawrence, 1954; Gan et al., 2011). 

The ossicles are not mature at birth. Although they ossify prenatally (e.g., Standring, 2008, p. 627),

and their size and weight are still developing after birth (e.g., Saunders et al., 1983, p. 10).

2.1.3.3 Ligaments and muscles

There is controversy about what ligaments there are in the human ear. Here we focus on those that are

mostly reported in the literature.  The malleus attaches to the TM by a ligament,  along manibruim

length. Three ligaments are attached to the malleus, called superior, lateral and anterior ligaments. The
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incus is connected to the fossa incudis by the posterior ligament. An annular ligaments attaches the

footplate of the stapes to the oval window. As a collagenous tissue, ligaments undergoe significant

alterations from newborn to adult (e.g., Williamson et al., 2001).

There are two muscles in the middle-ear cavity, tensor tympani and stapedius muscles. The tensor

tympani attaches the handle of the malleus to the anterior wall of the tympanic cavity and the stapedius

muscle connects the stapes head to the mastoid wall of the tympanic cavity. The tensor tympani and

stapedius muscles are approximately 25 and 6.3 mm in length,  respectively.  The muscles and their

connections are matured prenatally, however, the attachments are not matured until one week after birth

(e.g., Saunders et al., 1983, p. 10).

2.1.3.4 Middle-ear cavity

The middle-ear cavity refers to the set of air-filled and inter-connected cavities within the temporal

bone that comprise the tympanic cavity, aditus, antrum, and mastoid inside the temporal bone. The air

volume in the cavity ranges form 2000 to 22000 mm3 in adults (e.g., Molvaer et al., 1978). The size of

the cavity undergo significant changes after birth, due to the enlargement of the antral and mastoid air

sinuses (e.g., Saunders et al., 1983, p. 11).

2.2 Introduction of tympanometry

2.2.1 Principles of immittance audiometry

Immittance measurement is an audiological tool for assessing middle-ear status. It was introduced into

clinical  practice  during  the  1970s  (e.g.,  Stach,  2008,  p.  314).  In  this  method  the  acoustical  input

immittance of the outer and middle ear is measured in response to probe tones. The measurement can

be done in two conditions: (1) under ambient pressure or (2) with a pressurized ear canal. In the second

form (called tympanometry), a probe tone is introduced to the ear canal while a pump generates quasi-

8



static pressures ranging from zero to ±200-400 daPa, going from negative to positive pressures or vice

versa.

Immittance  refers  to  either  admittance  Y or  impedance  Z.  The  admittance  is  a  measure  of  the

mobility of a system. In acoustics, the admittance of a system is defined by

Y=U /P , (2–1)

where U and P are the volume velocity and the acoustical pressure, respectively, at the point where the

measurement is performed. The impedance is the reciprocal of the admittance. The admittance and

impedance are complex numbers, so they can be reported in terms of either magnitude and phase or

real and imaginary parts.

2.2.2 Clinical applications of tympanometry

Tympanometry is often done with a single probe tone of 226 Hz. However, more information can be

obtained by using multiple frequencies (e.g., Alberti and Jerger, 1974; Colletti, 1975; Funasaka et al.,

1984; Keefe and Levi, 1996; Shahnaz et al., 2008). In fact multi-frequency tympanometry has been

shown to improve the test sensitivity in some cases of outer/middle ear pathologies (e.g., Shahnaz et

al., 2008). This kind of measurement can be performed in two methods; multiple discrete frequencies

(e.g., Colletti, 1975) and wideband-acoustic stimuli both in presence of sweeping quasi-static pressure

(e.g., Funasaka et al., 1984). In the former method, a full course of quasi-static pressure variation in the

ear canal is performed (in the range of for example ±4 kPa (e.g., Colletti, 1975), while the probe tone is

held  at  a  constant  frequency and the pressurization  is  repeated for  each single  probe  tone.  In  the

wideband immittance measurements, the acoustic stimulus – which can be a sweep-frequency tone

(e.g., Funasaka et al., 1984), a chirp  (e.g., Keefe et al., 1993) or a click  (e.g., Keefe and Simmons,

2003) – is presented to the ear canal every 40 ms, for example, while the quasi-static pressure changes

by only a few daPa (e.g., 3.2 daPa for a pressure course of –3 to +2 kPa at a rate of 0.75 kPa/s as in Liu
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et al., 2008), and it is assumed that the pressure is constant at each frequency.

At low frequencies (e.g., below 2 kHz), the acoustic pressure distribution is approximately uniform

in  the  ear  canal  and  across  the  TM  surfaces.  At  higher  frequencies,  however,  the  geometrical

dimensions  of  the canal  and TM are not  small  in  comparison with the sound wavelength,  so this

assumption is not valid any longer and the output of tympanometry becomes sensitive to the position of

the  probe  tip  (e.g.,  Keefe  et  al.,  1993;  Voss  and Allen,  1994).  To overcome this  problem,  energy

reflectance has been proposed for clinical measurements. It has been stated that, unlike the immitance

response,  the  energy reflectance  in  adults  represents  the  response  of  the  TM,  independent  of  the

location of the probe tip, because (1) the energy loss of the sound wave in the enclosed air in the canal

is negligible; (2) the ear canal acts like a smoothly varying transmission line (i.e., no significant energy

is reflected from the canal wall); and (3) energy loss at the canal wall is negligible  (e.g., Voss and

Allen, 1994).

2.2.3 Tympanometry in children

Low-frequency tympanometry at a single probe tone provides easy-to-interpret results for adult ears

but the results in newborns are very different from those in adults. Tympanometry with traditional low-

frequency  probe  tones  (e.g.,  226 Hz)  is  not  recommended  for  infants  less  than  7  months  of  age

(Paradise,  1982;  e.g.,  Holte  et  al.,  1990).  The  differences  between  infant  and  adult  ears  may  be

attributed to anatomical and physiological differences occurring during maturation  (Eby and Nadol,

1986;  Qi et  al.,  2006;  Saunders  et  al.,  1983).  As  shown in  Fig. 2–3,  some of  the  most  important

anatomical differences between infants and adults can be summarized as follows:

1. The sizes of the ear canal and middle-ear cavity have not matured yet.

2. The relative orientation of the ear canal and the TM undergoes postnatal changes.

3. The density and size of the ossicles are still developing after birth.
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4. Unlike the case in adults, the newborn ear canal is surrounded mainly by soft tissue.

5. In infants, the TM is less stiff and yet thicker than in adults.

In addition to the unsatisfactory results of tympanometry at low frequencies, the sensitivity of the

tympanometry output to the position of the probe tip inside the canal at higher frequencies (as stated in

2.2.2) is yet another issue. Since the compliant ear canal absorbs some portion of the acoustical energy,

unlike the case in adults, the energy reflectance in newborns is still sensitive to the position of the

probe tip.

2.3 Finite-element method

2.3.1 Introduction of finite element method

The finite-element method (FEM) is a numerical approach to finding approximate solutions for partial

differential equations that govern a physical system. In this method, the physical system under study is
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divided  into  simple  components,  called  elements,  whose  behaviour  can  be  described  by  simple

equations,  readily  solved.  The  combination  of  the  responses  of  these  elements  can  represent  the

complex behaviour of the overall system. The development of this method can be traced back to the

early 1940s and the work of McHenry, Hrenikoof and Newmark in the field of solid mechanics (e.g.,

Zienkiewicz et al., 1977).

The finite-element analysis can be sub-categorized into three main steps: 

1. Pre-processing:  reconstructing  the  geometry;  mesh  generation  (discretizing  the  system into

finite elements); assigning the material properties; assigning the boundary, initial and loading

conditions; and the mathematical formulation.

2. Processing: solving the governing equations.

3. Post-processing: analyzing the outputs, and validating the results.

More details  about this  method can be found in standard finite-element method textbooks  (e.g.,

Zienkiewicz et al., 1977).

As  a  brief  introduction  to  this  method,  let  us  consider  a  continuum solid  domain.  To model  a

continuum mechanical system, a geometry, more or less accurate, is required. In finite-element models

of  living  tissues,  the  geometry  is  usually  generated  based  on  sets  of  images,  such  as  computed

tomography (CT). Segmentation of each image is performed and then the combination of them will

generate  the final  geometry.  The reconstructed geometry is  then broken down to a  mesh of small

components such as hexahedral  and tetrahedral elements.  The system characteristics (e.g.,  material

parameters),  initial  and  boundary  conditions,  external  forces  and  the  interaction  between  system

components are defined and the constitutive equations that can represent the system response to the

applied conditions  are  selected.  The time course (duration)  of  the modelling is  divided into finite
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segments. In the main step of finite-element modelling, the governing equations (e.g., the constitutive

equations  of  the materials)  are  approximated by linear  sets  of equations  for each element  and the

combination of them results in matrices of coefficients (related to material properties and geometry)

and variables (spatial coordinates and time).

The basic equations for the finite-element method are derived as a variational formulation based on

Hamiltonian  mechanics.  In  this  formulation,  the  classical  Newtonian  equations  of  mechanics  (i.e.,

vector-based formulations) are reformulated using the principle of stationary action by minimizing the

energy functional δW:

δW=∫
v

σ : δdd v−∫
v

f .δ v dv−∫
∂v

t .δv da=0 . (2–2)

The first integral term is the potential energy of the system as a product of the stress tensor σ and the

virtual rate of deformation tensor δd in the volume element of dv.  The second term represents the

virtual work done by the volume forces f acting on the resultant velocity δv of the volume element of

dv. The third term is the virtual work of the surface forces  t and the resultant velocity, on a surface

element da, the surface of the element ∂v. By taking advantage of the small dimensions of the elements

and the small time steps, this formulation is linearized for each element. Solving the resulting system of

linear equations provides the response of the system. 

In the application of the finite-element method, a number of factors should be considered to provide an

accurate representation of reality:

1. Mesh convergence: A coarse mesh generates a small system of equations, but the results may

not be accurate enough. A very fine mesh, on the other hand, results in a high computational

cost. A systematic mesh analysis should be performed to obtain an appropriate mesh.

2. Constitutive equations: Material behaviour is always non-linear. The nature of the deformations
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of the model components during the simulations, determines whether their behaviour should be

approximated  by  linear  constitutive  equations  or  more  complicated  equations  should  be

adopted. There are different methods to linearize the mathematical equations that govern the

system behaviour. In the finite-element method the choice of the method is based on trade-offs

between the computational cost and the required accuracy. For example, approximating a curve

with a second-order polynomial equation results in a more accurate representation than a linear

one, but it increases the computational time.

3. Boundary, initial and loading conditions: In general, the interactions of the system within itself

(i.e.,  between the components  of  the system)  and with the  environment  (boundaries  of  the

system and  applied  loads)  are  very  complicated.  A successful  finite-element  model  should

represent those conditions in a simplified form but still accurately enough.

4. Mechanical representation: Based on the nature of the system that is under study, appropriate

simplifications may not only reduce the computational cost but also result in more accurate

results.  For  example,  modelling  a  quasi-linear  and  quasi-static  condition  with  a  non-linear

dynamic representation not only increases the computation time, but may introduce numerical

errors in the output.

5. Model verification and validation: Model verification refers to the verification of the computer

code and the mathematical calculations. Model validation is the process of investigating how

accurately the model represents the experimental measurements.

There are a number of software packages for finite-element modelling. Most of the commercial ones

(e.g.,  ANSYS  http://www.ansys.com/  and  ABAQUS  http://www.3ds.com/products-services/simulia/

products/abaqus/) integrate the three steps of modelling, namely pre-processing, processing and post-

processing. In addition, free (libre) and open-source software is available. Most such software aims to
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provide specific services. For example, there is software that is developed for the purpose of geometry

and  mesh  generation  (e.g.,  Fie,  Tr3  and  Fad  at  http://www.audilab.bme.mcgill.ca/sw/,  PreView at

http://www.febio.org/preview/, Gmsh at http://www.geuz.org/gmsh/), non-linear material representation

(e.g.,  Mfront  at  http://tfel.sourceforge.net/documentations.html),  solving  the  mathematical  equations

(e.g.,  FEBio  at  http://www.febio.org/febio/  and  Code_Aster  at  http://www.code-aster.org/)  and

visualization  of  the  output  (e.g.,  PostView  at  http://www.febio.org/postview/  and  ParaView  at

http://www.paraview.org/).

2.3.2 Nonlinear and time-dependent material models

In continuum mechanics, nonlinearity arises from three conditions: (1) large deformations (e.g., large

strains), (2) nonlinear material properties (e.g., nonlinear elasticity), and (3) change of the status (e.g.,

contact)  (Holzapfel,  2000,  chap.  6).  In  this  brief  introduction,  we look  at  large  deformations  and

nonlinear elastic and viscoelastic behaviours.

2.3.2.1 Finite deformation

Let us consider a configuration of a solid continuum domain in its reference (initial) and deformed

configurations.  A typical  material  point  of  P(t0)  and  its  neighbouring  point  Q(t0)  in  the  reference
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configuration Ω0 are transformed to new positions P(t) and Q(t) in the deformed configuration Ωf by the

spatial vectors u(X,t) and u(X+dX,t), respectively. According to the configuration in Fig. 2–4, one can

write the following vector-based relationships:

x+d x=X+dX+u (X+dX , t )
d x=dX+u(X+dX , t)−u (X , t)

d x=dX+(∇ u)dX
d x=FdX

, (2–3)

where  ∇ u  is a second-order tensor known as the  displacement gradient and  F is the deformation

gradient. Two forms of strain tensor are defined based on the right Cauchy-Green deformation tensor C

( = FTF, FT being the transverse of matrix  F): (1) the  Lagrangian finite strain tensor E and (2) the

Green-Lagrangian strain tensor e. The strain tensors are defined by

E=
1
2

(C−I )e=
1
2

( I−C) , (2–4)

where I is the unity matrix. Let us expand the Lagrangian finite strain tensor E, for instance: 

E=
1
2

[∇ u+(∇ u )
T
+∇ u (∇ u )

T
] . (2–5)

For infinitesimal deformations, the term ∇ u(∇ u)
T  is neglected, but for large deformations this term

is kept.

2.3.2.2 Nonlinear elasticity

Unlike the case for linear elastic materials,  the strain-stress relationship is  not  linear  for nonlinear

elastic materials, commonly called hyperelastic materials. There are a number of constitutive equations,

derived from a strain-energy function, such as the Mooney–Rivlin, Neo-Hookean, Yeoh, and Ogden

models  (e.g.,  Holzapfel,  2000).  More  details  about  the  formulation  and  application  of  the  Ogden
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hyperelastic model are presented in Section 3.2.3.

2.3.2.3 Nonlinear viscoelaticity

Most  materials,  and  particularly  living  tissues,  display  both  non-linear  and  time-dependent

(viscoelastic)  behaviour.  Different  formulations  have  been  introduced  to  derive  their constitutive

equations  (e.g., Charlebois et al., 2013).  More details about the formulation and application of non-

linear viscoelastic models are presented in Section 3.2.3.

2.3.3 Fluid-structure interaction 

Fluid-structure interaction (FSI) is a field in physics that deals with mechanical interactions between

fluid and structural domains. Sound waves are small distortions in a medium, propagating in space and

time. When two media, one solid and one fluid, share an interface, the acoustic-structural interaction is

modelled by coupling the constitutive equations of both structural and fluid domains at their interface.

Let us consider a simple example of a homogeneous linear elastic structure domain Ωs and an inviscid

fluid domain Ωf sharing an interface Σ (Fig. 2–5).

For the elastic structure, the conservation of the momentum is formulated by
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σ ij , j−ρ s
d2us i
d t 2

=0 , (2–6)

where σij,j is the derivative of the stress σij in the j direction, ρs is the density and usi is the displacement

of the structure in the i direction. The linear elastic constitutive equation is 

σ ij=C ijkl εkl , (2–7)

where Cijkl are the corresponding components of the stiffness matrix and εkl are the strain components,

which themselves are defined in terms of the deformation matrix u by

εkl=
1
2

(uk ,l+ul , k ) , (2–8)

where uk,l and ul,k are derivatives of the deformations u in the k and l directions with respect to the l and

k directions, respectively. 

For the inviscid fluid domain, the conservation of momentum equation is formulated by

τ ij, j−ρf
d2u fi
dt 2

=0 , (2–9)

where τij,j is the derivative of the stress τij in the j direction, ρf is the density and ufi is the displacement in

the i direction. The inviscid assumption for the fluid indicates that it resists only pressure, so the stress

components is

τ ij, j=−pδij , (2–10)

where  p is the pressure and δij is the Kronecker delta ( = 0 if  i ≠ j , = 1 if  i = j). In a fluid medium,

pressure is a function of the fluid density ρ and the speed of the sound c in that fluid:
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p=ρ c2 . (2–11)

The Helmholtz’s equation for the propagation of the waves in a fluid medium is

Δ p+k 2 p=0 , (2–12)

where  ∆ is  the  second-order  differential  operator  and  k = ω/c is  the  wave number  (ω = 2πf is  the

angular frequency).

At  the  interface  Σ of  the  structure  and fluid  domains,  there  are  two conditions  that  should  be

satisfied: (1) the continuity of the normal stresses and (2) the continuity of the normal velocities. The

first condition is represented by

σij⋅n i=τij⋅n i=−pδij⋅n i , (2–13)

where ni is the normal unity vector in the i direction and ∙ represents the scalar product. The continuity

of the normal velocities is represented by

d us i
d t

⋅n i=
d uf i
d t

⋅ni . (2–14)

Satisfying the continuity equations, the fluid and structure domains interact with each other and the

forces and deformations transfer from one to the other.

2.3.4 Finite-element models of the ear

The first finite-element model of the middle ear was presented by Funnell and Laszlo  (1978). They

studied the low-frequency response of the cat TM. This model was extended to higher frequencies by

Funnell (1983), an investigation of the undamped natural frequencies of the TM. The effect of damping

was added to the TM model by Funnell et al.  (1987). Lesser and Williams  (1988) applied the finite-

element method to a two-dimensional cross-sectional geometry of the human TM and malleus and

investigated a variety of effects, such as the shape of displacement of the TM. Williams and Lesser
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(1990) reported natural frequencies of an uncoupled 3-D TM. Wada et al.  (1992) presented a three-

dimensional  finite-element  model  of  the  human  middle  ear.  The  mechanical  characteristics  of  the

model were adjusted to reproduce the experimental data, for example, the effect of the annular ligament

of the TM was represented by linear and torsional springs. Ladak and Funnell  (1996) looked at the

effects of abnormalities in the ossicular chain of a cat middle-ear. Funnell and Decraemer (1996) used

phase-shift moiré topography to study the shape and deformation of the TM, combined with finite-

element  modelling.  Daniel  et  al.  (2001) used  imaging  techniques  to  reconstruct  more  realistic

geometries  for  finite-element  models  of  the middle ear.  Attempts  have been made to  improve the

geometrical  characteristics  of  the  models.  Series  of  histological  images  (Sun et  al.,  2002),  micro-

computed tomography (Decraemer et al., 2003) and magnetic resonance images  (Kelly et al., 2003),

and combinations of these methods  (Elkhouri et  al.,  2006), have been utilized to reconstruct more

accurate geometries of the models.

In finite-element models of the middle ear, a variety of  constitutive models have been applied to

different components based on their mechanical behaviours. The simplest constitutive model is linear

isotropic elasticity. Funnell and Laszlo (1978) modelled the TM by a single layer of isotropic material.

Multilayer and orthotropic elastic models have also been applied to the TM  (e.g., Gan et al., 2006;

Tuck-Lee et al., 2008). Viscous and nonlinear behaviour of the TM has also been taken into account in

some finite-element models of the middle ear or its components  (e.g., Ladak et al., 2006; Qi et al.,

2008; Motallebzadeh et al., 2013a). There are a number of studies that explored the acoustical and

structural coupling in the models, representing the acoustical pressure distribution in the canal or the

effect of the air trapped in the middle-ear cavity (e.g., Day and Funnell, 1990; Gan et al., 2004; Ihrle et

al., 2013; Volandri et al., 2014).

The first attempts to model the newborn ear were performed in our group. Qi et al. (2006) presented
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a non-linear finite-element model of the newborn canal and explored large deformations of the soft

tissue surrounding the canal in response to high pressures up to  ±3 kPa. In another study Qi et al.

(2008) presented a non-linear model of the response of the newborn middle ear to high pressures. They

proposed a range of plausible Young’s moduli for the TM and canal wall, based on the data reported for

adults and taking into account the effects of maturation. In their non-linear models, the hyperelastic

model was based on the linear elastic parameters. In both studies the ear components were subjected to

static loading conditions. Gariepy (2011) presented a preliminary linear dynamic model of the response

of the newborn ear to sound pressures for frequencies below 2 kHzand computed the input immittance.

He adjusted the elastic parameters from Qi et al. (2006, 2008) for the dynamic behaviour of the tissues.

In the models of both Qi et al. and Gariepy, the tympanic membrane was modelled with shell elements.

