
3-D MESH GENERATION FOR 

FINITE-ELEMENT MODELLING OF 

COMPLEX NATURAL STRUCTURES 

Hengjin Liu 

Biomedical Engineering Department 

Mc Gill University 

May 2006 

A Thesis submitted to the F aculty of Graduate Studies and Research 

in partial fulfilment of the requirements for the degree of 

Master of Engineering 

© Hengjin Liu 2006 



1+1 Library and 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page cou nt, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-28608-1 
Our file Notre référence 
ISBN: 978-0-494-28608-1 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



ABSTRACT 

The finite-element method is based on the discretization of a distributed system. The 

system subdivision process is called mesh generation. The number, order, geometric 

characteristics (shape, size and orientation) and physical characteristics (material 

properties, boundary conditions and load conditions) of elements in the mesh will affect 

the accuracy of the finite-e1ement solution. The objective of this project is to establish a 

number of criteria for evaluating 3-D mesh-generation software, and to select the 3-D 

mesh generator that is most suitable for use in our software pipeline for modelling and 

simulation of complex natural structures. The evaluation criteria for this project include: 

ability to preserve the surface mesh during 3-D mesh generation; mesh quality; 

robustness; time efficiency; and cost. The mesh quality is assessed by visualization 

methods; histograms of the shape qualities and sizes of elements; solution residuals; 

condition numbers; and cIoseness to the exact solution as estimated by a convergence 

curve. Four unstructured mesh-generation programmes (GiD, Gmsh, GRUMMP and 

TetGen) have been evaluated. A thin block and three structures (one ligament and two 

ossicIes) of the middle ear were chosen to be the models for the evaluation. A programme 

was developed to convert the surface definitions describing the models to the native file 

formats of the mesh-generation programmes, to verify that the surface meshes of these 

models could be successfully imported into the mesh-generation programmes, and to 

verify that the resuIting volume meshes are topologically correct. The results of the 

evaluation indicate that the mean value of the shape qualities of elements, the root mean 

square of the solution residuals, and the cIoseness to the exact solution are good 

indicators of the overall mesh quality. The Gmsh programme is finally selected as the 

best 3-D mesh generator for the purposes of our software pipeline. 
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, , 
RESUME 

La méthode d'éléments finis est basée sur la discrétisation d'un système distribué. Le 

processus de subdivision d'un système s'appelle la génération de mailles. Le nombre, 

l'ordre, les caractéristiques géométriques (forme, taille et orientation) ainsi que les 

caractéristiques physiques (propriétés matérielles, conditions aux extrémités et conditions 

de charges) des éléments de la maille affecteront l'exactitude de la solution d'éléments 

finis. L'objectif de ce projet est d'établir un certain nombre de critères pour évaluer le 

logiciel de la génération de mailles 3-D, et de choisir le générateur de maiIles 3-D le plus 

approprié à notre chaine de logiciels pour la modélisation et la simulation des structures 

complexes. Les critères d'évaluation pour ce projet incluent: la capacité de préserver la 

maille extérieure pendant la génération de la maille 3-D; la qualité de la maille; la 

robustesse; l'optimisation du temps; et le coût. La qualité de la maille est évaluée par des 

méthodes de visualisation; des histogrammes des qualités de forme et des tailles des 

éléments; des résiduels de solution; des nombres de condition; et la proximité à la 

solution exacte telle qu'estimée par une courbe de convergence. Quatre programmes de 

génération de mailles non structurés (GiD, Gmsh, GRUMMP et TetGen) ont été évalués. 

Un bloc mince et trois structures (un ligament et deux osselets) de l'oreille moyenne ont 

été choisis pour être les