(The geometries  of  the  models  in  both studies  were  later  found to have  been scaled  based on an

incorrect interpretation of the slice thicknesses of the CT images, and Gariepy (2011) evaluated the

magnitude of the effects of the error.)

Cheng et al. (2007) reported a series of mechanical measurements on strips of the human TM and

reported  non-linear  elastic  behaviour  with  deformations  up  to  20%.  They also  reported  the  time-

dependent characteristics of the TM. These data are used in Chapter 3 to propose a more realistic

constitutive model of the TM for large deformations at low frequencies. In Chapters 4 and 5 the ranges

of newborn ear properties used by Qi et al. and by Gariepy are reconsidered based on experimental data

reported recently in the literature, and a more accurate thickness map of the newborn TM is presented,

based on a set of histological images. In Chapter 5, by taking into account fluid-structure interactions,

the modelling of the immittance response of the ear is extended to higher frequencies.
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Chapter 3: A non-linear viscoelastic model for the tympanic
membrane

Published in the Journal of the Acoustical Society of America, December 134(6): 4427-4434 (2013)

Preface
In this paper, a non-linear viscoelastic model is presented for the human tympanic membrane (TM),

based on experimental data reported in the literature for strip samples of the TM. Our approach allows

us to model both the loading and unloading curves, and the associated hysteresis, with a single set of

parameters. We also estimate the energy dissipation as a function of frequency, and explore the effects

of strain rate on the relaxation behaviour. This model is suitable for representation of the TM behaviour

at large deformations and low frequencies, the conditions corresponding to the pressurization involved

in tympanometry. 
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Abstract
The mechanical behaviour of the tympanic membrane displays both non-linearity and viscoelasticity.

Previous finite-element models of the tympanic membrane, however, have been either non-linear or

viscoelastic but not both. In this study, these two features are combined in a non-linear viscoelastic

model.  The constitutive equation of this model is a convolution integral composed of a non-linear

elastic  part,  represented by an Ogden hyperelastic  model,  and an exponential  time-dependent  part,

represented by a Prony series. The model output is compared with the relaxation curves and hysteresis

loops observed in previous measurements performed on strips of tympanic membrane. In addition, a

frequency-domain analysis is performed based on the obtained material parameters, and the effect of

strain rate is explored. The model presented here is suitable for modelling large deformations of the

tympanic membrane for frequencies less than approximately 3 rad/s or about 0.6 Hz. These conditions

correspond to the pressurization involved in tympanometry.

3.1 Introduction
The eardrum or tympanic membrane (TM), the gateway to the middle ear, has a curved conical shape

with the apex pointing medially. It receives airborne sound waves collected by the outer ear, transforms

them into mechanical vibrations and transmits the vibrations to the ossicular chain. Changes of the

structure and properties of the TM directly affect the sound transmission and may lead to conductive

hearing loss. In addition, the response of the TM greatly influences the results of hearing screening and

diagnosis tests. For example, in tympanometry the TM contributes more to the overall response than

other middle-ear components do (e.g., Feldman, 1974). Thus, understanding the mechanics of the TM

is essential for understanding conductive hearing loss and for designing better screening and diagnostic

tests.  It  is  also important for TM repair  procedures and for improvement of the coupling between

ossicular prostheses and the TM.
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The small dimensions and non-uniform thickness of the TM make measurements of its mechanical

properties very challenging. Added to these difficulties are the non-linear stress-strain relationship and

strain-rate-dependent behaviour of the TM.

In the literature, various measurements of the mechanical properties of the TM have been reported,

in association with various models. Békésy (1949) measured the elastic modulus (or Young’s modulus)

of the human TM using a bending test  on a rectangular flap.  Kirikae  (1960) calculated the elastic

modulus based on a dynamic test  on a strip of fresh human TM. Decraemer et  al.  (1980a, 1980b)

reported  data  on  the  viscoelasticity  of  the  TM  and  presented  non-linear  elastic  and  non-linear

viscoelastic  structural  models.  Fay et  al.  (2005) applied  several  approaches  to  estimate  the  elastic

properties of the TM. Cheng et al. (2007) conducted uniaxial tensile tests on strips of fresh human TMs

to measure the stress-stretch relationship, stress relaxation under constant deformation, and mechanical

strength. They also applied a non-linear elastic model to the experimental data to analyze the non-linear

stress-stretch behaviour. 

More recently, Huang et al. (2008) and Daphalapurkar et al. (2009) used a nanoindentation method

to measure both in-plane and  through-thickness viscoelastic properties of the posterior and anterior

portions of the human TM. The applied deformations and resultant strains were small and linear. Luo et

al. (2009a, 2009b) used a split-Hopkinson pressure bar to measure the strain-rate-dependent behaviour

of the normal and diseased human TM at strain rates of 300–2000 s−1 in the radial and circumferential

directions. At these strain rates the reported stress-strain curves are linear except in the vicinity of

failure strains. Zhang & Gan (2010) stimulated human TM specimens by sound pressure and measured

the vibrations with a laser Doppler vibrometer. The sound pressure was 80 dB SPL, which is within the

range of linear TM vibrations  (e.g., Khanna and Tonndorf, 1972). Most recently, Aernouts & Dirckx

(2012) performed in situ sinusoidal indentations on gerbil TMs at frequencies from 0.2 Hz to 8.2 Hz.

The strain magnitudes were small enough that the responses were linear. In all of these recent studies,
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therefore, the behaviour of the TM was effectively linear and linear viscoelastic models are applicable.

For  large  deformations,  however,  the  TM  displays  both  non-linear  and  viscoelastic  behaviour.

Previous finite-element models of the TM, however,  have included either non-linear behaviour  (e.g.,

Ladak et al., 2006; Qi et al., 2008) or viscoelastic behaviour (e.g., Zhang and Gan, 2010) but not both.

In an earlier study  (Charlebois et al., 2013) we investigated two approaches to modelling nonlinear

viscoelastic behaviour numerically. In this study, we use one of those approaches to combine non-linear

elasticity  (hyperelasticity)  and viscoelasticity of  the  TM in  a  non linear  viscoelastic  (NLV) finite-‐

element model. We validate our model against the viscoelastic relaxation data and the non-linear stretch

data reported by Cheng et al. (2007), Our approach allows us to model both the loading and unloading

curves,  and the associated hysteresis,  with a single set of parameters. We also estimate the energy

dissipation as a function of frequency, and explore the effects of strain rate on the relaxation behaviour.

3.2 Methods

3.2.1 Experimental data

Details of the mechanical test procedures can be found in the paper of Cheng et al. (2007). Rectangular

strips were cut from the  posterior regions of  human TMs, almost parallel to the manubrium, using a

knife with two parallel  blades 2 mm apart.  The rectangular strips were flattened  and mounted in a

material-testing system and uniaxial tests were done.

The measurements were performed under controlled-deformation conditions. However, there is a

discrepancy between their use of the term “strain rate” and their specification of mm s−1 as the units.

Strain rate is defined as ε̇i , j=dε i , j /d t  (in units of s−1) while in a controlled-deformation experiment an

elongation rate l̇=d l /d t  (in units of mm s−1) is the input for the test. We have confirmed with them

that the values given in their paper as 0.1 and 1.8 mm s−1 were actually elongation rates and not strain

rates. Strain rate is calculated by dividing the elongation rate by the initial length (i.e., ε̇i , j=d l̇ /l 0 ).
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The lengths, widths and thicknesses of the 11 TM specimens were 5.0–8.5 mm (mean 6.44), 1.5–2.4

mm (mean 1.97) and 0.06–0.1 mm (mean 0.08 mm), respectively. Excluding a failure test that is not

considered here, two testing protocols were performed by Cheng et al.  (2007). First, in the standard

uniaxial  tensile  test  (stress-stretch  relationship  measured  with  displacement-ramp  loading  and

unloading), the elongation rate was set at 0.1 mm s−1 and the maximum elongation was 15 % of the

original length. Second, in the stress relaxation test (stress measured as a function of time with rapid

displacement-ramp loading followed by maintenance of the displacement), the elongation rate was set

at 1.8 mm s−1 and the maximum elongation was again 15 % of the original length (i.e., stretch = 1.15).

Loading time and final length are calculated here based on average dimensions because the individual

dimensions were not given by Cheng et al. (2007).

3.2.2 Finite-element model

The TM is a complex structure composed of  multiple  layers  (e.g.,  Lim,  1995).  The orientation of

collagen fibres in radial and circumferential directions in separate layers, in addition to a nonuniform

thickness (e.g., Kuypers et al., 2006), make it inhomogeneous and anisotropic. However, no details are

available concerning the thickness and other variations in the TM strips of Cheng et al. (2007). In this

study, therefore, as in many other studies, the TM strips are assumed to be homogeneous and isotropic

with constant thickness.

In addition, the TM is approximately conical so the rectangular strips of experimental specimens are

not flat. For a flexible and thin membrane (thickness/width < 0.05 and thickness/length < 0.02, for the

average dimensions of the TM strips) the bending moments are of minor importance  (Schomburg,

2011). Therefore, as in Cheng et al. (2007), we can neglect the effects of flattening the TM strips. 

A three-dimensional finite-element model of a rectangular TM specimen has been created in order to

simulate the experimental data.  The length, width and thickness of the TM strip have been taken to
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have the mean values mentioned above (6.44, 1.97 and 0.08 mm, respectively).  Taking advantage of

symmetry to reduce computational cost, just one eighth of the actual TM strip has been modelled. The

model consists  of 800 (20×10×4) isoparametric eight-node hexahedral  (brick)  elements with linear

shape functions  (Fig. 3–1). Since  the  elements  have  a  poor  aspect  ratio,  a  much finer  mesh,  with

elements of the same type but having a 1:1:1 (cubic) aspect ratio (644×196×8 elements), was used to

evaluate the adequacy of the coarse mesh. The simulation results with the coarse mesh and with the

finer mesh were found to differ by less than 2.4 %. The experiments are simulated by clamping one end

of the model and displacing the other end by specified amounts.

The finite-element simulations are performed using the open-source software FEBio  (Maas et al.,

2012) (version 1.5.1) and it pre-processor Preview (version 1.4) and post-processor Postview (version

1.3.5). FEBio is a nonlinear finite-element solver specifically designed for biomechanical applications.

It uses an implicit time-integration scheme with an incremental-iterative strategy based on Newton’s

method for nonlinear energy functions.
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Fig. 3–1. Meshed one-eighth model of a TM strip. Taking advantage of the symmetry of the strip, the

overall stress distribution is determined based on that of the one-eighth model.



3.2.3 Constitutive equation

Different approaches have been used in the literature to derive the constitutive equations for non-linear

viscoelastic  materials.  In  this  study  we  assume  linear  viscosity  and  non-linear  elasticity

(hyperleasticity). The material response is expressed as a convolution of a time-dependent component

and an elastic component, similar to what is done for linear viscoelasticity. We refer here to this model

as  a  non-linear  viscoelastic  (NLV) model.  FEBio calculates  the  total  second Piola-Kirchhof  stress

tensor  S(t) by convolving  a  normalized  relaxation  function  G(t) with  the  derivative  of  an  elastic

response function Se:

S (t )=∫
0

t

G( t−u)(
d S e

d u
)d u (3–1)

where t is time and u is a dummy variable. The Prony series is a commonly used form for G(t). This

formulation  not  only  facilitates  interconversion  of  viscoelastic  functions  between  the  time  and

frequency domains but also increases the efficiency of discretization procedures in numerical methods

(e.g.,  Taylor  et  al.,  1970;  Park  and  Schapery,  1999).  Depending on  whether  Se represents  the

instantaneous or long-term elastic response, G(t) is given by either

 G( t)=1−∑
i=1

N

g i(1−exp(−t / τi)) (3–2)

or 

G( t)=1+∑
i=1

N

g i exp (−t /τ i) , (3–3)

respectively.  In  both  equations,  gi (relaxation  coefficients)  and  τi (time  constants)  are  material

parameters and N is the number of exponential terms. 

Among the many constitutive models that have been proposed for hyperelastic materials, the Ogden
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model is popular for biological tissues  (e.g., Martins et al., 2006). According to this model, a strain

energy W composed of deviatoric and volumetric energies (i.e., energies due to distortion and to change

of volume, respectively) is defined by

 W =∑
j=1

M 2μ j

α j
2 [ λ̄1

α j+λ̄2
α j+λ̄3

α j−3]+W vol (J ) , (3–4)

where J = λ1λ2λ3 is the determinant of the elastic deformation gradient; M is the number of Ogden terms

used;  λi = λi/J1/3 are modified stretches, where  λi are the stretches;  αj and  μj are material coefficients

(with μi > 0 for thermodynamic consistency); and Wvol(J) is the volumetric part of the energy function.

(This formulation is slightly different from that of Ogden (1972), where αj was used instead of αj
2. The

difference between these two formulations was discussed by Charlebois et al. (2013).) In this study we

use only a single Ogden term (i.e., M = 1).

Material  parameters for a hyperelastic material  can be determined by performing an unconfined

tensile or compression test (to determine the deviatoric properties) and a confined compression test (to

determine the volumetric part  of the energy function). In the study from which we are taking our

experimental data  (Cheng et al., 2007), the mechanical tests were performed uniaxially on strips cut

from TMs. Therefore, determining a volumetric response is not possible. Since soft tissue is generally

assumed to be nearly incompressible (e.g., Humphrey, 2003), we model the TM as an incompressible

material by setting the bulk modulus high enough to make Wvol negligible. For a uniaxial tensile test, the

resultant stress is related to the stretch by 

S 1
e
=

1
λ1

∂ W
∂ λ1

, (3–5)

where the variables are the same as in Equations 3–1 and 3–4, and the subscript ‘1’ indicates the

loading direction. Note that, although in Equation 3–1 the second Piola-Kirchhof stress is used for the
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elastic  response function (i.e.,  Se),  the simulation  output  is  given by FEBio as  Cauchy (or  ‘true’)

stresses. Furthermore, the experimental data of Cheng et al. (2007) were reported as nominal stresses.

Thus we convert all stress measures to Cauchy stresses, σ1, for the purposes of our analysis. The second

Piola-Kirchhof stress and the nominal stress can be converted to Cauchy stress for the case of uniaxial

loading by

σ1=λ1
2 S1  and σ1=λ1 P1 , (3–6)

respectively, where P1 is the nominal stress.

3.2.4 Determination of model parameters

3.2.4.1 Time-dependent part

A common practice is to take one time constant per decade of data along the logarithmic time axis (e.g.,

Knauss and Zhao, 2007). This corresponds to one time constant per decade in the frequency domain as

well (e.g., Puso and Weiss, 1998; Charlebois et al., 2013). To estimate the parameters, we first digitized

the mean normalized relaxation curve reported for nine TM specimens (Cheng et al., 2007, Fig. 8) at

the fifteen points where mean values and standard deviation bars were reported. Based on the intervals

between those data points (1 to 10 s) and on the relaxation duration (the stress relaxation reaches a

relatively stable state in 120 s), a Prony series with three time constants (i.e., 1 ≤ τ1 < 10, 10 ≤ τ2 < 100

and 100 ≤ τ3) seems to be appropriate.

The Trust-Region non-linear least-squares method was used in the  cftool curve-fitting function in

Matlab version 7.8 (The MathWorks,  Natick,  MA) to identify material  parameters. Each term in a

Prony series involves the two parameters gi and τi, resulting in two degrees of freedom (DOFs). For the

three-term series, two approaches have been taken, one with six DOFs (three time constants and three

relaxation coefficients)  and one with three DOFs (the three  relaxation coefficients)  and three time

constants  τi that are predefined as 1, 10 and 100 s.  The use of predefined time constants reduces the
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computational cost and also reduces the need for defining constraints on the values of the parameters.

To investigate whether three time constants are really required for the Prony series, series with one and

two time constants (two and four DOFs respectively) were also fitted to the experimental data. We thus

compared results for four Prony series. 

3.2.4.2 Elastic part

As explained in 3.2.3, there are two possibilities for characterizing the elastic part in Equation 3–1: the

instantaneous response or the long-term response (Equations 3–2 and 3–3, respectively). In these two

limiting conditions, the viscous nature of the material does not contribute to the material response.

However, because of practical limitations neither the instantaneous response nor the long-term response

of a material is directly measurable (e.g., Wu et al., 2003).

According to the test protocol of Cheng et al. (2007), the loading time was approximately 10 s for

the stress-stretch tests. Compared with the relaxation data, in which about 10 % of the stress is relaxed

within 1 s, the 10-s loading time is not fast enough to be considered as an instantaneous response. It is

also not slow enough to be considered as a long-term response because more than 100 s is needed to

reach a plateau on the relaxation curve. Therefore, in the reported standard loading results the viscous

behaviour of the material contributed to the shapes of the stress-stretch curves. If we obtain the elastic

parameters  by fitting  the  Ogden  model  to  the  loading  data  and  then  use  these  parameters  as  the

instantaneous response for the elastic part of the non-linear viscoelastic model, the resultant stress-

stretch curve will be lower than the experimental data. On the other hand, if the elastic parameters are

used  as  the  long-term  response  then  the  resultant  stress-stretch  curve  will  be  higher  than  the

experimental data. In either case, therefore, we must adjust the Ogden parameters to reproduce the

experimental curves. We have chosen to take the elastic part of the model to be the instantaneous elastic

response and the Prony series of Equation 3–2 is therefore used as the time-dependent part.
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As usual in such cases, an iterative technique is used here to determine the elastic parameters of the

formulation. We use a locally developed programme that minimizes an externally computed function

using the algorithm of Hooke & Jeeves (1961). In this procedure, the initial values of the parameters α

and  μ are  those  obtained by curve-fitting  without  taking viscoelasticity into  account,  as  described

above. The function to be minimized is implemented as a Matlab script that invokes FEBio to run an

NLV simulation for a given α and μ and then computes the root-mean-square error (RMSE) between

the experimental data and the simulation results:

RMSE=√(∑i=1

N

(e i−mi)
2

N
) (3–7)

where ei and mi are the experimental and modelling results, respectively, at points where mean values

and standard deviations were reported, and N is the number of points. Starting values for the step size Δ

and minimum step size δ must be defined. The subroutine is then called repeatedly until Δ < δ. Since

the accuracy of the initial parameters was on the order of 0.01, Δ and δ were set to 0.01 and 0.001

respectively. For each function evaluation within the iterative minimization algorithm, the programme

invokes  the  Matlab  script  and  reads  the  resulting  RMSE value.  The  iteration  continues  until  the

stopping  criterion  is  met.  The  parameters  obtained  will  be  referred  to  below  as  adjusted  Ogden

parameters.

To  determine what bulk modulus is required to enforce the assumption of incompressibility, we

performed a sensitivity analysis to test how our model is affected by variations in the bulk modulus. We

observed that for values of the bulk modulus greater than about 103 MPa (i.e., K/μ ≈ 2500) the output

stress is constant to within less than 0.4 %, meaning that the TM is approximately incompressible.
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3.3 Results

3.3.1 Parameter identification

As described in 3.2.4, Prony series for the time-dependent part of the model were computed for one,

two and three terms, with the three-term series having either six or three DOFs. These four sets of

parameters are listed in Table 3–1. For each term of a Prony series, one time constant (τi) and one

relaxation coefficient (gi) are required. For the six-DOF three-term series the τi are fairly close to the

values of 1, 10 and 100 s assigned for the three-DOF three-term series, and the corresponding values of

gi are very similar in the two cases. This supports the rationale for predefining the time constants. The

root-mean-square errors (RMSE) are included as an indication of how much the fitted curves deviate

from the experimental data points. 

Table 3–1 Calculated Prony-series parameters gi and τi for relaxation data. RMSE is the root-mean-
square error between the fitted curves and the experimental data. Note that * denotes a predefined
value.

Parameters 1 term 2 terms

 

3 terms

 

 3 terms with 
predefined time 
constants

g1 0.35 0.22 0.18 0.19

τ1 (s) 6.39 1.23 0.98 1*

g2 – 0.13 0.08 0.07

τ2 (s) – 42.4 6.6 10*

g3 – – 0.12 0.11

τ3 (s) – – 91.7 100*

RMSE 37.×10−3 4.0×10−3 0.9×10−3 1.7×10−3
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Table 3–2. Calculated parameters l and a for the Ogden models for three individual TMs (TM#1–3)
and the mean value of the stress-stretch relationship for eleven TM specimens from experimentally
reported stress-stretch curves [Cheng et al., 2007, Figs. 4(a)–4(c) and 6(b)].

Initial parameters Adjusted parameters

μ (MPa) α RMSE (MPa)  μ (MPa) α RMSE (MPa)

TM#1 (Fig. 4a) 0.69 22.6 0.015 0.75 22.5 0.016

TM#2 (Fig. 4b) 0.30 29.6 0.012 0.33 29.3 0.011

TM#3 (Fig. 4c) 0.36 24.0 0.010 0.39 23.8 0.010

Mean (Fig. 6b) 0.38 28.6 0.029 0.40 28.8 0.025

The  initial  and  adjusted  Ogden  parameters  obtained  for  the  loading  curves  of  each  of  three

individual specimens and for one mean curve for eleven specimens (Cheng et al., 2007, Figs. 4a,b,c and

6b) are listed in Table 3–2. In this table, the initial parameters are those obtained directly from a curve-

fitting procedure without taking viscoelasticity into account,  and the adjusted parameters are  those

obtained by the procedure explained in Section 3.2.4.2. The RMSE values indicate that we are able to

account for the viscous effects without reducing the quality of the fit. 

3.3.2 Simulated uniaxial tests

In Fig. 3–2, the mean values for the experimentally measured stress-stretch data of Cheng et al. (2007,
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Fig. 3–2. Stress-stretch relationship for the mean experimental data of Cheng et al. (2007, Fig. 6)

and for the NLV model with initial parameter values, with adjusted parameters, and with adjusted

parameters but no relaxation(i.e., elastic response).



Fig. 6b) are shown together with the simulation results for the  NLV model with both initial elastic

parameters and adjusted elastic parameters. The stress values for the NLV model but with the initial

elastic parameters are lower than the experimental data, while the NLV model with the adjusted elastic

parameters matches the data well.  An elastic response (with the adjusted elastic parameters but no

relaxation) is also shown in Fig. 3– 2; this response is, as expected, higher than the experimental data.

Fig. 3–3 shows the experimentally reported relaxation data of Cheng et al.  (2007, Fig. 8) together

with the simulated relaxation results of the NLV model with adjusted parameters, for one-term, two-

term and three-term Prony series (after normalizing by the maximum stress). (Since, for the three-term

series, the three-DOF version (with predefined time constants) and the six-DOF version produce very

similar responses, for the sake of clarity only the three-DOF version is included in this figure.) It can be

seen that the normalized stress for the one-term Prony series does not provide a good representation of

the experimental data (with an RMSE of 3.7% of the normalized maximum stress) while the two-term

and three-term Prony series match the experimental data quite well (with RMSE’s of 0.4 and 0.17% of

normalized maximum stress respectively).

3.3.3 Loading and unloading curves

One of the important criteria in evaluating a viscoelastic model is its ability to predict both the loading
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Fig. 3–3. Experimental data (Cheng et al., 2007, Fig. 8) and comparison with simulated relaxation
tests with one-term, two-term, and three-term Prony series.



behaviour and the unloading behaviour with the same material parameters. Cheng et al. (2007, Fig. 4)

reported  loading  and  unloading  curves  for  three  individual  TM  specimens.  Three  sets  of  Ogden

parameters  were  obtained based only on the  loading curves  of  three  individual  TM specimens  as

explained in Section 3.2.4.2, for the elastic part of the model. Since no relaxation data were reported for

individual specimens, the parameters of the 3-term Prony series, with predefined time constants, were

obtained for average relaxation data for the viscous part of the model. The NLV model was then used to

simulate the unloading behaviour. In Fig. 3–4 the three sets of experimental loading and unloading

curves are shown together with the simulation results for the three corresponding NLV models. The

simulation results match the experimental data quite well, the RMSE’s of the combined loading and

unloading curves being 1.5, 2.9 and 2.4% of the maximum stress magnitudes for TM’s 1, 2 and 3

respectively. The most noticeable discrepancy is that the simulated unloading curves pass below the

zero stress level; this is discussed in Section 3.4.
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Fig. 3–4. Experimental data for three individual TM specimens reported by Cheng et al. [2007, Figs.

4(a)–4(c)] compared with simulated results fromNLV model.



Note  that,  although the  elastic  parameters  of  the  three  TMs were  obtained from the  individual

loading curves of the three reported samples, the viscous parameters were obtained from the mean

relaxation curves for nine TMs, because individual relaxation curves were not available. In addition,

the simulated loading and unloading times were calculated based on the average dimensions of the

eleven specimens of  Cheng et  al.  (2007) because the dimensions  were not  reported for individual

specimens. This use of mean data to determine the parameters of individual models may account for

some of the discrepancies seen in Fig. 3–4. 

3.2.4 Strain-rate effect

In the experimental relaxation curve (Fig. 3–3), the normalized stress decreases by almost 10 % in less

than 1 s after the peak. Since according to the experimental protocol described by Cheng et al. (2007)

the loading time was ~ 0.54 s, the results might have been significantly affected by the relaxation that

occurred during the loading time. We have investigated the sensitivity of the NLV model to strain rate

by varying the loading time (the time required to apply the specified deformation in the relaxation test)

in simulations. As shown in Fig. 3–5a, the long-term response of the model is not affected by changing
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Fig. 3–5. Effect of loading time on simulated relaxation response of TM strips. (a) Full duration of

measurements (120 s), showing lack of long-term differences. (b) Expanded view of first 12 s of

response, emphasizing the short-term differences.



the loading time. The short-term response, however, is affected as shown in Fig. 3–5a and more clearly

in Fig. 3–5b, which focuses on the first 12 s, where the peak stress changes by less than 2.5% for

loading times between 0.01 and 0.54 s.

3.4 Discussion

3.4.1 Non-linear viscoelastic model in the frequency domain

It is often instructive to explore the implications of a viscoelastic model in the frequency domain. For

example,  Fung  (1993) showed, for a  linear  viscoelastic  model  with one-time constant,  that  at  low

frequencies the Young’s modulus remains constant at its static value, but at a certain critical frequency

the modulus rises sharply before settling at a new high-frequency value. For a non-linear viscoelastic

model, Charlebois et al. (2013) reported that the stored energy shows a similar stiffening pattern over

the frequency domain.

To demonstrate how stress-stretch relationships and hysteresis  loops are affected by the loading

frequency,  a  harmonic  displacement-controlled  loading  condition  was  modelled  at  three  circular
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Fig. 3–6. Frequency effects on stress-stretch relationship. The first three cycles of hysteresis loop are

shown for each of three circular frequencies.The inset shows a magnified view of the area around the

origin of the stretch and stress axes for ω = 10 rad/s, to demonstrate the changes in the loading and

unloading paths from one cycle to the next.



frequencies, 0.001, 0.1 and 10 rad/s, for a three-term Prony series. The results are shown in Fig. 3–6.

Note that the maximum stress magnitude for the frequency of ω = 10 rad/s is higher than that for the

frequencies of  ω = 0.1 and .001 rad/s, which demonstrates that this viscoelastic model behaves more

stiffly at high frequencies than at low frequencies. It can be shown that the maximum stress magnitude

approaches plateaus  at  the lower and upper frequencies (i.e.,  ~0.001 and 10 rad/s  respectively),  as

described in the previous paragraph. In addition, it can be seen that the area inside the hysteresis loop

(i.e.,  the area between the loading and unloading curves,  representing lost  energy)  is  larger  at  the

middle  frequency  (i.e.,  ω = 0.1 rad/s)  than  at  the  upper  and  lower  frequencies  (i.e.,  ω = 10  and

0.001 rad/s, respectively). (The lost energy spectra in the frequency domain will be discussed below in

more detail.) 

At  each frequency,  a  steady state  is  obtained after  a  few cycles of loading and unloading.  The

number of cycles required to reach steady state is smaller at low frequencies than at high frequencies

(cf. Schatzmann et al., 1998; Charlebois et al., 2013). Fig. 3–6 shows that the steady-state closed loops

are reached within the first cycle for the lowest frequency and are almost reached by the third cycle for

the middle frequency, but are not yet reached after three cycles for the highest frequency. 

As mentioned in the Methods, it is very common to choose one relaxation time per decade of data. If

we plot each gi as a function of its inverse associated time constant τi on a frequency axis, we will have

a spectrum of relaxation function gi(1/τi).  As we increase the number of time constants this spectrum

gi(1/τi) becomes more uniform  (e.g.,  Fung, 1993), which is desirable for describing the usual time-

dependent behaviour of biological tissues. Thus, although two time constants seem to fit the relaxation

data as well as three (Fig. 3–3), a three-time-constant series is probably a better choice to model the

TM. To illustrate this, Fig. 3–7a shows lost-energy spectra calculated from hysteresis loops using the

method described by Charlebois et al.  (2013). The lost-energy spectra were computed for the viscous
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parameters shown in Table 3–1 (i.e.,  for one-term, two-term and three-term Prony series, with pre-

defined time constants for the latter) and the elastic parameters shown in Table 3–2 (i.e., the adjusted

parameters  for  the  mean  elastic  response  of  Cheng  et  al.,  2007  Fig.  6b). As  seen  in  this  figure,

increasing the number of Prony-series terms results in a more uniform lost-energy spectrum over the

frequency range of approximately 0.006 to 4 rad/s.

In  addition,  Fig. 3–7  demonstrates  that  at  low  frequencies  (i.e.,  ω < 0.001 rad/s)  and  high

frequencies (i.e., ω > 10 rad/s) the lost energy becomes small. This means that the model behaves like

an elastic material at frequencies far beyond these values, so it will no longer be sensitive to strain rate.

This explains why the relaxation behaviour of this model is not sensitive to loading rates higher than

10 s−1 (i.e., loading times less than 0.1 s, as shown in Fig. 3–5).

For  a  linear  viscoelastic  model,  a  complex dynamic  modulus  is  defined which is  composed of

storage and loss components  (Mase and Mase, 1999). It can be shown that, for a linear viscoelastic

model with a Prony series representing the viscous part, the peaks of the loss modulus and of the lost-
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Fig. 3–7. Lost-energy spectrum in frequency domain for one-term, two-term and three-term Prony

series. (b) Lost energy due to each term in the three-term Prony series (i.e., due to τ1, τ2, and τ3) and

total lost energy.



energy spectrum occur at the same frequencies (e.g., Park and Schapery, 1999). Such a modulus is not

defined for  a  non-linear  viscoleastic  model,  but  the  lost-energy spectrum peaks for  the  non-linear

viscoelastic model occur at the same frequencies as are predicted by a linear viscoelastic model with

the same viscous parameters. To demonstrate the contribution of each term of the Prony series to the

total lost-energy spectrum, the model with a three-term Prony series is analyzed separately in Fig. 3–

7b. As this figure shows, each term has a peak occurring at an angular frequency corresponding to the

inverse of its time constant (i.e.  ω1 = 1/τ1 = 1,  ω2 = 1/τ2 = 10 and  ω3 = 1/τ3 = 100). Note the height of

each peak depends on the value of the associated gi.

3.4.2 Loading and unloading loops

As a result of viscoelastic processes,  at the end of each unloading process the length of the TM strip

would tend to be longer than its initial length. This means that to force the specimen back to its initial

length we would need to apply a compressive stress. In the experimental tests, the TM strips do not

resist the compression and some local buckling happens, so the loading and unloading curves form a

closed loop. However, with the numerical model no buckling occurs and, as Fig. 3–4 shows, for a

single cycle the loading and unloading curves do not form a closed loop. Loading and unloading loops

approach a closed configuration over a number cycles, as discussed above in connection with Fig. 3–6.

3.4.3 Conclusions

The material parameters (Tables 3–1 and 3–2) for a nonlinear viscoleastic model of human TM were

derived from experimental data reported by Cheng et al. (2007) and the model is able to reproduce the

results of their mechanical tests. Most significantly, this allows us for the first time to model both a

loading curve and the corresponding unloading curve with a single set of parameters.

This model is suitable for large deformations of the TM and for frequencies in the range of about

0.003 to 3 rad/s (approximately 0.001 to 0.64 Hz). These conditions correspond to those involved in
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tympanometry, in which a large sweeping ear-canal pressure (e.g., −300 to +200 daPa) is applied in less

than 10 s.
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Chapter 4: Finite-element modelling of the acoustic input
admittance of the newborn ear canal and middle ear

To be submitted to the Journal of the Association for Research in Otolaryngology.

Preface
The study presented in the previous chapter was relevant to the response of the tympanic membrane to

the static pressures used in tympanometry.  The studies presented in this chapter and the following

chapter,  on  the  other  hand,  are  relevant  to  the  response  of  the  ear  to  the  probe  tones  used  in

tympanometry.

The wideband immittance data in newborns are affected by many factors, thus outputs are difficult

to  interpret.  In  this  paper  a  finite-element  model  of  the newborn outer-  and middle-ear  models  is

presented. At low frequencies, due to the long wavelength of the sound pressures, the ear structure can

be treated as lumped elements. In this study, we modelled the newborn outer- and middle-ear models

and investigated the contribution of each component to the overall admittance response quantitatively

in a range of frequencies up to 2 kHz. The model shows that at frequencies below 1000 Hz admittance

measurements are highly affected by the canal response and they cannot satisfy their main goal of

reporting the middle-ear response. The response of the ear canal becomes negligible at frequencies in

the vicinity of the middle-ear resonance (i.e.,  between 1000 and 2000 Hz). However the resonance

frequency  may  vary  considerably  due  to  intersubject  variability.  This  suggests  that  admittance

measurements can provide more information about the condition of the middle-ear when they are made

at multiple frequencies above 1000 Hz.
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Abstract
Admittance measurement is a promising tool for evaluating the status of the middle ear in newborns.

However, the newborn ear is anatomically very different from the adult one and the acoustic input

admittance is different than in adults. To aid in understanding the differences, a finite-element model of

the newborn ear canal and middle ear was developed and its behaviour was studied for frequencies up

to  2000  Hz.  Material  properties  were  taken  from previous  measurements  and  estimates,  and  the

sensitivities of the models to these different parameters were examined. The simulation results were

compared with measurements made in newborns. The model produces results that are within the range

of the measured data and permits investigation of the separate contributions of the outer and middle ear.

The results suggest that admittance measurements can provide more information about the condition of

the middle-ear when made at multiple frequencies around its resonance.

4.1 Introduction
Hearing loss is considered to be one of the most common birth defects in newborns – about 3 in 1000

babies are born with some degree of hearing impairment (e.g., Akinpelu et al., 2014). Early detection of

hearing loss accompanied by appropriate early intervention is important in order to avoid problems

associated  with  language  development  that  affect  daily  communication,  educational  achievement,

psychosocial  development  and  later  employment  opportunities  (e.g.,  Joint  Committee  on  Infant

Hearing  1994  Position  Statement;  American  Academy of  Pediatrics,  2007).  Hearing  loss  is  either

conductive, involving the outer and/or middle ear, or sensorineural, involving the inner ear, auditory

nerve  and/or  brain.  Most  permanent  newborn  hearing  loss  is  sensorineural  but  its  detection  and

diagnosis are often affected by transient conductive losses (e.g., Akinpelu et al., 2014).

Currently,  otoacoustic  emission  (OAE)  and/or  auditory  brainstem  response  (ABR)  tests  are

employed  as  screening  tools  in  newborn  hearing  screening  programs.  High  false-positive  rates  of
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screening  tests  are  an  important  concern  with  universal  newborn  hearing  screening.  Many  false

positives can be attributed to transient conditions in the external ear (e.g., collapse of the ear canal and

the presence of debris) and middle ear (e.g., presence of amniotic fluid and mesenchyme) in the first 48

hours postpartum (e.g., Akinpelu et al., 2014), which conflicts with the desire for shorter hospital stays.

It would thus be very valuable to be able to quickly identify conductive losses right at the time of initial

screening, just after birth.

Tympanometry is a promising tool for assessing middle-ear status. In this method the acoustical

input immittance of the outer and middle ear is measured in response to a probe tone, in the presence of

a range of quasi-static air pressures in the ear canal. Immittance refers to either admittance Y, which is

volume  velocity  divided  by  sound  pressure,  or  impedance  Z,  the  reciprocal  of  admittance.  Both

admittance  and  impedance  are  complex  numbers,  the  former  being  composed  of  a  real  part  G,

conductance, and an imaginary part  B, susceptance, and the latter being composed of a real part  R,

resistance, and an imaginary part X, reactance. Measurements of the separate real and imaginary parts

(or, equivalently, of the magnitude and phase) contain more information about the middle ear than just

the magnitude alone, but much remains to be understood about what they mean and how to interpret

them.

Tympanometry is  most  often done with a 226-Hz probe tone.  This frequency provides easy-to-

interpret results for adult ears but the results in newborns are very different from those in adults. The

differences may be attributed to anatomical and physiological differences occurring during maturation

(Saunders et al., 1983; Eby and Nadol, 1986; Qi et al., 2006, 2008). For example, the newborn ear-

canal wall is not ossified and is surrounded along most of its length by soft tissue  (e.g., Standring,

2008, chap. 36). This causes the newborn canal to be very compliant. In adults, only the most lateral

third  of  the  canal  wall  is  composed  of  soft  tissue,  while  the  medial  two-thirds  of  the  canal  is

encompassed by temporal bone (e.g., Anson and Donaldson, 1992, p. 146). In addition, the orientation,
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shape and ultrastructure of the tympanic membrane (Ruah et al., 1991) and ear canal (e.g., Saunders et

al., 1983, p. 4) undergo dramatic changes during growth, especially in the first months after birth. It has

been known for some time that a 1-kHz tone provides better differentiation between normal and liquid-

filled newborn middle ears, but the differentiation is still far from perfect (e.g., Shahnaz et al., 2008).

Furthermore, the fact that the main middle-ear resonance is  in the vicinity of  1.8 kHz  (Keefe et al.,

1993) suggests that the measurements may be quite sensitive to what frequency is used and where the

resonance is in a given ear.  More information can be obtained by using multiple frequencies  (e.g.,

Alberti and Jerger, 1974; Colletti, 1975; Funasaka et al., 1984; Keefe and Levi, 1996; Shahnaz et al.,

2008).  A number  of  groups  have  evaluated  wideband  measurements  of  immittance  in  newborns,

whether unpressurized  (e.g., Keefe et al., 1993) or pressurized  (e.g., Holte et al., 1991; Sanford and

Feeney, 2008).

In addition to immittance, it is also possible to characterize the ear in terms of energy reflectance

(ER), the ratio of the reflected energy to the incoming energy, or absorbance (EA), equal to 1−ER. It

has been assumed, at least for adults, that the ER measured in the ear canal represents the condition at

the TM, independent of the location of the probe tip, based on the following approximations: (1) the

energy loss of the sound wave in the enclosed air in the canal is negligible; (2) the ear canal acts like a

smoothly varying transmission line (i.e., no significant energy is reflected from abrupt changes in the

canal cross-section); and (3) the energy loss at the canal wall is negligible (e.g., Voss and Allen, 1994).

The first two assumptions are reasonable for both adults and newborns  (e.g., Eby and Nadol, 1986).

The third assumption, however, is probably not valid for newborns because, as stated above, the canal

wall is composed of soft tissue, so sound energy is absorbed within it  (e.g., Keefe and Levi, 1996).

Merchant et al.  (2010) conducted a series of wideband energy measurements to define the normative

energy response of the ear of newborns and infants.

The  middle  ear  is  a  complex  3-D mechano-acoustical  system containing  many  interconnected,
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highly irregular, asymmetrical and non-uniform components. There are many parameters that affect

clinical measurements, and the contribution of each parameter to the output is difficult to identify (e.g.,

Sanford  and  Feeney,  2008).  The  finite-element  method  can  be  utilized  to  provide  a  quantitative

understanding of such a system. In this method, a complicated system is divided into a large number of

relatively simple elements. A finite-element model is defined in terms of anatomical and biomechanical

parameters that have very direct relationships to the structure and properties of the system (e.g., Funnell

et al., 2013).

Funnell and Laszlo (1978) introduced the finite-element method to middle-ear modelling. Since then

this method has been widely used to investigate different aspects of both human and animal ears (e.g.,

Wada et al., 1992; Ladak and Funnell, 1996; Koike et al., 2002; Gan et al., 2004; Motallebzadeh et al.,

2013. Qi et al.  (2006; 2008) developed nonlinear finite-element models of the newborn ear canal and

middle ear. They reported the displacements of these models under static pressures in the range of those

induced during tympanometry and calculated the ear-canal and middle-ear compliances. 

In this study, we have developed linear finite-element models of the newborn ear canal and middle

ear and analyzed their responses to sound frequencies up to 2000 Hz. (Preliminary versions of this

model were described by Gariepy (2010) and Motallebzadeh et al.  (2013b). We set the upper limit of

the frequency range to 2000 Hz because at higher frequencies the input immittance is influenced by the

spatial variation of sound pressure along the canal and the associated standing waves (e.g., Shanks and

Lilly, 1981; Stinson et al., 1982), so it becomes more sensitive to the position of the probe tip inside the

ear canal (e.g., Keefe et al., 1993; Voss and Allen, 1994). The input admittances of the ear canal and

middle ear were calculated separately and then combined to give the overall admittance of the ear. This

approach, as discussed in Section 4.2.6, makes it possible to investigate the individual contributions of

the outer ear and middle ear to the overall  response. The results  are  validated in comparison with

previously reported clinical data. In addition, the effects of material-property parameters are explored. 
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4.2 Materials and methods

4.2.1 3-D geometry and finite-element mesh

The ear-canal and middle-ear models are revised and refined versions of those of Qi et al. (2006; 2008).

The  geometries  are  based  on  a  clinical  X-ray  CT  scan  (GE  LightSpeed16,  Montréal  Children’s

Hospital)  of a 22-day-old newborn’s right ear. The scan had a pixel size of 0.187 mm and a slice

thickness of 0.625 mm with a 0.125-mm overlap, resulting in a slice spacing of 0.5 mm. Three locally

developed programs, Fie, Tr3 and Fad (http://www.audilab.bme.mcgill.ca/sw/), were used to generate a

surface model. Gmsh (http://www.geuz.org/gmsh/) was then used to generate 3-D solid models with

tetrahedral elements for each individual component of the ear-canal and middle-ear models. The solid

models were then assembled in Fad (Fig. 4–1).

The canal model consists of the soft tissue surrounding the lumen of the ear canal. The interiors of

bony structures in the region have not been included in the ear-canal model, but their surfaces are
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Fig. 4–1. Meshed geometry of the finite-element model. (a) Superior view of the overall model
including the ear canal ,surrounding soft tissue and middle ear. (b) Expanded medial view of the

middle-ear model, with the TM annulus almost parallel to the page. (PIL = posterior incudal ligament;
AML = anterior mallear ligament; PT = pars tensa; PF = pars flaccida; S = superior; I = inferior; M

= medial; L = lateral; A = anterior; P = posterior)



included and are considered as rigid boundary conditions for the model. A probe tip is represented in

the model by a small block located 5 mm inside the ear-canal entrance (Fig. 4–1 and also Qi et al.,

2006, Fig. 4–2), based on the estimate of the clinical situation by Keefe et al.  (1993, Table I), and

tightly connected with the surrounding tissue in order to simulate a hermetic seal.

The middle-ear model consists of the tympanic membrane (TM), the malleus and incus, the anterior

mallear  ligament  (AML)  and  the  two  bundles  of  the  posterior  incudal  ligament  (PIL).  The

incudomallear joint is assumed to be fused so there is no relative motion between the malleus and

incus. This simplification was also used in the newborn middle-ear model of Qi et al. (2008) and in the

adult human model of Eiber (1999).

The thickness of the TM was measured from a set of 26 20-µm-thick serial histological sections

from a  three-week-old  newborn.  In  our  CT scan there  were 11  slices  containing  the  TM, and 11

approximately corresponding slides were selected from the histology images. The thicknesses were
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Fig. 4–2. Thickness map of the TM. Four 20-μm-thick serial histological sections from a three-week-
old infant (left) from which the thicknesses of the TM were derived for the finite-element model (right).



measured at several points using the Measure tool in GIMP, a free (libre) and open-source image-

manipulation  programme  (http://www.gimp.org),  then  a  piecewise  cubic  Hermite  interpolation

algorithm (MATLAB, Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States) was

used to determine a thickness distribution over the cross-section of the TM surface at each slice. The

thicknesses were applied manually in the segmentation software (Fie) to generate the 3D geometry of

the TM. Four of the 11 histological images and corresponding cross-sectional thicknesses on the TM

model  are  presented in  Fig. 4–2.  The measured thickness  of  the posterior-superior  quadrant  varies

between 0.15 and 0.6 mm and that of the other three quadrants varies between 0.07 and 0.4 mm (the

higher value in each quadrant corresponding to the TM annulus). The pars flaccida thickness (0.5–

2 mm) is significantly greater than that of the pars tensa. These thicknesses for the TM are consistent

with the findings of Ruah et al. (1991).

4.2.2 Material properties

4.2.2.1 Introduction

The probe tone in tympanometry typically has an amplitude of around 95 dB SPL (~1.1 Pa) or less

(e.g.,  Alberti and Jerger,  1974) and does not cause deformations that are large enough to push the

system into  its  nonlinear  range.  In  fact,  according to  the  model  of  Qi  et  al.  (2008),  the  onset  of

nonlinearity seems to occur at approximately 1000 Pa in both the ear canal and the middle ear. Thus, in

this study all materials are assumed to be linear elastic.

Since precise values for the material properties of newborn ear-canal and middle-ear components are

not available, ranges of plausible values are used. For each material property, upper and lower limits

were defined based on structural similarities between different tissues (e.g., skin and the pars flaccida)

and/or  on  reported  values  for  the  adult  ear.  Each  baseline  material  property is  approximately the

arithmetic mean of the upper and lower limits for that property. Thus, three models each are generated
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for the ear canal and the middle ear: (a) a low-impedance model (i.e., a model with the lowest stiffness,

density and damping values for all  components);  (b) a baseline model (i.e.,  a model with baseline

parameter values); and (c) a high-impedance model (i.e., a model with the highest stiffness, density and

damping values for all components). Taking all possible combinations of the ear-canal and middle-ear

models, nine scenarios were considered for the whole-ear response in this study. 

4.2.2.1 Stiffness

4.2.2.1.1 Pars tensa

Volandri et al. (2011) and Maftoon et al. (2015) recently reviewed the Young’s moduli that have been

reported for the pars tensa in the literature. A Young’s modulus of 20 MPa has frequently been used for

the pars tensa in numerical models  (e.g.,  Funnell  and Laszlo,  1978; Gan and Sun, 2002);  Young’s

moduli half as large and twice as large (i.e., 10 and 40 MPa) are still within the range of experimental

measurements (e.g., Békésy, 1949; Kirikae, 1960; Decraemer et al., 1980b; Cheng et al., 2007; Huang

et al., 2008; Luo et al., 2009a; Aernouts et al., 2012; Zhang and Gan, 2013).

Ruah et al.  (1991) reported morphological changes of the TM during post-natal development and

investigated  the  similarity  between  age-related  ultra-structural  changes  of  the  TM  and  changes

observed in human skin. The age-related changes of human skin have been reported in several studies

and have been attributed to the water content of the skin and to the orientation and density of the

collagen fibres (e.g., Yamada and Evans, 1970; Rollhäuser, 1950). Rollhäuser (1950) reported that the

Young’s modulus for the skin of babies of less than 3 years old is 3–5 times smaller than that of adults.

Based on these studies, we used Young’s moduli of 2, 6 and 10 MPa in our models. These values are

approximately 3–5 times smaller than the lower, middle and upper values of the reported pars-tensa

Young’s moduli mentioned above.

Qi et al. (2008) used Young’s moduli of 0.6, 1.2 and 2.4 MPa in their static model. Considering the
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report  of  Luo et  al.  (2009a,  2009b),  which states  that  the Young’s  modulus  of  the normal  TM in

dynamic conditions is more than twice that in static ones, our values are consistent with those of Qi et

al. 

4.2.2.1.2 Pars flaccida

The pars flaccida is considered to be the extension of the skin of the external ear canal  (Lim, 1970).

Based on this observation, Maftoon et al. (2015) used a Young’s modulus of 2 MPa for the gerbil pars

flaccida, in the range of the reported Young’s moduli of the human epidermis and stratum corneum

(Geerligs et al., 2011). They also used a simplistic model of a circular plate to validate their value by

comparing the results with their own experimental data from laser Doppler vibrometry. In this study,

we  used  Young’s  moduli  of  0.4,  1.2  and  2 MPa for  the  pars  flaccida.  The  0.4 MPa  value  is

approximately  the  Young’s  modulus  of  the  skin  as  reported  by  Agache  et  al.  (1980),  and  it  is

approximately 1/5 of the value used by Maftoon et al. (2015), consistent with the change of elastic

modulus of the skin during maturation.  The upper value was used in the model of Maftoon et  al.

(2015). The middle value is approximately 1/3 of our baseline value of the pars tensa Young’s modulus,

a pars-flaccida/pars-tensa stiffness ratio that has been used in other modelling studies (e.g., Lesser and

Williams, 1988; Koike et al., 2002). 

4.2.2.1.3 Ear canal

The newborn ear canal is surrounded by elastic cartilage, skin, glandular tissue and fat  (e.g., Gulya,

1995). In  adults  the  ear  canal  is  mainly  surrounded  by  bone,  whereas  in  newborns  the  canal  is

surrounded  almost  entirely  by  soft  tissue  (e.g.,  McLellan  and  Webb,  1950).  To  the  best  of  our

knowledge, the stiffness of human newborn elastic cartilage has never been reported in the literature.

Elastic cartilage is the least stiff type of cartilage in the human body (Fung, 1993, p. 519). Young’s

moduli of 0.33–5.8 MPa have been reported for different adult human articular cartilages (e.g., Hayes
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and Mockros, 1971). As a collagenous tissue, cartilage undergoes significant alterations from newborn

to adult  (e.g., Williamson et al., 2001), similar to the skin and pars tensa. Thus, the stiffness of the

articular cartilage in newborns can be expected to be less than the values mentioned above by a factor

of perhaps 3–5, giving a range of about 0.11–1.9 MPa, and the stiffness of the elastic cartilage would be

expected to be less than these values.

Qi et al. (2006) used Young’s moduli of 30, 60 and 90 kPa for the soft tissue in their static model. In

this study, we used Young’s moduli of 20, 210 and 400 kPa for the soft tissue. The lowest value is

approximately the mean of the Young’s moduli of fat and glandular tissue (Wellman et al., 1999) and

the upper value corresponds to the Young’s modulus of skin in young adults (less than 30 years old) as

reported by Agache et al. (1980).

4.2.2.1.4 Ossicles 

Various values for the Young’s modulus of compact bone have been reported in the literature. Fung

(1993, p. 511) reported a range of 17.6–18.9 GPa and stated that the mechanical properties of bone vary

with age, sex, location in the body, orientation of the load, and strain rate. Most recently, Soons et al.

(2010) measured Young’s moduli of 16±3 GPa for the rabbit incus and malleus. Qi et al.  (2008) used

Young’s modului of 1, 3 and 5 GPa in their model. In this study, Young’s moduli of 4, 10 and 16 GPa

were applied to the ossicles, where the lower value corresponds to the lowest Young’s moduli in the

literature review of Funnell  et  al.  (1992); the upper value corresponds to the average value in the

measurements of Soons et al. (2010); and 10 GPa is the mean of these two values. It turns out that this

parameter has very little effect on the behaviour of the model.

4.2.2.1.5 Ligaments 

In previous adult models, Young’s moduli of 0.65 to 21 MPa have been used for middle-ear ligaments

(e.g., Koike et al., 2002; Gan et al., 2004). Maftoon et al. (2015) used the same Young’s moduli for the
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ligaments as for the pars tensa, based on their structural similarities. Qi et al.  (2008) used 1, 3 and 5

MPa in their newborn model. For the ligaments in this study we applied the Young’s moduli of the pars

tensa, namely, 2, 5 and 8 MPa.

The stapedial annular ligament was represented in our model by a translational spring element, at

the same place where the dashpot is located. Gan et al.  (2011, Fig. 6a) reported load-displacement

curves  for  two adult  human stapedial  annular  ligaments.  In  the  linear  region of  their  loading and

unloading curves (i.e., for displacements < 0.1 mm), we estimated that the stiffness was between 100

and 300 N/m. Cancura  (1979) reported a stiffness of 182 N/m, and more recently Lauxmann et al.

(2014) reported this stiffness to be 1050 N/m based on load and displacement measurements. They also

compared their result to the value of 182 N/m and 940 N/m reported by Cancura  (1979) and Waller

(2002), respectively. Based on these values, we used stiffness parameters of 200, 600 and 1000 N/m in

this study.

4.2.2.2 Poisson’s ratio 

Soft tissues are nearly incompressible, so values close to 0.5 are appropriate for their Poisson’s ratio

(e.g., Decraemer and Funnell, 2008). In this study the value of 0.49 was used for the soft tissues to

avoid numerical problems arising from full incompressibility. For bones, a Poisson’s ratio of 0.3 was

used in this study, which is widely accepted  (Cowin, 2001, chap. 23.18) and has often been used in

numerical models of the middle ear (e.g., Koike et al., 2002).

4.2.2.3 Density

The density of soft tissue is usually considered to be somewhere between that of water (1000 kg/m3)

and that of dry collagen fibres (1200 kg/m3).  In this model, densities of 1000, 1100 and 1200 kg/m-3

were used for the soft-tissue components. Fung (1993, p. 512) reported bone density as being between

1600 and 1950 kg/m3. Based on this, densities of 1600, 1800 and 2000 kg/m3 were used for the malleus
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and incus in this model. This is close to the range that Maftoon et al. (2015) used for the malleus, incus

and stapes.

Wever and Lawrence  (1954, p. 417) reported the mass of the stapes to be in the range of 2.0 to

4.3 mg (mean 2.86). Since our 3-D geometry did not include the stapes, its mass was represented by a

discrete mass element of 2, 3 or 4 mg at the same location where the spring and dashpot were attached

to the incus.

4.2.2.4 Damping

The damping of a mechanical system is more difficult to understand than its mass or stiffness since it

deals with internal friction and energy dissipation, processes that are difficult to isolate and measure.

Several  empirical  models  have  been  proposed  for  describing  damping.  One  of  the  most  common

models  is  Rayleigh  damping  (e.g.,  Funnell  et  al.,  1987).  In  this  model,  the  damping matrix  C is

generated by

C=α M+β K , (4–1)

where  M and  K are  the  mass  and  stiffness  matrices,  respectively,  and  α and  β are  the  damping

coefficients with units of s−1 and s, respectively. The damping ratio ζ at each angular frequency ω = 2πf

is related to the Rayleigh damping coefficients by

ζ=
1
2
( αω +βω) . (4–2)

This implies that α corresponds to damping ratios that decrease with frequency while β corresponds to

damping ratios that increase with frequency.

Previously used pairs  of  tympanic-membrane Rayleigh coefficients  (α, β) include  (0,  1.0×10−4),
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(260, 3.7×10−5) and (0, 0.75×10−4) (Volandri et al., 2011). For the frequency range of 50–2000 Hz that

we use in our simulations, Equation 4–2 gives values of ζ between 0.012 and 0.63 for these values of α

and β. Wada et al. (1992) estimated a damping ratio of 0.126 for frequencies less than 3 kHz. Maftoon

et  al.  (2015)  assigned  stiffness-proportional  damping  (i.e.,  α = 0)  with  β = 2×10−6 s,  3×10−5 s  and

2×10−7 s for the soft tissues with highly organized collagen fibres, the soft tissues with abundant elastic

fibres, and bones, respectively. These values result in damping ratios up to 0.001, 0.012 and 0.188,

respectively, for frequencies up to 2 kHz. Keefe et al.  (1993) used a quality factor ( Q=
1

2ζ
) of 2 as

‘typical  of  quality factors  measured  in  mechanical  impedance measurements  on the human body’,

corresponding to a damping ratio of 0.25. Assuming a damping ratio that is constant over the frequency

range of interest, and excluding the outliers of the damping ranges mentioned above, in this study we

used damping ratios of 0.1, 0.25 and 0.4. We used Rayleigh damping and calculate  α and  β at each

frequency in order to obtain the desired damping ratio.

4.2.3 Cochlear load

It has been reported that the cochlea influences the response of the ear mainly by damping, at least for

the frequency range of interest here (e.g., Overstreet and Ruggero, 2002; Decraemer et al., 2007). Since

our model does not contain the stapes, we applied a discrete dashpot (i.e., viscous damper) element to

represent the damping effect, in the direction of stapedial piston-like motion, at the end of the long crus

of the incus (i.e., where the incudostapedial joint would be). The viscous damping coefficient can be

calculated by dividing the cochlear input impedance by the square of the footplate area of the stapes.

Koike et al. (2002) calculated a coefficient of 0.89 Ns/m for their adult human model, for an impedance

of 50 GΩ. For this impedance value, and a stapes footplate surface area of 2.3 – 3.75 mm2 as reported

by Wever and Lawrence (1954, p. 417) and Gan et al. (2011), we calculated a dashpot parameter of 0.2
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– 0.7 Ns/m. We have not attempted to correct this for any possible differences between newborns and

adults.

Table 4–1 Material properties

Minimum Baseline Maximum

Young’s modulus (MPa)

  Pars tensa 2 6 10

  Pars flaccida 0.4 1.2 2

  Soft tissue around canal 0.02 0.21 0.4

  Ossicles 4000 10000 16000

  Ligaments 2 5 8

Poisson’s ratio

  Soft tissues 
  (around canal and in middle ear)

0.485 0.49 0.495

  Ossicles 0.3

Density (kg/m3)

  Soft tissues 1000 1100 1200

  Ossicles 1600 1800 2000

Damping ratio 0.1 0.25 0.4

Cochlear load

  Spring (N/m) 200 600 1000

  Dashpot (N.s/m) 0.2 0.45 0.7

  Stapes mass (kg) 2×10−6 3×10−6 4×10−6

Cavity volume (m3) 700×10−9 850×10−9 1000×10−9

4.2.4 Air in middle-ear cavity

The Eustachian tube connects the middle-ear cavity to the nasopharynx and can be in either an open or

a closed state. When the tube is closed (its normal state) a volume of air is trapped in the middle-ear

cavity and it has been shown to have a large impact on the input admittance of the middle ear  (e.g.,

Funnell and Laszlo, 1982; Stepp and Voss, 2005). A few finite-element models take this effect into
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account (e.g., Gan et al., 2004).

The compliance of the middle-ear cavity is calculated by 

C cav=
V

ρ c2
, (4–3)

where V, ρ and c are the volume of the cavity and the density and sound speed of air, respectively. Qi et

al. (2008) estimated this volume as being between 700 and 1000 mm3 based on the same CT scan that

we used in this study. Neglecting the mass of the air, the cavity effect was considered to be an ideal

stiffness element. Thus, its admittance is purely susceptance and is calculated at each angular frequency

ω by

Bcav=ω C cav . (4–4)

The middle-ear input admittance Yme is calculated based on a series combination of the cavity and

the TM admittance (e.g., Stepp and Voss, 2005):

1
Y me

=
1

Y tm

+
1

Y cav

. (4–5)

4.2.5 Air in ear canal

According to the geometry reconstructed from our CT images, the air enclosed inside the ear canal,

between the probe tip and the TM, has a volume of 128 mm3. The corresponding compliance Ccan and

admittance Ycan were calculated in the same way as for the air in the middle-ear cavity, with the effects

of mass again being neglected. The air in the canal is assumed to act as a lumped element in parallel

with the ear-canal wall and the middle ear (e.g., Keefe et al., 1993, Fig. 12). The three admittances, Yec

for the ear canal, Ycan for the canal air and Yme for the middle ear, are in parallel, so the total admittance

of the ear is
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Y ear=Y ec+Y can+Y me . (4–6)

4.2.6 Boundary conditions

The canal  and middle-ear  were  modelled  separately and their  individual  contributions  to  the  total

immittance response of the ear were investigated. This was made possible by clamping the border of

the TM, that being the only place where the two parts of the overall model interact. This assumption

has been used in previous human middle-ear models (e.g., Rabbitt, 1988; Gea et al., 2010; Aernouts et

al., 2012). In our middle-ear model, the ends of the AML and PIL were also clamped. In the ear-canal

model, the surface of the probe tip was taken to be fixed, since it is assumed to be securely held in the

canal, and so were the surfaces of the temporal bone and the TM. 

4.2.6 Loading conditions

In this study the sound pressures were applied as harmonic stimuli with an amplitude of 0.2 Pa root

mean  square  (corresponding  to  80 dB  SPL)  on  the  surfaces  of  the  canal  wall  and  the  TM.  For

presentation, all displacements are normalized by the pressure. The frequency of the input pressure was

varied between 25 and 2000 Hz in 25-Hz steps and the input admittance of the model was calculated

for each frequency. The upper limit of 2000 Hz is set in order to maintain the validity of the assumption

that  the  ear  canal  can  be modelled  as  a  lumped acoustical  element  (e.g.,  Shanks and Lilly,  1981;

Margolis et al., 2003; Sanford and Feeney, 2008). For an average ear-canal length of 14 mm and a

probe-tip insertion of 5 mm (Keefe et al., 1993), the effective length is 9 mm. This length is 19 times as

long as  the 171-mm wavelength  of  a  2000-Hz sound in  air,  so uniformity of  the pressure  on the

surfaces is a valid assumption.

After  the  initial  meshes  were  generated  according  to  the  procedure  explained  in  Section 4.2.1,

convergence tests were done to assess the adequacy of the mesh resolution for both the ear-canal and

middle-ear models. Every element of each mesh was bisected three times. The admittance magnitudes

59



at the resonance peaks for the meshes after the third bisection deviated by only 1.2% and 0.9% from the

results for the meshes after the second bisection for the ear-canal and middle-ear models, respectively.

Thus, we used the mesh resulting from the second mesh bisection for all simulations reported below.

The ear-canal mesh consisted of 45 086 second-order tetrahedral elements (17 544 and 27 542 elements

for the ear-canal volume and the surrounding soft tissues, respectively). The middle-ear mesh consisted

of 28 748 second-order tetrahedral elements (23 012, 6 136 and 288 elements for the TM, ossicles and

ligaments, respectively).

4.2.8 Computational methods

4.2.8.1 Finite-element solver

The finite-element solver was Code_Aster  (http://www.code-aster.org) version 11.5, which is free

(libre)  and  open-source  software. Simulations were performed on the supercomputer Guillimin of

McGill University. Guillimin is a part of the Compute Canada national High Performance Computing

(HPC) platform. It is a cluster of Intel Westmere EP Xeon X5650 and Intel Sandy Bridge EP E5-2670

processors running under the  CentOS 6 Linux distribution.  We  ran  a  maximum of  12  simulation

scenarios at a time on nodes of 12 or 16 processors, each scenario on a single processor. Typical run

times for the ear-canal and middle-ear models were 144 and 277 minutes, respectively.

The complex dynamic responses of the models were obtained using the dynamic linear harmonic

(DYNA_LINE_HARM) module in Code_Aster. This module calculates the steady-state response of the

models to the harmonic excitation.

4.2.8.2 Admittance calculation

The volume displacements of the ear-canal and middle-ear models were calculated from the variation

of the volume of a very-low-impedance mesh filling the canal, with a Young’s modulus of 0.001 Pa, a

density of 0.001 kg/m3 and a Poisson’s ratio of 0.01. We performed a series of sensitivity analyses to
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confirm that the effects of this pseudomaterial on the model responses were negligible.  Code_Aster

calculated the real and imaginary volume displacements of the enclosed volume and these values were

multiplied by the angular frequency ω to calculate volume velocities, which were then divided by the

sound pressure to calculate the conductance G and susceptance B. The admittance magnitude and phase

were calculated as √G2+B2  and Tan−1 (B/G ) , respectively.

4.2.9 Sensitivity analysis

A sensitivity analysis can lead to an improved understanding of the system and help establish how

much  the  uncertainty  in  the  parameters  will  affect  the  output.  In  this  study,  we  performed  two

sensitivity analyses,  using (1) a  traditional  one-parameter-at-a-time method,  and (2)  the method of

Morris (1991).  Two different criteria were used to evaluate the effects of each parameter on both the

ear-canal and middle-ear models: (1) the maximum admittance, and (2) the frequency at which that

maximum  admittance  occurs.  The  range  between  the  minimum  and  maximum  values  for  each

parameter (shown in Table 1) was divided into 4 intervals so each parameter has p = 5 evenly spaced

values.

In  the  one-parameter-at-a-time method,  the  effect  of  each  parameter  is  studied  individually  by

varying it while keeping all of the other parameters at their baseline values. This method provides a

quantitative measure of the effect  of each individual  parameter  on the output.  Performing a linear

regression analysis provides measures of the size of the effect, given by the slope, and of the linearity

or nonlinearity of the effect, given by the coefficient of determination R2:

R2=1−
∑
i=1

m

( y i−g i)
2

∑
i=1

m

( y i− ȳ )
2

(4–7)
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where yi (i = 1, 2, …, p) are the outputs at each of p simulations ȳ , is the mean of the outputs and the

gi are the values in the fitted line corresponding to the yi. R2 is a number between 0 and 1, and the larger

it is, the more linear the parameter effect is.

The method of Morris (1991), on the other hand, is said to be a ‘qualitative’ screening method. The

underlying intent of this method is to determine which input parameters may be considered to have

effects that are (a) negligible, (b) linear and additive, or (c) nonlinear and/or involved in interaction

with other parameters. A number of combinations of different parameter values is randomly selected

within the domain of all possible combinations. Unlike the one-parameter-at-a-time method, in which

all other parameters are at their baseline values when a particular parameter is altered, in this method

every other parameter can have any value in its own specified range when the effect of a particular

parameter is investigated. Assume that, for the model being studied, an output y is given by

y= f (x)
x=x ( x1 , x2, ... x i , ... xk),

(4–8)

where x1, x2, x3, …, xi, …, xk are the parameters of the model. For this model, simulations are designed

for n sets  xj (j = 1, 2, 3, ..., n). Each parameter xi can take on p predefined values in the range [xi, min,

xi, max]. At each xj+1, only the value of one parameter  xi is changed from xj. Thus, for two consecutive

simulations we can define a simple partial difference of the output with respect to the change of xi to x'i:

d i(x
j
)=

f (x j+1
)− f (x j

)
Δ

=
f (x (x1, x2 , x3, ..., x ' i ,... xk ))− f (x( x1, x2 , x3 ,... , x i ,... xk ))

Δ
. (4–9)

where  Δ is a value in {1/(p−1), … , 1−1/(p−1)}. (In our case, for  p = 5,  Δ could be 1/4, 1/2 or 3/4.)

Since  from  one  simulation  to  the  next  only  one  parameter  changes,  k+1  simulations  should  be

performed to obtain one di for each parameter, resulting in a total of n = r×(k+1) simulations, r being
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the number of di’s desired for each parameter.

Unlike  the  case  of  the  one-parameter-at-a-time method,  it  is  not  necessary to  keep all  but  one

parameter at their baseline values; the only restriction is that only one xi changes between xj and xj+1.

Morris  (1991)  introduced  a  method,  which  is  used  here,  to  randomly  design  each  set  of  k+1 of

simulations. We selected Δ = 1/(p−1) to cover all p options for the parameter ranges.

Once  n simulations  are  performed,  then  the  effect  of  parameter  xi can  be  described  using  the
following three measures: 

μi=
1
r
∑
j=1

r

d i(x j
)

μ i
*
=

1
r
∑
j=1

r

|d i(x j
)|

σ i=√ 1
r−1

∑
j=1

r

(d i(x j
)−μi)

2

. (4–10)

For each parameter xi, the corresponding μi is the mean of the di’s across the r simulations and is thus

a  measure  of  the  overall  influence  of  that  parameter  on  the  output.  μi
* provides  a  more  practical

measure of overall influence of a parameter, in which oppositely signed values of the di do not cancel

each other.  σi is the standard deviation of the di’s for parameter xi and is a measure of the interaction

and nonlinear effects of xi.  If for parameter xi we obtain a high value of σi (i.e.,  large deviations of di

around its mean value), it means that the output is affected by the choice of the other parameters (i.e.,

there are parameter interactions), or  that the parameter has a nonlinear effect  in the range of [xi, min,

xi, max], or both. In contrast, a low σi indicates that xi has linear effects that are independent (or nearly so)

of the values taken by the other parameters.

We set r = 10 as a trade-off between completeness and computation time. For the ear-canal model, 4

parameters were investigated (i.e., k = 4): Young’s modulus, density, Poisson’s ratio and damping ratio

of the soft tissue. This resulted in 50 simulations for the ear-canal model. For the middle-ear model, 12
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parameters were investigated (i.e.,  k = 12): Young’s moduli of the pars tensa, pars flaccida ligaments

and ossicles; densities of the soft tissue and ossicles; middle-ear cavity volume; Poisson’s ratio of the

soft tissues; stapes mass; stiffness of the stapedial annular ligament; cochlear load (dashpot coefficient);

and damping ratio. (The Poisson’s ratio of the ossicles was not varied.) This resulted in 130 simulations

for the middle-ear model. Instead of just presenting the values for the σi’s, as done by Morris (1991),

we present scatter plots and 10th-to-90th-percentile ranges of the di’s for each parameter.

4.2.10 Clinical data

Three studies of immittance response have been reported in the literature for ages similar to the 22-day

age of our model. Holte et al.  (1990) reported pressurized admittance responses for infants in 5 age

groups: 1–7, 11–22, 26–47, 51–66 and 103–133 days old. Their measurements were done from 250 to

1000 Hz. Keefe et al. (1993) reported impedance measurements performed under ambient pressure for

age groups of 1, 3, 6, 12 and 24 months in addition to adults, for frequencies from 125 to 10700 Hz

with a 1/3-octave resolution. The maturation effects were studied further by Keefe and Levi (1996)

with  the  data  from the  1993 study expressed  in  terms  of  admittance.  Sanford  and Feeney  (2008)

measured pressurized admittance for infants at 1, 3 and 6 months and for adults, for frequencies from

250 to 8000 Hz with a 1/3-octave resolution. Since our model represents unpressurized conditions, we

used only the data of Keefe et al. (1993) for comparison with our model, to avoid the complications

inherent in interpreting zero-pressure or peak-pressure data from pressure sweeps like those of Holte et

al. (1990) and Sanford and Feeney (2008). 

In addition, we used admittance measurements that we performed as part of another project, on a

group of 23 infants with ages between 14 and 28-days old, for frequencies from 250 to 8000 Hz at

1/12-octave resolution.  That  study was approved by the Institutional  Review Board of  the McGill

University Health  Centre. The measurements  were  made with a  wideband tympanometry research
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system  (WBTymp  3.2,  Interacoustics  Inc.).  All  measurements  except  one  were  performed  in  the

Otolaryngology  out-patient  clinic  of  the  Montréal  Children’s  Hospital.  More  details  about  the

measurement procedure can be found in Pitaro (2013). 

4.3 Results

4.3.1 Displacement patterns

Normalized displacement maps of the ear-canal and middle-ear models at a low frequency (100 Hz) are

presented in Fig. 4–3 for the baseline parameter values. (In the figure, the ear-canal model is sectioned

in a horizontal plane to provide a superior-to-inferior direction of view of the temporal bone and ear

canal.) For the ear canal, the greatest displacements occur at the medial and inferior portion of the

canal, just inferior to the TM. This can be explained by the fact that the ear canal has a larger diameter

in that location. For the TM, the maximum displacement occurs in the posterior region (where the TM

is thinner and the distance from the manubrium to the TM boundary is greater) and a smaller local

maximum occurs in the anterior region.

Vibration patterns of the ear-canal wall are presented in Fig. 4–4 for frequencies of 250, 500, 1000,

1500 and 2000 Hz.  Since  the  main  displacements  occur  in  the  inferior  portion  of  the  canal  at  all

frequencies, the canal model is again sectioned horizontally and the viewing direction is again superior

to inferior. The initial vibration pattern (i.e., one maximal displacement region in the inferior medial

portion of the canal) remains up to frequencies of ~700Hz, in the vicinity of the ear-canal resonance.

The magnitude of the maximum displacement increases with frequency from 24 to 32 nm/Pa. In the

frequency range of 700 to 1200 Hz, the region of maximal  displacement  moves toward the lateral

portion  of  the  canal  and the  magnitude  of  the  maximum displacement  decreases  to  12 nm/Pa.  At

frequencies from ~1200 Hz up to ~1500 Hz, two regions of maximal displacement are visible in the

lateral and medial portions of the ear canal and the magnitude of the maximum displacement decreases
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from 12 to 9 nm/Pa. At frequencies higher than 1500 Hz, up to our upper limit of 2000 Hz, the region

of  maximal  displacement  in  the  medial  portion  splits  into  two  regions  and  the  magnitude  of  the

maximum displacement decreases from 9 to 6 nm/Pa.

Vibration patterns of the TM are presented in Fig. 4–5, again for frequencies of 250, 500, 1000,

1500 and 2000 Hz. The initial vibration pattern (i.e., two maxima, in the posterior and anterior regions

of the TM) remains up to about 1800 Hz and the maximal displacement is in the posterior region. The

maximum  displacement  of  the  anterior  region  increases  gradually  from  180 nm/Pa  at  250 Hz  to

350 nm/Pa  at  1800 Hz  then  drops  to  330 nm/Pa  at  2000 Hz.  The  magnitude  of  the  maximum

displacement in the posterior region increases from 390 nm/Pa at 250 Hz to 830 nm/Pa at 1200 Hz.

Between 1200 and 1800 Hz, the posterior maximal-displacement region moves toward the superior

quadrant.  Above 1800 Hz, the posterior maximum splits  into superior and inferior regions and the

magnitude of the maximum displacement decreases to 370 nm/Pa.
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Fig. 4–3. Normalized displacement maps of the models in response to sound pressures at a low

frequency (100 Hz). Due to the small displacements of some components of the models (e.g., ossicles),

the displacement maps are presented using logarithmic scales. (a) Ear-canal model, sectioned in a

horizontal plane to provide a superior-to-inferior view of the temporal bone and ear canal; the largest

displacements are in the medial region of the canal. (b) Medial view of the middle-ear model; the

largest displacements are in the posterior portion of the tympanic membrane.



4.3.2 Admittances of the individual models

The volume velocities  and admittances of the ear-canal  and middle-ear  models  were calculated as

described in Section 4.2.8.2. The input-admittance magnitude and phase of the ear canal as functions of

frequency  for  three  scenarios  (i.e.,  the  low-impedance,  baseline  and  high-impedance  models)  are

presented in Fig. 4–6. Since the baseline model is more than 10 times as stiff as the low-impedance

model, three intermediate cases, with Young’s moduli of 40, 80 and 160 kPa for the soft tissue and

baseline values for the other material  parameters,  are also presented in this  figure to illustrate the
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Fig. 4–4. Normalized displacement maps of
vibration patterns of the ear-canal wall at five

different frequencies. Superior view of
horizontally sectioned canal, as in Fig. 4–3a.

Fig. 4–5. Normalized displacement maps of
vibration patterns of the middle ear at different

frequencies.



gradual change of the responses. As the model becomes stiffer, the resonance peaks shift to higher

frequencies, decrease in magnitude, and become broader: the admittance magnitude peaks of 24.2, 5.6

and 3.2 mm3/s/Pa occur at  225, 700 and 1050 Hz, and the widths of the peaks (as defined by the

frequencies at which the magnitudes are 90% of the peak value) are 150, 500 and 850 Hz for the low-

impedance, baseline and high-impedance models, respectively. The phases are constant at the lowest

frequencies, as expected for a stiffness-dominated response. However, since the Rayleigh damping was

set so as to provide a constant damping ratio, even at low frequencies, the phase does not converge to

90°. As the excitation frequency is increased, the mass contributes more to the response and the phases

tend toward negative angles. 

The admittance of the enclosed air in the canal was calculated by Equations 4–3 and  4–4 and is

presented  in  Fig. 4–6a.  It  is  a  linear  function  of  the  excitation  frequency and  thus  appears  as  an

increasingly  steep  curve  for  the  logarithmic  frequency  scale  of  the  figure.  Since  the  canal  air  is

modelled as a pure stiffness component, its phase is constant at 90°. 

The admittance magnitude and phase of the middle-ear model for three scenarios (i.e.,  the low-

impedance, baseline and high-impedance models) are presented in Fig. 4–7. As the model becomes

stiffer, the resonance peaks shift to higher frequencies, decrease in magnitude, and become broader,

similar to what we see for the ear-canal model. The admittance magnitude peaks of 104.6, 39.1 and

21.8 mm3/s/Pa occur at 1400, 2000 and 2300 Hz, and the widths of the peaks (again defined by the

frequencies at which the magnitudes are 90% of the peak value) are 200, 900 and 1200 Hz for the low-

impedance, baseline and high-impedance models, respectively.  We extended the frequency range to

3000 Hz to provide an estimate of the resonance frequency of the middle ear. The parts above 2000 Hz

are represented by dashed lines to emphasize that they may be beyond the range of validity of the

uniform-pressure assumption. In the same way as for the canal model, the phases are constant at the
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lowest frequencies but do not quite reach 90°. In the middle-ear model the phase responses remain

close to 90° over a larger range of frequencies than in the ear-canal model, illustrating that the stiffness

characteristics are relatively more important in the case of the middle ear.
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Fig. 4–6. Admittance responses of the ear-canal
models. Admittance magnitudes (a) and phases
(b) are presented for low-impedance (green),

baseline (red), and high-impedance (blue)
parameters, and for three intermediate cases
(Young’s moduli of 40, 80 and 160 kPa for the

canal soft tissue). The admittance magnitude for
the air in the canal in presented in (a) as asolid
black line; its phase is constant at 90° over the

frequency range.

Fig. 4–7. Admittance responses of the middle-ear
models. Admittance magnitudes (a) and phases
(b) are presented for low-impedance (green),

baseline (red) and high-impedance (blue)
parameters.



4.3.3 Admittance of the combined model

Based on the admittance responses of its components as shown in Figs. 4–6 and 4–7, the combined

input admittance response of the ear was calculated using Equation 4–6. All nine combinations of the

three ear-canal scenarios and the three middle-ear scenarios are presented in Fig. 4–8. In this figure
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Fig. 4–8. Admittance responses of the
combinations of three ear-canal and three middle-

ear models. Admittance magnitudes (a) and
phases (b) are presented for each pair Ci-Mj

corresponding to the combination of the canal
model i and the middle-ear model j; the indices

i = 1, 2 and 3 represent the low-impedance,
baseline and high-impedance models,

respectively.

Fig. 4–9. Results for model with adjusted
parameters and comparison with two sets of
clinical data. Admittance magnitudes (a) and
phases (b) are presented for the data of (Keefe

1993) and for data from this study, in comparison
with the output of the model with adjusted

parameters (see text).



each pair CI-Mj corresponds to the combination of the canal model i and the middle-ear model j, and

the  indices  i = 1,  2  and  3  represent  the  low-impedance,  baseline  and  high-impedance  models,

respectively.

In all results with the low-impedance canal model (green curves), a local peak in the frequency

range of 150–500 Hz is observed, along with a drop and subsequent rise of the phase response at

frequencies below 1000 Hz. The main resonance magnitudes and frequencies are slightly higher than in

the corresponding middle-ear responses (Fig. 4–7a), indicating that the low-impedance canal influences

the total response not only at low frequencies but also, to a small extent, at higher frequencies. 

As  canal  becomes  stiffer  (red  and  blue  curves),  the  local  admittance  peak  at  low  frequencies

disappears. Since the resonances of the baseline and high-impedance canal models are at frequencies

higher than 500 Hz (Fig. 4–6a), their resonances merge into the resonance of the middle ear. Also, the

phase  responses  remain  close  to  90° over  a  broader  frequency range (Fig. 4–8b),  representing  the

influence of the stiffness characteristics of the middle ear on the total ear response. In these models the

resonance magnitudes and frequencies are close to the those of the middle-ear response (as shown in

Fig. 4–7b), indicating that at higher frequencies the middle-ear response is dominant.

4.3.4 Model validation and parameter adjustments

The canal response has a pronounced effect on the total admittance of the ear at frequencies below

1000 Hz while the middle-ear response dominates at higher frequencies. Comparing the clinical data

with the nine combinations of the canal and middle-ear models (not shown), it can be concluded that an

intermediate-impedance  canal  model,  combined  with  the  high-impedance  middle-ear  model,  can

provide a reasonable match to the clinical data over the frequency range of interest: by assigning a high

damping ratio of ζ = 0.4 and an intermediate stiffness of E = 80 kPa to the soft tissue surrounding the

ear canal, we can adjust the admittance magnitude of the canal resonance and shift it to frequencies
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around  500 Hz,  to  be  more  consistent  with  Keefe  and  Levi  (1996,  Fig. 2).  Fig. 4–9  shows  the

admittance for such an adjusted model of the ear, together with the two sets of clinical data, namely, the

means of Keefe and Levi (1996) and the curves for our individual subjects. We extended the frequency

range up to 2500 Hz (again with dashed lines) to provide insight into the admittance behaviour around

the resonance peak at 2000 Hz.
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Fig. 4–10. One-variable-at-a-time sensitivity analysis, showing the influence of the material
parameters on the maximum admittance magnitudes (panels a & c) and the corresponding frequencies
(panels b & d) for the ear-canal model (panels a & b) and the middle-ear model (panels c & d). Est =
Young’s modulus of the soft tissue; ζ = damping ratio; ρst = density of soft tissue; υst = Poisson’s ratio;

Ept = Young’s modulus of the pars tensa; Vcav = volume of the middle-ear cavity.



The admittance magnitude response of the adjusted model is mostly within the error bars of the

clinical data of Keefe and Levi (1996), with values up to 30% higher at frequencies between 500 and

1000 Hz (Fig. 4–9a). The model results are entirely within the range of the individual responses of our

clinical data, where the resonance peaks of the admittances are in the range of 1000 to 2200 Hz and the

peak  values  vary  between  24  and  50 mm3/s/Pa;  the  admittance  peak  of  the  adjusted  model

(30 mm3/s/Pa at 2100 Hz) falls within this range.

The mean phase data of Keefe and Levi (1996) show a minimum at 400 Hz, rise to a maximum at

1000 Hz and then drop at higher frequencies; in our clinical data the minima and maxima are mostly at

lower frequencies and they are sharper because the frequency resolution is finer than that of Keefe et al.

and because they have not been smeared by averaging. The shape of the model curve is similar to that

of the mean curve of Keefe et al. but the minima and maxima are shifted to slightly higher frequencies

and the phases are about 15 to 28° higher than those of Keefe et al., more like those of our clinical data.

4.3.6 Sensitivity analysis

The results of the one-parameter-at-a-time sensitivity analysis are presented in Fig. 4–10, for the two

separate models (ear canal in the upper panels, middle ear in the lower panels) and for two features of

the admittance (maximum magnitude in the left-hand panels and frequency of the maximum in the

right-hand panels). All four parameters are shown for the canal model, and for the middle-ear model

only the four most influential parameters are shown.

 The parameters with the most influence on the maximum admittance magnitude of the ear-canal

model are the Young’s modulus Est, damping ratio ζ, density ρst and Poisson’s ratio υ of the soft tissue,

in decreasing order of importance  (Fig. 4–10a).  The  coefficients  of  determination  R2 for  these

parameters are 0.71, 0.95, 0.99 and 0.99, respectively, meaning that the Est has a quite nonlinear effect

but that the others are practically linear. The same order of influence holds for the frequency of the
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maximum admittance, except that Poisson’s ratio plays an important role at its higher values (Fig. 4–

10b). The R2’s for this criterion are 0.96, 0.99, 0.94 and 0.87 for Est, ζ, ρst and υ, respectively, meaning

that υ has a more nonlinear effect than the others do.

For the middle-ear model, the damping ratio  ζ  affects the maximum admittance magnitudes more

than  does  the  pars-tensa  Young’s  modulus  Ept.  The  soft-tissue  density  ρst  (i.e.,  the  density  of  the

components other than the ossicles) and the middle-ear cavity volume Vcav have much smaller effects
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Fig. 4–11. Sensitivity analysis using Morris method, showing the influence of the material parameters
on the maximum admittance magnitudes (panels a & c) and the corresponding frequencies (panels b &

d) for the ear-canal model (panels a & b ) and the middle-ear model (panels c & d ). The blue boxes
indicate the 10th-to-90th-percentile ranges; each point represents a |di| and the red lines represent μi*.

Abbreviations are the same as in Fig. 4–10.



(Fig. 4–10c). The R2’s for Ept,  ζ, ρst and Vcav are 0.94, 0.92, 0.99 and 0.98, respectively,  reflecting the

fact that  Ept and  ζ  have somewhat nonlinear effects. The frequency of the maximum admittance is

strongly affected by Ept and the order of the influence of the other parameters for this criterion is ρst, Vcav

and ζ (Fig. 4–10d). The R2’s for Ept, ζ, ρst and Vcav are 0.98, 0.75, 0.98 and 0.97, respectively, indicating

that ζ is the only one with a notably nonlinear effect. The effects of the other parameters of the middle-

ear model are less than 1% and they are not presented in this figure. 

The results of the sensitivity analysis with the Morris method are presented in Fig. 4–11, again for

the maximum admittance and its corresponding frequency. Although, as mentioned in Section 4.2.9, the

effects of 12 parameters of the middle-ear model were explored with the Morris method, only the four

most important parameters are shown here. Each point represents a |di|, and the red lines represent μi*.

The blue boxes indicate the 10th-to-90th-percentile ranges.  The order of overall influence of the ear-

canal parameters (i.e., μi*) on the maximum admittance and its corresponding frequency (Fig. 4–11a &

b) is the same as what the one-parameter-at-a-time analysis shows (Fig. 4–10a & b). The large 10th-to-

90th-percentile ranges for the Young’s modulus Est indicate possible nonlinear and/or interaction effects

for both the admittance magnitude and the corresponding frequency.

The order of overall influence of the middle-ear parameters (i.e.,  μi*) on the maximum admittance

magnitude (Fig. 4–11c) is again the same as what the one-parameter-at-a-time analysis shows (Fig. 4–

10c). However, the order of importance is slightly different for the corresponding frequency: as shown

in Fig. 4–10d, the mean sizes of the effects are similar for the damping ratio  ζ, soft-tissue density ρst

and middle-ear cavity volume Vcav, but the distributions around the means are different. For the cavity-

volume effect, which is linear in Fig. 4–10c, the wide (and asymmetrical) distribution of the deviations

may be due to interactions with other parameters.

In both ear-canal and middle-ear models, the effects of the damping ratio are more complicated. Its

broad distribution of di’s in Fig. 4–11d may be because of the strong nonlinearity seen in Fig. 4–10d,
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and that nonlinearity may be because multiple peaks at low damping ratios (Figs. 4–6 & 7, blue curves)

are merged when the damping is higher. In addition, based on the definition of the Rayleigh model of

damping, by which the damping is a product of stiffness and mass, these three parameters can be

expected to interact with one another. 

4.4 Discussion

4.4.1 Displacement patterns

To the best of our knowledge, no experimental data have been reported for vibration and displacement

patterns of the newborn TM. However, there have been a few studies of the vibration patterns of the

TM in adult humans and animals. Tonndorf and Khanna (1972) and Rosowski et al.  (2009) reported

that complex vibration patterns of the adult human TM are observable at frequencies higher than 3000

and 4000 Hz, respectively. Our model shows that the first, simple vibration pattern (i.e., two maxima,

one posteriorly and one anteriorly)  remains  only up to about  1800 Hz. Around this  frequency,  the

patterns  start  to  become  more  complex,  as  described  in  Section 4.3.1.  The  fact  that  the  complex

patterns begin at a lower frequency may be attributed to the lower stiffness of the TM in the newborn

model.

Unlike the case for the TM, the vibration patterns of the ear canal cannot be readily observed in

experimental measurements and no experimental data have been reported in the literature for either

newborns or adults. As shown in Section 4.3.1, our model predicts three major displacement patterns of

the canal: a single maximal-displacement region in the inferior medial region at low frequencies; a

single maximal-displacement region in the lateral region at intermediate frequencies; and two maximal-

displacement regions, in the lateral and medial regions, at high frequencies. 

4.4.2 Admittance

Holte et al.  (1991) and Keefe et al.  (1993) found that an admittance maximum of the ear canal in
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infants less than 1 month old happens at frequencies around 450 Hz. With our adjusted parameters

(Section 4.3.4) the resonance happens around 500 Hz in the model, similar to what was found by Holte

et al. and Keefe et al. The canal resonances of the individual subjects in our clinical measurements

occur in the range of 250 to 500 Hz, mostly close to 250 Hz.

Holte et al. (1991) didn’t measure to high enough frequencies to observe the middle-ear resonance,

but they suggested that it is beyond 900 Hz. Keefe et al. (1993) reported that the overall ear resonance

was  in  the  vicinity  of  1800 Hz.  This  resonance  presumably  contains  both  canal  and  middle-ear

responses, with the resonance of the middle ear itself happening at a frequency slightly higher than

1800 Hz. The ear resonances of the individual subjects in our clinical measurements are in the range of

1000 to 2500 Hz. In our models, the middle-ear resonances happen around 1400, 2000 and 2300 Hz for

the  low-impedance,  baseline  and high-impedance  models  (Fig. 4–7a),  which  is  consistent  with  the

measured data.

As the frequency increases from 25 to 1000 Hz, the ratio of the admittance magnitude of the canal to

that of the middle-ear decreases from 0.6 to 0.3 for our baseline models. This ratio is larger (decreasing

from 2.0 to 0.6 over the same frequency range) in the adjusted model. Thus, at frequencies below

1000 Hz admittance measurements are highly affected by the canal response and they cannot satisfy

their main goal of reporting the middle-ear response. The response of the ear canal becomes negligible

at  frequencies  in  the  vicinity  of  the  middle-ear  resonance  (i.e.,  between 1000 and 2000 Hz).  This

suggests  that  admittance  measurements  can  provide  more  information  about  the  condition  of  the

middle-ear when made at frequencies above 1000 Hz than when made at lower frequencies. However,

since the resonance frequency may vary considerably due to intersubject variability (as seen in the

individual responses in Fig. 4–9), it may be important to measure at many frequencies over the range

where the resonance may occur.
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When comparing the model output with clinical data, one should keep several factors in mind. (1)

Our model is reconstructed from one particular ear, whereas the clinical data of Keefe et al (1993), for

example, are averaged over groups of infants with substantial inter-subject variability. Averaging across

a group may cancel out fine features of the response. For example, if different subjects have different

resonance frequencies (as seen in the individual curves in Fig. 4–9), the average will display a flatter,

smeared resonance, making it hard to compare the amplitude maximum and hard to draw conclusions

about the resonance frequency. (2) There are substantial differences between our measurements and

those of Keefe et al. (1993), which may be attributed to factors besides inter-subject variability, such as

differences  in the measurement  devices,  different  screening of the subjects before inclusion in  the

study, etc. (3) During the first months after birth, the ear response is highly age dependent (e.g., Holt et

al. 1991; Keefe et al. 1993), particularly for the first month of age. Hunter et al. (2010, Fig. 7) reported

that  within ~100 hours  after  birth  the reflectance response of the ear  alters by more than 50 % at

2000 Hz.  Our model is for a 22-day-old baby, while the data of Keefe et al. are  for somewhat older

babies, around 1 month old. A more compliant canal and TM in younger infants may increase the

admittance  magnitudes  and  shift  the  resonance  to  lower  frequencies. (4)  Biological  tissue  can  be

expected to have frequency-dependent behaviour  (e.g., Charlebois et al., 2013; Motallebzadeh et al.,

2013a), but in these models all material properties are assumed to be constant across frequencies. Such

potential frequency dependence should be taken into account when such models are refined.

4.4.3 Sensitivity analysis

As stated in Section 4.2.2.1.3, the material properties of the ear undergo significant alterations with

age, particularly in the first months of life, and their values are even less well known than for adults.

We performed two sets of analyses to investigate the sensitivity of the model outputs (in particular, the

maximum admittance values and corresponding frequencies) to the parameters. 
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The  Morris  method  enables  us  to  investigate  nonlinearity  of  the  effects  of  parameters,  and

interactions among them, as well as the overall importance of their effects on the output. Morris (1991)

stated that ‘where important nonlinearity or interaction exists, an experiment of any design that is small

relative to the number of inputs will generally not produce enough information to resolve the nature of

these effects’. However, combined with information about the nonlinearities that we obtain from the

one-parameter-at-a-time sensitivity analysis, the Morris method can provide preliminary suggestions

about the nature of these effects, at least for some parameters.

The results of the sensitivity analysis provide information about the relative importance of different

material parameters, and which ones should be focused on to obtain more accurate values. In addition,

the  results  provide  insight  into  the  sensitivity  of  the  admittance  data  to  possible  pathologies  or

abnormal anatomical variations. For instance, a pathological condition that alters the stiffness and mass

of the TM will result in significant changes in the admittance magnitude and resonance frequency. On

the other hand, admittance data cannot provide accurate information about parameters or components

that do not influence the admittance response significantly, such as the density of the ossicles.
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Chapter 5: Fluid-structure finite-element modelling of the
wideband acoustic input admittance of the newborn ear canal

and middle ear
To be submitted to the Journal of the Association for Research in Otolaryngology.

Preface
In the previous chapter, it was assumed that the wavelength of the sound at frequencies below 2 kHz is

long  enough  (in  comparison  with  model  dimensions)  that  we  could  assume  a  uniform  pressure

distribution throughout the ear canal and middle-ear cavity and across the TM surface. We have taken

fluid-structure  interactions  into  account  and  developed  a  finite-element  model  to  investigate  the

wideband  immittance  responses  of  the  ear  canal  and  middle  ear  in  newborns  and  extended  the

frequency range up to 10 kHz. The modelling provides insight into the mechanical behaviour of the

newborn ear and predicts features of the admittance responses that have not been observed in clinical

data, presumably because of the low frequency resolution of the measurements.
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Abstract
The  anatomical  differences  between  the  newborn  ear  and  the  adult  one  result  in  different  input-

admittance responses in newborns than in  adults. Taking into account fluid-structure interactions, we

have developed a finite-element model to investigate the wideband admittance responses of the ear

canal and middle ear in newborns for frequencies up to 10 kHz. Sensitivity analyses were performed to

investigate the contributions of the ear canal and middle ear to the overall admittance responses, as well

as the effects of the material parameters, measurement location and geometrical variability. The model

was  validated  by  comparison  with  two  sets  of  clinical  data.  The  model  provides  a  quantitative

understanding of the canal and middle ear resonances around 500 and 1800 kHz, respectively, and also

predicts the effects of the first resonance mode of the middle-ear cavity (around 6 kHz) as well as the

first and second standing-wave modes in the ear canal (around 7.2 and 9.6 kHz, respectively).

5.1 Introduction
Acoustic  input  immittance  provides  information  about  the  status  of  the  outer  and  middle  ear  by

providing a measure of the mobility of the ear components in response to the acoustic excitation. The

term immitance refers to either impedance Z or admittance Y. Impedance is calculated by dividing the

sound pressure by the volume velocity, and admittance is the reciprocal of impedance. Both quantities

are complex numbers, and they are usually reported as magnitudes and phases. The measurement can

be done either under ambient pressure or with a pressurized ear canal. The latter type of measurement

is referred to as tympanometry. Tympanometry is most often done with a 226-Hz probe tone. Multi-

frequency immittance measurements have been shown to improve the test sensitivity in some cases of

outer-ear and middle-ear pathology (e.g., Shahnaz and Polka, 1997). More information can be obtained

quickly over a broad frequency range by using a wideband stimulus (e.g., Keefe et al., 1993).

Although tympanometry provides reasonably easy-to-interpret results for adult ears, and normative
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data for adult responses are available, it has been shown to produce significantly different results in

infants less than seven months old (e.g., Paradise et al., 1976; Paradise, 1982; Holte et al., 1990). Holte

et  al.  (1991)  ,  Keefe et  al.  (1993) and Sanford and Feeney  (2008) ascribed the differences to  the

maturation of the ear canal and middle ear during the first postnatal months. For example, the newborn

ear-canal is surrounded by soft tissue along all of its length (McLellan and Webb 1957) and the middle-

ear air cavity becomes larger due to growth of the antrum and mastoid air cells throughout childhood

(Anson and Donaldson, 1992, p. 25).

At low frequencies, because of the long wavelengths of the sound in air (e.g., 170 mm at 2 kHz) in

comparison  with  the  canal  length  (~15 mm)  and  the  dimensions  of  the  middle-ear  air  cavity,  the

pressure is distributed almost uniformly inside the canal and the air cavity and across the TM. It is

therefore reasonable to treat the ear canal and air cavity as discrete (lumped) immittance elements (e.g.,

Shanks and Lilly, 1981; Stinson et al., 1982). Based on this assumption, we developed linear finite-

element  models  of  the  newborn  ear  canal  and  middle  ear  and  analyzed  their  responses  to  sound

frequencies up to 2 kHz (Motallebzadeh et al., 2013b, 2015). In those studies, sound pressure with an

amplitude of 0.2 Pa root mean square (80 dB SPL) was applied uniformly on the surfaces of the ear

canal and tympanic membrane; the volumes of air inside the canal and inside the middle-ear cavity

were modelled as two compliance elements and the individual contributions of the ear canal and middle

ear to the total immittance response of the ear were investigated.. 

At higher frequencies, however, the sound pressure is less uniform within the ear canal, across the

surface of the TM, and within the middle-ear cavity. Gilman and Dirks (1986), for example, listed the

sources of problems occurring in immittance measurements at higher frequencies: (1) standing waves

are produced in the ear canal by reflection of sound from the TM; (2) variation of the TM impedance

with frequency alters the positions of the standing waves; (3) the geometry of the canal (non-uniform

cross-section) and the angle of the TM affect the pressure distribution in very complicated ways at high
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frequencies; and (4)  evanescent waves (waves that decay exponentially within a short distance) are

present at both the TM and the probe-tip locations. For example, Stinson et al.  (1982) measured the

sound-pressure distribution  in  13  adult  ear  canals  between 5  and 10 kHz and reported  differences

between the SPL at the TM and the SPL at the canal entrance that were greater than 18 dB.

Energy reflectance has been proposed as an alternative to immittance that is insensitive to the probe

position  (e.g., Stinson et al., 1982; Keefe et al., 1993; Voss and Allen, 1994). Normative reflectance

responses for  adults  (e.g.,  Liu et  al.,  2008) and newborns  (e.g.,  Merchant  et  al.,  2010) have been

reported in the literature. However, energy-reflectance measurements are still sensitive to the insertion

depth of the probe tip inside the canal in newborns, because the soft tissue surrounding the ear canal

absorbs some portion of the energy.

The spatial  distribution of sound pressure in the ear canal has been investigated with analytical

approaches (e.g., Rabbitt, 1988; Stinson, 1985a; Stinson and Khanna, 1989) and also with 3-D finite-

element models that take into account the fluid-structure interactions (FSI). Day and Funnell  (1990)

presented a finite-element model with a very simplified geometry for the human ear canal and TM. Gan

et al.  developed more realistic models of the human ear and investigated the pressure distribution in

one chamber (ear canal, 2004), two chambers (canal and middle-ear cavity, 2006), and three chambers

(canal, cavity, and the fluid inside the cochlea, 2007 and 2009). Lee et al. (2010) modelled the effects

on the displacement of the umbo when the geometry of the middle-ear cavity was altered. Ihrle et al.

(2013) used FSI modelling to study the nonlinear behaviour of the middle ear in response to large static

pressures. Volandri et al. (2014) studied the modal frequencies inside the canal with two different FSI

approaches,  based  on  finite-element  shape  functions  that  were  either  standard  (polynomial)  or

‘generalized’ (non-polynomial). None of the previous analytical or numerical studies have considered

the effects of non-rigid ear-canal walls on the sound-pressure distribution and the interaction with the

components of the ear. 
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In this study, we extended our previously developed linear finite-element models of the newborn ear

canal and middle ear by taking into account the interactions between the ear structures and the non-

uniform sound pressures in the two chambers bounded by (a) the ear-canal wall and the TM, and (b) the

TM  and  the  walls  of  the  middle-ear  cavity.  This  model  enables  us  to  study  the  wideband  input

immitance as well as the spatial distribution of the sound pressure in the canal and the middle-ear

cavity. The results were validated in comparison with available clinical data. In addition, the influence

of the material properties, the measurement position and geometrical variations were explored.

5.2 Methods

2.1 3-D geometry

The  geometries  used  here  for  the  ear-canal  and  middle-ear  models  were  almost  the  same  as  in

Motallebzadeh et al. (2015), the only differences being small changes in the geometry of the canal, and

the fact that an explicit model of the middle-ear cavity was added to the model. The middle-ear cavity

includes  a  set  of  air-filled  and inter-connected  spaces  within  the  temporal  bone  consisting  of  the

tympanic  cavity,  aditus,  antrum,  and  mastoid  air  cells.  As  in  our  earlier  paper,  the  models  were

reconstructed from a clinical X-ray CT scan (GE LightSpeed16, Montréal Children’s Hospital) of a 22-

day-old newborn’s right ear. The scan had a pixel size of 0.187 mm and a slice thickness of 0.625 mm

with  a  0.125-mm overlap,  resulting in  a  slice spacing of  0.5 mm. Fie,  Tr3 and Fad (three  locally

developed  programs,  available  at  http://www.audilab.bme.mcgill.ca/sw/)  were  used  to  generate  a

surface model for each structure. Gmsh (http://www.geuz.org/gmsh/) was then used to generate a 3-D

solid model with tetrahedral elements, and the solid models of the various structures were combined

using Fad. The complete model (Fig. 5–1) consists of the soft tissue surrounding the lumen of the ear

canal;  the  tympanic  membrane  (TM),  malleus,  incus,  anterior  mallear  ligament  (AML),  and  two

bundles of the posterior incudal ligament (PIL); and the middle-ear cavity. More information about the
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thickness distribution assumed for the TM can be found in Motallebzadeh et al. (2015).

5.2.2 Material properties

The intensity of the probe tone in immittance measurements is low enough that linear elastic material

properties can be used for the ear. As described in Motallebzadeh et al.  (2015, Section 2.2), in the

absence of experimental data, ranges of plausible values were adopted for the material properties. The

material parameters of the ear components, listed in Table 4–1 are the same as in Motallebzadeh et al.

(2015).  The air  enclosed  in  the  ear  canal  and middle-ear  cavity was modelled  as  a  compressible,

inviscid medium with a density of 1.22 kg/m3 and a speed of sound within it of 340 m/s.

5.2.3 Boundary and loading conditions

The ear-canal surface was clamped where it is in contact with the probe tip, because the probe tip is

assumed to be securely held in the canal. The peripheral border of the TM and the ends of the AML and

PIL were clamped at  the  places  where  they connect  to  the temporal  bone,  and the  temporal-bone

surfaces, which delimit both the soft tissues and the middle-ear cavity, were also clamped.
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Fig. 5–1. Meshed geometry of the finite-element model. (a) Superior view of the overall model
including the ear canal, surrounding soft tissue, middle ear and middle-ear cavity. (The cavity is

presented as partially transparent to provide better visualization of other parts.) (b) Expanded medial
view of the middle-ear model, with the TM annulus almost parallel to the page. (ME = middle ear;
PIL = posterior incudal ligament; AML = anterior mallear ligament; PT = pars tensa; PF =  pars

flaccida; S = superior; I = inferior; M = medial; L = lateral; A = anterior; P = posterior). (c)
Expanded lateral view of the middle-ear cavity, with the TM annulus almost parallel to the page.



A harmonic velocity source with a constant amplitude of 0.00015 m/s was applied normal to the

medial surface of the probe tip (which had a surface area of 13.2 mm2) to represent an acoustic driver

delivering  the  sound energy into  the  ear  canal.  This  particular  velocity  value  was  set  in  order  to

generate a pressure of 80dB SPL (typical of clinical measurements) at 250 Hz in the baseline model.

The same input velocity was applied at frequencies from 25 to 10 000 Hz in 25-Hz steps and the input

admittance of the model was calculated for each frequency.

5.2.4 Finite-element mesh 

The volume elements of the mesh consisted of second-order TETRA10 tetrahedra and the interface

elements (between fluid and structural elements) consisted of second-order TRIA6 triangles. The ear-

canal model consisted of 45 991 elements (17 972 and 28 039 elements for the air in the canal and the

surrounding soft  tissues,  respectively).  The middle-ear mesh consisted of 29 430 elements (23 102,

440, 5 888 and 11 393 elements for the TM, the ligaments, the ossicles, and the volume of the middle-

ear cavity, respectively). 

There were at least 25 nodes along the canal length; for a wavelength of 34 mm at 10 kHz, this more

than satisfies the recommendation for at least 10 nodes per wavelength (e.g., Ihrle et al., 2013). 

5.2.5 Computational methods

5.2.5.1 Finite-element solver

Code_Aster (http://www.code-aster.org) version 11.5 was the finite-element solver in this study. It is

free (libre) and open-source software. The complex linear dynamic pressure responses of the models

were obtained using the DYNA_LINE_HARM module, which calculates the steady-state response of a

model  for  a  harmonic  excitation.  Simulations were performed on the supercomputer Guillimin of

McGill University. Guillimin is a part of the Compute Canada national High Performance Computing

platform.  It  is a  cluster of Intel Westmere EP Xeon X5650 and Intel Sandy Bridge EP E5-2670
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processors running under the CentOS 6 Linux distribution. The frequency range of 25–10 000 Hz was

divided into four jobs, each consisting of 100 frequencies in 25-Hz steps. We ran a maximum of 12

jobs at a time on nodes with 16 processors each, each job on a single processor. The run times were

about  450 minutes  per  job  for  a  total  of  1800 minutes  for  the  complete  frequency range  for  one

simulation scenario.

5.2.5.2 Implementation of fluid-structure interaction

Fluid-structure interactions are modelled by coupling the constitutive equations of the two domains,

fluid (air) and structure (ear components), on their interface surfaces.  At the interface there are two

conditions that should be satisfied: (1) the continuity of the normal stresses, and (2) the continuity of

the normal velocities. The simultaneous satisfaction of these two conditions couples the two domains.

The detailed mathematical formulation can be found elsewhere (e.g., Greffet, 2013).

5.2.5.3 Admittance calculation

The impedance components (resistance R and susceptance X) were calculated by dividing the real and

imaginary components of the pressure (usually taken from a node on the medial surface of the probe

tip) by the input volume velocity at each frequency. Admittance is the reciprocal of impedance and has

two  components, conductance  G  and  susceptance B.  The  admittance  magnitude  and  phase  were

calculated as √G2+B2 and Tan−1 (B/G ) , respectively.

5.2.6 Sensitivity analyses

In this study we performed four sensitivity analyses. First, all nine combinations of the three ear-canal

scenarios and three middle-ear scenarios (low-impedance, baseline and high-impedance for each) were

simulated to provide estimates of the contributions of the canal and middle-ear responses to the total

ear model. 
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Second, a traditional  one-parameter-at-a-time analysis was performed to investigate the effects of

these  parameters.  As  stated  in  Section 5.2.2,  plausible  ranges  were  established  for  the  material

parameters of the ear components. The range between the minimum and maximum values for each

parameter (shown in Table 1) was divided into 4 intervals so each parameter had p = 5 evenly spaced

values. 

Third, we evaluated the effect of the location of the pressure measurement point by examining the

pressures at 5 nodes in the canal, between 0.0 and 6.0 mm from the medial surface of the probe tip.

This procedure was suggested by the fact that Keefe et  al.  (1993) extended the microphone probe

approximately 3 mm beyond the surface of the foam eartip to minimize the effects of evanescent waves

between the source and the receiver.

Fourth, to provide an estimate of the effects of anatomical variability, the geometry of the model was

scaled by −10, −5, +5 and +10% in the x, y and z directions separately and also in all three directions

simultaneously. The x,  y and z directions represent the lateral-medial, posterior-anterior and superior-

inferior directions, respectively. 

5.2.7 Clinical data

As in our previous study, two sets of clinical data were used for comparison with the model. The first

set consisted of the impedance measurements obtained by Keefe et al. (1993) under ambient pressure in

a group of 1-month-old infants, for frequencies from 125 to 10 700 Hz with a 1/3-octave resolution.

The second set consisted of admittance measurements that we performed as part of another project, on

a group of 23 infants with ages between 14 and 28 days, for frequencies from 250 to 8 000 Hz with

1/12-octave resolution.  That  study was approved by the Institutional  Review Board of  the McGill

University Health  Centre.  The measurements  were made with  a  wideband tympanometry research

system  (WBTymp  3.2,  Interacoustics  Inc.).  All  measurements  except  one  were  performed  in  the
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Otolaryngology  out-patient  clinic  of  the  Montréal  Children’s  Hospital.  More  details  about  the

measurement procedure can be found in Pitaro (2013). 

5.3 Results

5.3.1 Sound-pressure and admittance responses

Fig. 5–2 shows the pressure distributions inside the canal and middle-ear cavity for frequencies of 6.1,

7.2 and 9.6 kHz, representing the first acoustic resonance of the middle-ear cavity and the first and

second standing-wave modes inside the canal, respectively, for the baseline model. The descriptions of

these features are provided  later in  this  section.  Fig. 5–3 shows the pressure (panel  a),  admittance

magnitude (panel b) and admittance phase (panel c) frequency responses for a measurement point at the

medial face of the probe tip. (Note that, since the admittance is proportional to the reciprocal of the

pressure,  minima  and  maxima  of  pressure  correspond  to  maxima  and  minima  of  the  admittance,

respectively.)  The  solid  black  curves  represent  the  responses  of  the  overall  model  with  baseline

parameters. The other curves represent the responses obtained when one or more parts of the model are

removed or made rigid. The dashed black curves represent the baseline model with open middle-ear

cavity. The red curves represent the responses of the simplest case, namely, a rigid canal with a rigid

TM. The green curves represent the behaviour of the non-rigid canal only – the TM is rigid and so the

middle ear does not contribute to the responses. The blue curves represent the responses of models with

a rigid canal and either an open middle-ear cavity (dashed curves) or a closed cavity (solid curves). In

Fig.5– 3a & b the upper limits of the pressure and admittance magnitude axes are limited to 1 Pa and

225 mm3/s/Pa, respectively, clipping some of the curves at some frequencies in order to provide better

visualization of other parts of the curves. An inset shows the admittance magnitudes with an expanded

vertical scale for frequencies below 1 kHz. Comparisons among these models reveal the contributions

of the different components to the overall response of the newborn ear. The important features are
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pointed out  by numbered arrows in the figure and can be summarized in  order from low to high

frequencies as follows, with the paragraph numbers corresponding to the arrow numbers. (The focus is

on panel b unless otherwise stated.)

1. A broad resonance is seen at frequencies around 650 Hz (green curve, inset figure) for a model
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Fig. 5–2. Posterior view of pressure distribution map inside the ear canal and middle-ear cavity in
response to a harmonic velocity source with a constant amplitude of 0.00015 m/s, normal to the medial

surface of the probe tip. (a) First resonance mode of the middle-ear cavity (6.1 kHz). (b) First
standing-wave mode inside the ear canal (7.2 kHz). (c) Second standing-wave mode inside the ear

canal (9.6 kHz).



with a rigid TM and compliant canal wall. The feature disappears when the canal wall is rigid

(red curve).

2. A resonance peak is seen at 1.05 kHz for the open-cavity models (dashed blue and dashed black

curves). Changing the canal wall from rigid (dashed blue curve) to compliant (dashed black

curve) does not alter the curve significantly in this frequency region (less than a 4% increase in

magnitude  and  25-Hz  shift  of  the  peak).  Having  a  closed  middle-ear  cavity  decreases  the

resonance magnitude by 5% and shifts it upward to 1.2 Hz (solid blue and black curves).

3. A sharp resonance occurs at 5.1 kHz in the models with a rigid TM, whether the canal walls are

rigid  or  compliant  (solid  red  and  green  curves,  respectively).  At  this  frequency  the  first

standing-wave mode of the model occurs inside the canal; the pressure has a node (minimum) at

the entrance (as seen at 5.1 kHz in panel a) and an anti-node (maximum) at the rigid medial end

of the canal.

4. Another resonance, which is very sharp, happens at 6.1 kHz in the models with closed cavity

(solid blue and black curves), representing the first resonance of the middle-ear cavity.  The

pressure distribution of this mode is shown in Fig. 5–2a.

5. Admittance maxima are seen at 7.2 kHz for the models with compliant canal wall and TM,

whether the cavity is open or closed (blue and black, dashed and solid curves). This represents

the first standing-wave mode in the canal, which occurs at 5.1 kHz when the TM is rigid (see

item 3 above).  The pressure distribution at  this  frequency is  presented in Fig. 5–2b for the

baseline model; there is a pressure node at the entrance of the canal and an anti-node at the

medial end. The models with open cavities have slightly higher magnitudes (around 10%) for

this feature (dashed blue and black curves).

6. Admittance minima are observable at frequencies in the vicinity of 8.2 kHz in the models with a

rigid  TM,  whether  the  canal  walls  are  rigid  or  compliant  (solid  red  and  green  curves,
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respectively).  At  this  frequency  the  second  standing-wave  modes  occur  inside  the  canal,

resulting  in  pressure  anti-nodes  at  both  the  entrance  and the  medial  end of  the  canal.  The

pressures in these two models have sharp peaks at this frequency (panel a).

7. Admittance minima are observable at frequencies in the vicinities of 9.6 kHz for the models

with compliant canal wall and TM, whether the cavity is open or closed (blue and black, dashed

and solid curves). This represents the second standing-wave mode in the canal, which occurs at

8.2 kHz when the TM is rigid. The models with open cavities have slightly lower magnitudes (a

difference of less than 10%) at this frequency (dashed blue and black curves). The pressure

distribution at 9.6 kHz is presented in Fig. 5–2c for the baseline model; there are pressure anti-
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Fig. 5–3. Pressure and admittance responses of the ear models at the medial surface of the probe tip.
(a) Pressure magnitudes. (b) Admittance magnitudes. (c) Phases. The inset shows a magnified view of

the admittance magnitudes at frequencies between 150 and 2000 Hz. Features indicated by arrows and
numbers are discussed in the text.



nodes at both the entrance and the medial end of the canal.

5.3.2 Sensitivity analysis

5.3.2.1 Combinations of low-, baseline-, and high-impedance models

Admittances  for  all  nine combinations  of  the three ear-canal  and three middle-ear  scenarios  (low-

impedance, baseline and high-impedance for each) are presented in Fig. 5–4. In this figure each pair

Ci-Mj corresponds to the combination of the canal model i and the middle-ear model j, and the indices

i = 1, 2 and 3 represent the low-impedance, baseline and high-impedance models, respectively.  In all

models with the low-impedance canal model (green curves), a peak with a magnitude of ~27 mm3/s/Pa

is visible at ~250 Hz. A drop and a subsequent rise of the phase response between 100 and 1000 Hz are

also  observable  for  these  models.  As  the  canal  becomes  stiffer  (red  and  blue  curves),  the  local

admittance peak at  low frequencies merges with that of the middle-ear resonance in the frequency

range of 1–2 kHz.  The resonances  of  the models  at  frequencies  in  the vicinity of 1.5 kHz are not

affected significantly by the conditions of the ear canal, so they may be taken to mainly represent the

middle-ear resonances. Around 7.2 kHz (the occurrence of the second standing-wave mode inside the

canal)  the  stiffer  canals  have  increased  admittance  magnitudes  but  the  stiffer  middle  ears  have

decreased magnitudes.

The phases of the models with stiffer canals (red and blue curves) remain close to 90° over a broader

frequency range below 1 kHz. Between 1 and 3 kHz, the canal condition does not effect the phase

response significantly, but the stiffer middle ears have higher phases (e.g., blue curves). Between 3 and

~7.8 kHz the stiffer canals show higher phase values, and above 7.8 kHz they have decreased phases.

The stiffness of the middle ear works in the opposite direction above 3 kHz: the stiffer middle ears

show lower phase values between 3 and ~7.8 kHz and higher values above 7.8 kHz. 
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5.3.2.2 Effects of material parameters

Since the main goal of clinical admittance measurements is to characterize the middle-ear response, the

features that we looked into were at frequencies in the vicinity of the middle-ear resonance (between 1

and 2 kHz). The results of the one-parameter-at-a-time sensitivity analysis are presented in Fig. 5–5, for

two features of the admittance (maximum magnitude in the upper panel and frequency of the maximum

in the lower panels).

 All  material  parameters  of  the  ear-canal  and  middle-ear  models  (i.e.,  stiffness,  damping  ratio,

density,  Poisson’s  ratio,  stapes  mass  and cochlear  load)  were included in  this  analysis.  Here only

parameters  with effects  greater than 1% on either  criterion are reported.  The parameters shown in
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Fig. 5–4. Admittance responses of the combinations of three ear-canal and three middle-ear models.
(a) Admittance magnitudes. (b) Phases. Each pair Ci-Mj corresponding to the combination of the canal
model i and the middle-ear model j; the indices i, j = 1, 2 and 3 represent the low-impedance, baseline

and high-impedance models, respectively.



Fig. 5–5 upper panel, in order of decreasing influence on the maximum admittance magnitude of the

ear model, are the damping ratio ζpt and Young’s modulus Ept of the pars tensa; the density ρst of all soft

tissues in the model; the Young’s modulus Est of the soft tissue surrounding the canal; and the Poisson’s

ratio  υ of  the  soft  tissues.  The  parameters  with  the  greatest  effects  on  the  maximum admittance

magnitude are  ζpt and  Ept with maximum deviations of 80 and 46%, respectively. The effects of the

other parameters are less than 7%. The coefficients of determination for these parameters are 0.88,

0.82, 0.99, 0.51 and 0.97, respectively, meaning that only Est has a notably nonlinear effect; it has an

effect mainly at its lowest value, which is only about one tenth as large as its baseline value.
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Fig. 5–5. One-variable-at-a-time sensitivity analysis, showing the influence of the material parameters
on the maximum admittance magnitudes (upper panel) and the corresponding frequencies (lower
panel) for the ear models. Ept = Young’s modulus of the pars tensa; ζpt = damping ratio of the pars

tensa; ρst = density of all soft tissues in the model; Est = Young’s modulus of soft tissue surrounding the
canal; υst = Poisson’s ratio of all soft tissues.



Most  of  the  material  parameters  have  very  small  effects  on  the  frequency  of  the  maximum

admittance in the frequency range of interest, as shown in Fig. 5–5 lower panel. The most important

parameter is the pars-tensa Young’s modulus Ept, shifting the maximum frequency by 250 Hz. The pars-

tensa damping ratio  ζpt and the soft-tissue density  ρst  shift the maximum frequency by 50   Hz. The

coefficients of determination are 0.96, 0.78 and 0.94 for the pars-tensa Young’s modulus Ept, damping

ratio  ζpt and soft-tissue density  ρst, indicating that  ζpt is the only parameter with a notably nonlinear

effect. Ept has an almost linear effect at values higher than 4 Mpa.

5.3.2.3 Effect of measurement location

To investigate the effects of  the distance between the source and the measurement point which was
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Fig. 5–6. Admittance responses of the measurements at 5 nodes along the ear canal: Nodes N1 to N5
are at 0.0, 1.5, 3.0, 4.5, 6.0 mm, respectively, from the medial surface of the probe tip. (a) Admittance

magnitude. (b) Phase.



taken to be 3 mm by Keefe et al. (1993), we recorded the admittance data at 5 nodes inside the canal at

distances of 0.0, 1.5, 3.0, 4.5 and 6.0 mm from the medial surface of the probe tip (Fig. 5–6). 

At  frequencies  below  1 kHz,  the  maximum  difference  between  the  admittance  magnitudes

calculated  at  0.0  and  6.0 mm  is  less  than  15%.  The  first  resonance  peak  not  only  decreases  in

magnitude  (from 52.6 mm3/s/Pa  at  0.0 mm to  46.2  at  6.0 mm (a  change  of  about  12%)  but  also

becomes broader and shifts from 1300 to 1400 Hz. The admittance peak due to the second standing-

wave mode inside the canal is also significantly affected by the choice of the measurement point: as the

distance  from the  driving  point  increases  from 0 to  6 mm,  the  admittance  peak in  the  vicinity of
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Fig. 5–7. Sensitivity analysis of geometry-variation effects in x, y and z (panels a, b and c, respectively)
and simultaneous variation in all directions (panel d) for −10, −5, +5 and +10% scaling of the

baseline geometry. Frequencies from 2.5 to 4 kHz are excluded because no significant deviations occur
in that range.



7.2 kHz decreases in magnitude (by up to 35%) and shifts to 8.2 kHz. 

5.3.2.4 Effect of geometry variations

In Fig. 5–7, panels a, b and c compare the geometry-variation effects in x, y, z , respectively, and panel

d presents the effects of simultaneous variation in all directions, for −10, −5, +5 and +10% scaling of

the  baseline  geometry.  Since  no significant  deviations  are  observable  between 2.5 and 4 kHz,  this

frequency range was excluded in order to provide better visualization of the other parts of the curves.

As described in Section 5.2.9, the x,  y and z directions mainly represent the lateral-medial, posterior-

anterior and superior-inferior directions, respectively. The most influential dimension is  x, because it

changes  the  canal  length  more  than  the  others  do.  As  the  canal  becomes  longer,  the  middle-ear

resonance shifts to lower frequencies (e.g., from 1.4 to 1.1 kHz for elongations from −10 to +10%).

The resonance magnitude is also increased by 30%, from 46.0 to 59.7 mm3/s/Pa. The resonance of the

middle-ear  cavity  (which  also  extends  mainly  in  the lateral-medial  direction)  also  shifts  to  lower

frequencies (from 6.2 kHz to 5.6 kHz, at −10 and +10% elongation, respectively). The elongations in

the other two directions do not affect the admittance response significantly, with a maximum magnitude

change of 15% and a maximum frequency shift of 25 Hz for elongations in the range of ±10%. The

combined scaling in all directions simultaneously (panel d) cancels out the effects of elongations in

each individual direction to some extent at the middle-ear resonance, where the resonance magnitude

changes by less than 1% (from 52.6 mm3/s/Pa to 52.1) and the corresponding frequency shifts by only

~200 Hz (from 1.4 to 1.2 kHz) for elongations from −10 to +10%. However, the effect on the middle-

ear-cavity resonance is significantly enhanced for simultaneous elongation from −10 to +10% in all

directions simultaneously, as the corresponding frequency shifts from 6.5 kHz to 5.3 kHz.

5.3.3 Comparison with clinical data

The  sensitivity  analyses  in  Sections 5.3.3.1  and  5.3.3.2  showed  that  the  canal  response  has  a
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pronounced effect on the total admittance of the ear at frequencies below 1000 Hz.  Comparing the

behaviour of the ear model for the nine combinations of canal and middle-ear parameters with two sets

of clinical data (described in Section 5.2.7), it was concluded that the main feature of the clinically

measured low-frequency response (a peak at  frequencies below 1 kHz due to the canal  resonance)

could be matched by assigning an intermediate impedance to the canal parameters (an intermediate

stiffness of  E = 80 kPa together with a high damping ratio of  ζ = 0.4). These are the same adjusted

parameters that we adopted in our previous model (Motallebzadeh et al. 2015). A comparison of such

an adjusted model with the clinical data is presented in Fig. 5–8. As shown in the inset figure,  the

resonance of the ear canal for the adjusted model happens at ~500 Hz (arrow 1). The corresponding

peak in the mean data of Keefe et al. (1996) is around 400 Hz and the first peaks of our individual

subjects are spread over the frequency range of 250–750 Hz, with most being around 250 Hz.

The resonance of the middle ear of the adjusted model results in a magnitude peak of 34.7 mm3/s/Pa

at 1550 Hz (arrow 2), and the width of the peak (as defined by the frequencies at which the magnitudes

are 90% of the peak value) is 450 Hz. The mean curve of Keefe et al. shows a resonance peak of

30.0 mm3/s/Pa at around 2 kHz. The resonances of our individual subjects are spread from about 1 to

2.5 kHz. Averaging the individual curves smears their peaks, resulting in a broad resonance peak (with

about  3  small  local  peaks)  between 1  and  2 kHz.  This  frequency range covers  the  corresponding

frequency of the adjusted model, with a good match in magnitude values. 

The adjusted model predicts low admittance magnitudes between the frequencies of 3 and 5 kHz.

This local minimum is visible in both sets of clinical data but with higher magnitudes than those of the

model.

The resonance of the middle-ear cavity of the model causes a sharp peak of admittance magnitude at

6.1 kHz (arrow 3), followed by a minimum, and then there is another local peak at around 7.2 kHz
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(arrow 4) due to the second standing-wave mode inside the ear canal (described in Section 5.3.1). The

individual-subject  responses show two local  peaks,  one between 4.5 and 5.5 kHz and another  one

between 5.6 and 7.2 kHz. The mean curve has two peaks in this frequency range, one at 5.0 kHz (arrow

3ʹ)  and  one  at  6.4 kHz  (arrow 4ʹ).  The  data  of  Keefe  et  al.,  however,  simply  show a  constantly

increasing admittance at frequencies higher than 4 kHz, presumably because the frequency resolution

of their measurements was not fine enough to exhibit such sharp features. 

The frequencies of the minima and maxima in the phase of the model closely match those of the

mean  phase  data  of  Keefe  et  al.  (1993),  but  differences  in  the  actual  phase  values  are  seen  The

differences are within about 20° up to about 2.5 kHz but they increase to  75° at 5 kHz (the second

maximum). The model phase shows a sharp notch ~6.1 kHz and rises at frequencies above 8.2 kHz.

This notch is not observable in the data of Keefe et al., where the phase continues to decrease after the

maximum at 5 kHz. The phase of the model is within the range of phases of the individual subjects of

our  clinical  data  at  all  frequencies,  except  for  the  sharp  notch  at  6.1 kHz.  The  first  rather  sharp

minimum of our mean phase occurs at 300 Hz; the corresponding minimum of the model is much more

shallow and happens at 550 Hz. The first maximum of the mean phase of our clinical data has a broad

peak at 800 kHz. The corresponding frequency in the model is 900 Hz, at a phase that is 10° lower. The

second minimum of the mean phase of the clinical data occurs at 2.1kHz. The corresponding frequency

in the model is 2.4 Hz at a phase that is 18° lower. Two peaks of the mean measured phase response are

seen at 4.3 and 5.7 kHz with a shallow notch between them. The corresponding features in the model

are two maxima at 5.2 and 6.4 kHz, with a sharp notch between them. The phases of these maxima for

the model are 8° lower and 3° higher than those of the mean phase of our clinical data, respectively; in

both model and clinical data the second maximum is lower than the first. 
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5.3.4 Comparison with non-FSI model

In Fig. 5–9 we compare the non-FSI model from our previous study (Motallebzadeh et al., 2015) and

the FSI model in this study. Three non-FSI scenarios (dashed lines), with the low-impedance, baseline

and  high-impedance  models, are  compared  with  the  corresponding  FSI models  (solid  lines)  at

frequencies  up  to  2.5 kHz,  somewhat  beyond  the  nominal  2-kHz frequency range  of  the  non-FSI

model. 

At frequencies up to 800 Hz, the non-FSI models show a good match with the corresponding FSI

models. However, at higher frequencies the FSI models start to deviate from the non-FSI models. In the

low-impedance FSI model (solid green curve), a small peak and a main peak are seen with magnitudes

of  63  and  130 mm3/s/Pa  at  ~925  and  1200 Hz,  respectively.  In  the  corresponding  non-FSI  model
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Fig. 5–8. Results for model with adjusted parameters and comparison with two sets of clinical data.
Admittance magnitudes (a) and phases (b) are presented for the 1-month-old data of Keefe et al. (1993)
and for data from this study, and for the output of the model with adjusted parameters. The inset shows

a magnified view of the admittance magnitudes at frequencies between 150 and 2000 Hz. Features
indicated by arrows and numbers are discussed in the text.



(dashed  green  curve),  these  features  are  shifted  to  950  and  1400 Hz  with  magnitudes  of  51  and

114 mm3/s/Pa, respectively, about 19% and 12% lower, respectively. In addition, in the FSI model the

resonance peak decreases smoothly up to 2.5 Hz but in the non-FSI model two shoulders appear on the

downslope of the main peak, at 1650 and 2200 Hz. The baseline FSI model (solid red curve) shows a

simple peak of 52 mm3/s/Pa at 1300 Hz, whereas in the non-FSI model (dashed red curve) a broad peak

is seen with a maximum of 44 mm3/s/Pa at 2000 Hz and a shoulder around 1600 Hz. The peak of the

high-impedance FSI model occurs at 1500 Hz with a magnitude of 32 mm3/s/Pa , while that of the non-

FSI model reaches its maximum of 29 mm3/s/Pa at 2100 Hz.

A good match between the phase responses of the FSI and non-FSI models remains up to 800 Hz

(maximum of 8° difference between the low-impedance models  at  800 Hz).  At higher frequencies,
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Fig. 5–9. Comparison between FSI and non-FSI models. Admittance magnitudes (a) and phases (b) are
presented for low-impedance (green), baseline (red) and high-impedance (blue) parameters.



however, although the sequences of rises and drops are similar in the corresponding models, the phase

values differ considerably. In the low-impedance models, the minimum at 950 Hz and maximum at

1050 Hz in the FSI model are shifted by 50 and 120 Hz, respectively, in the non-FSI model, and the

phases are very different at higher frequencies. In the stiffer models, the corresponding models deviate

by  up  to  60°  (baseline  models  at  1800 Hz)  and  45°  (high-impedance  models  at  2000 Hz).  The

inconsistency is presumably due to the treatment of the air spaces as lumped admittance elements in the

non-FSI models. In those models it was assumed that the wavelength of the sound at frequencies below

2 kHz is long enough (in comparison with the model dimensions) that we could assume a uniform

pressure  distribution  throughout  the  ear  canal  and  middle-ear  cavity  and  across  the  TM  surface.

However, the pressure is not uniform in spite of the long wave length, because of the interaction of the

incident and reflected sound waves: at 2 kHz the pressure at the entrance of the canal and the pressure

at the tympanic membrane already differ by more than 30%. 

5.4 Discussion

5.4.1 Pressure distribution inside the canal and middle-ear cavity

To the best of our knowledge, no experimental measurements have been reported for the spatial sound

pressure distribution within the newborn ear canal, but there have been several such studies of adult

humans  and  animals  (e.g.,  Stinson et  al.,  1982;  Stinson,  1985a,  1985b;  Gilman  and Dirks,  1986;

Stinson and Khanna, 1989; Bergevin and Olson, 2014). Since the ear canal is longer in adults (~25 mm

(Anson and Donaldson, 1992, p. 146)) than in newborns (~16 mm from the entrance to the umbo, in

our model), the onset of standing waves happens at lower frequencies in adult canals. For example,

Gilman and Dirks (1986) found a frequency of ~3.6 kHz for a standard ear simulator. In our model with

rigid canal wall and rigid TM, the first standing-wave mode, with one node (minimum pressure) at the

entrance and one anti-node (maximum pressure) at the medial end of the canal, occurred at 5.1 kHz.
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The second standing-wave mode is observed at 8.2 kHz, with anti-nodes at both the entrance and the

medial end of the canal. 

The first standing-wave mode of a cylindrical pipe, driven at the entrance and closed at the end,

happens at 5.1 kHz if its length is 16.6 mm (1/4 of the wavelength). The second standing-wave mode

for such a pipe occurs at 10.2 kHz, twice the first mode, much larger than the 8.2-kHz frequency of the

corresponding mode in our model with a realistically shaped but rigid ear canal and a rigid TM. To

explore  the  discrepancy  further,  we  also  modelled  waveguides  shaped  like  truncated  cones  with

entrance  diameters  of  4.4 mm (approximately  the  diameter  of  the  canal  in  newborns)  and  closed

terminations  of  diameter  9 mm (approximately the diameter  of  the TM), and different  lengths;  we

observed a standing-wave pattern at 5.1 kHz for a length of 12.4 mm; however, the second standing-

wave mode for such a cone with that length happens at 14.4 kHz, again much higher than 8.2 kHz.

These  simulations  show  that  a  realistically  shaped  but  rigid  newborn  ear  canal  cannot  be  well

approximated  by rigid  cylindrical  or  conical  waveguides.  The differences  can  be  attributed  to  the

variations of the cross-sectional area, the curvature along the length of the canal, and the angle of the

TM at the termination. These features presumably also affect the behaviour of the newborn canal when

its walls are not rigid.

The cavity in our model can be enveloped in a box of dimensions 23×18×15 mm. Treating such a

box-shaped cavity as being driven at one end of the longest dimension and closed at the other end, its

first standing-wave mode happens at 3.7 kHz. Since the middle-ear cavity is terminated by the TM

impedance, it can be expected to have its first resonance at a higher frequency (i.e., around 6.1 kHz in

our  model).  Due  to  the  limited  resolution  of  the  CT images  that  we  used  for  reconstructing  the

geometry of our model, the fine structures of the cavities (especially the mastoid  air cells) and their

narrow connections were modelled only very approximately. Moreover, since the air was modelled as
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an inviscid fluid, the viscous losses associated with sound-pressure propagation inside the connecting

passages was not modelled. Any energy absorption at the walls of the cavities was also not modelled.

Although damping would not be expected to shift the resonance frequency significantly, the absence of

damping does result in a resonance that is probably unrealistically sharp. The complex structure of the

middle-ear  cavity,  including the tympanic cavity,  aditus,  antrum, and mastoid air-cell  system  (e.g.,

Keefe, 2015), makes the exploration of the sound-pressure distribution very challenging. 

5.4.2 Model validation

Holte et al. (1991) and Keefe et al. (1993) found that the resonance of the ear canal in infants less than

1 month old occurs at frequencies around 450 Hz. The corresponding frequencies in our clinical data

for  individual  subjects  are  spread  over  the  frequency  range  of  250  to  750 Hz.  By  adjusting  the

parameters of the model within the proposed plausible ranges, we reproduced the resonance of the

canal at 500 Hz, consistent with the clinical data.

Due to their limited frequency range, Holte et al. (1991) did not observe the middle-ear resonance,

but they suggested that it is beyond 900 Hz. Keefe et al. (1993) found that the overall ear resonance

occurred in the vicinity of 1800 Hz. In our clinical measurements of individual subjects, the middle-ear

resonance occurs in the range of 1000 to 2500 Hz. Our model with the adjusted parameters presents a

clear resonance peak at 1.8 kHz, well placed among those of our individual subject responses and the

finding of Keefe et al. (1993).

Keefe et al. (1993) found an increase in the admittance magnitudes at frequencies higher than 4 kHz.

They suggested that this might be because of the resonance of the middle-ear cavity. However, their

frequency resolution was not high enough to distinguish this effect from the effect of the first standing-

wave mode in the canal, which also results in a peak of admittance magnitude. In our clinical data with

1/12-octave resolution, both the individual responses and the mean curve show two peaks, at 5.1 and
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6.3 kHz. These features, which may be attributable to the resonance of the middle-ear cavity and the

occurrence of the first standing-wave mode inside the ear canal, occurred in our model at 6.1 and

7.2 kHz, respectively.

Previous clinical reports (e.g., Holte et al., 1990; Keefe et al., 1993; Keefe and Levi, 1996; Sanford

and Feeney, 2008) concluded that the canal contribution to the total admittance response of the ear is

substantial  at  frequencies  below 1 kHz  and that  traditional  low-frequency tympanometry at  single

probe tones of 250, 650 and 1000 Hz does not reflect the middle-ear response. Our model provides a

description of the canal contribution to the overall admittance response of the newborn ear and shows

quantitatively that at frequencies around the middle-ear resonance (around 1.8 kHz) the admittance of

the newborn ear is mainly dominated by that of the middle ear. This model also predicts the features of

the  first  resonance  mode of  the  middle-ear  cavity (around 6 kHz)  as  well  as  the  first  and second

standing-wave modes in the ear canal (around 7.2 and 9.6 kHz, respectively). Wideband immittance

measurements with higher frequency resolution will be required to further investigate these features.
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Chapter 6: Conclusions and future work

6.1 Summary
In this thesis, the focus was on finite-element modelling relevant to the tympanometric response

of the newborn ear. In the first study, a model of non-linear viscoelastic tympanic-membrane tissue was

developed.  This  model  is  suitable  for  modelling large deformations  of  the  tympanic  membrane in

conditions  corresponding  to  the  pressurization  involved  in  tympanometry  (pressurized  immittance

measurements). In the second study, newborn ear-canal and middle-ear models were developed and

their responses to acoustic stimulation were explored for frequencies up to 2 kHz. In this frequency

range, corresponding to conventional multi-frequency tympanometry, the wavelength of sound is long

enough that the air spaces of the outer and middle ear are often modelled as lumped elements, which

allowed the individual responses of the components to be quantitatively differentiated.  In the third

study, taking into account the fluid-structure interaction between the sound pressure in the ear canal and

middle-ear cavity and the vibrations of the ear structures, we could extend the excitation frequency

range up to 10 kHz, corresponding to wideband tympanometry. The results of these studies provide

insight into the features present in clinical immittance measurements in newborns and infants.

6.2 Original contributions
1. The non-linear  viscoelastic  behaviour of the tympanic membrane was modelled.  The major

outcomes are:

a) A numerical approach to represent the non-linear and time-dependent behaviour of the TM

was proposed.

b) An iterative method was developed to identify material parameters by simultaneously fitting

stress-strain and relaxation tests.

c) This model could reproduce both the loading and unloading curves,  with the associated
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hysteresis, with a single set of parameters.

d) Taking  into  account  the  time-dependent  behaviour,  this  model  provides  a  quantitative

measure of the energy dissipation as a function of frequency and the effect of the loading

rate on the mechanical response of the TM.

e) Being  able  to  represent  the  TM response  to  large,  sweeping quasi-static  pressures,  this

model will facilitate numerical modelling of tympanometry.

2. The individual and combined input-immittance responses of newborn ear-canal and middle-ear

models to acoustic excitation were studied for frequencies up to 2 kHz. The major outcomes

are:

a) In the absence of experimental data for material properties of the newborn ear components,

ranges of plausible values were established for the material properties.

b) The  resonances  of  the  ear  canal  and  middle  ear  were  quantitatively  explored,  and  the

contribution of each component to the overall immittance response of the ear was identified.

c) The model was adjusted within the proposed plausible ranges of the material parameters and

found to agree quite well with two sets of clinical data: one set from the literature and one

set from our own clinical measurements.

d) Three sets of systematic sensitivity analyses were performed to investigate the material-

parameter effects on the output of the models.

e) The  model  provides  quantitative  support  for  the  suggestion  that  clinical  immittance

measurements  in  newborns  should  be  performed  at  frequencies  around  the  middle-ear

resonance in order to obtain useful information about the status of the middle ear.

3. Fluid-structure coupling between the air and the structures of the ear canal and middle ear was

included in a newborn ear model. The major outcomes are:

a) By taking into  account  the  fluid-structure  coupling,  the  excitation  frequency range was
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extended to 10 kHz, suitable to model clinical wideband immittance measurements.

b) The geometrical and compliance characteristics of the canal and middle ear and their effects

on the spatial pressure distributions and the measured admittance responses were explored.

c) The model was adjusted within the proposed plausible ranges of the material parameters and

found to agree quite well with two sets of clinical data.

d) The main features of standing waves inside the ear canal and the middle-ear cavity and their

contributions to the measured immittance data were explored.

e) Four sets of sensitivity analyses were performed to investigate the effects of the material

parameters, geometrical variations, and measurement locations on the immittance response.

f) The model provides further quantitative support for suggestions that middle-ear status in

newborns should be evaluated at frequencies around the middle-ear resonance.

g) The model provides interpretations for features that exist  in the clinical data but whose

significance was previously not clear.

6.3 Clinical application of this work
The problems with immittance measurements in newborns and infants at low frequencies have been

reported frequently in the literature, and they were attributed to the anatomical differences between

adults and newborns. The maturation effects have been studied in clinical measurements and it has

been suggested that, due to the contribution of the outer ear to the total input-admittance response at

low  frequencies  (because  of  its  compliant  characteristics  in  newborns  and  infants), admittance

measurement at the traditional probe-tone frequency of 226 Hz is not recommended for assessing the

middle-ear  status  of  infants  less  than  7  months  old.  However,  a  quantitative  understanding of  the

underlying mechanisms has been lacking.

Our numerical  models  of  the immittance  responses  of  the newborn ear  were able  to  provide  a
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quantitative description of the contribution of the ear canal and middle ear to the overall immittance

response. The models show that, in newborns,  the admittance of the ear is dominated by that of the

middle ear at frequencies around the middle-ear resonance (in the neighbourhood of 1.8 kHz), and is

rather  insensitive to  the mechanical  properties  of  the canal.  Due to  inter-subject  variability and to

changes  with  maturation,  the  resonance  frequency  will  be  different  in  different  babies,  and  the

modelling suggests that measurements at multiple frequencies in that neighbourhood can provide more

information about  the condition of the middle ear.  The model  also predicts  the effects  of the first

resonance mode of the middle-ear cavity (around 6 kHz) as well as the first and second standing-wave

modes in the ear canal (around 7.2 and 9.6 kHz, respectively) and their contributions to the admittance

response of the ear. Those features had not been identified explicitly in clinical measurements, but with

this new understanding they could be exploited to provide additional information about the ear. With

respect to the effects of static pressurization, the non-linear viscoelastic model presented here for the

tympanic membrane provides a quantitative approach to understanding the behaviour of the TM when

undergoing  large  deformations  at  low  frequencies  and  establishes  the  groundwork  for  modelling

clinical tympanometric measurements.

6.4 Future Work
Brief suggestions for major aspects of future work are provided here.

6.4.1 Experimental Work

No explicit data are available for the mechanical properties of the components of the newborn ear. We

established a priori estimates of parameters based on measurements reported for the adult ear or other

parts  of  the  body.  To  obtain  more  realistic  and  accurate  numerical  models  of  the  newborn  ear,

mechanical measurements should be performed on the structural components of newborn ears. Our

sensitivity analyses provided information about the relative importance of different material parameters
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and which ones should be focused on in order to obtain more realistic models. Although access to

newborn cadavers  is  very limited,  there  are  alternative  methods  that  might  be  used  to  obtain  the

mechanical properties of those structures, such as ultrasound methods.

There have been  experimental studies on the pressure distribution inside the ear canals of adults.

However,  such  measurements  have  not  been  performed  on  newborn  ear  canals.  Those  kind  of

experimental  measurements  would  provide  more  information  about  the  ear’s  transfer  functions  in

newborns, but they would need to be performed on newborn temporal bones.

Available clinical immittance data in newborns and infants are limited to a few studies, mainly with

low frequency resolutions. More measurements are required to understand the inter-subject variability

and  the  maturation  effects  on  the  acoustical  behaviour  of  the  newborn  ear,  and  better  frequency

resolution is required.

There  are  measurements  of  the  vibrational  characteristics  of  the  adult  ear  components

(particularly on the TM) in the literature. However, no studies have been conducted to quantify similar

characteristics in newborns and infants. Such measurements could be performed on newborn temporal

bones, although access to samples is very limited. Improved technology might make it possible to make

such measurements in vivo.

6.4.2 Finite-Element Modelling

In this thesis we report finite-element modelling studies. However, more remains to be explored. A few

suggestions for future finite-element modelling are listed here.

We proposed a numerical model to represent the non-linear and time-dependent behaviour of the

TM. Similar data to what we used for our model are available in the literature, for example, for the

middle-ear ligaments  (e.g., Cheng and Gan, 2008; Gan et al., 2011). Non-linear and time-dependent

numerical  models  for  other  components  of  the  ear  are  required  to  simulate  pressurized  wideband
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immittance measurements, particularly for the soft tissue surrounding the canal, which also undergoes

large deformations. The time-dependent behaviour of this tissue and its contribution to the absorbed

energy has not been studied yet. 

In  pressurized immittance  measurements,  acoustical  pressures  with  low  amplitudes  but  high

frequencies are introduced to the canal in the presence of high quasi-static pressures. We proposed a

numerical  approach to  model  the  TM behaviour  at  large  quasi-static  deformations.  The linear  and

dynamic behaviour of the canal and middle-ear models were studied in Chapters 4 and 5 in response to

low-amplitude acoustical loads. A more realistic model of ear components should be able to model the

combination of these two loading conditions.

Due to the low resolution of the CT images, we could not include very fine components of the ear

structure, such as the stapes, stapedial annular ligament, etc. Sets of micro CT and histological images,

with higher resolutions, are required for a more realistic geometry of the newborn ear.

Our newborn outer- and middle-ear models were constructed from a CT scan for a single subject. To

investigate the effects of inter-subject variability, as well as maturation effects, more three-dimensional

models of newborns of different ages should be used for numerical simulations. The effects of inter-

subject  variability might  also be investigated by performing systematic  sensitivity analyses  on the

effects of geometrical variability.

The acoustic pressure distribution inside the canal, across the TM surface, and in the middle-ear

cavity is highly frequency-dependent. Some of the main features of the pressure maps were studied in

this thesis. More work remains to provide better insight into the sound-pressure distributions within the

ear. The pressure distribution over the ear components directly affects the input immittance response of

the ear.
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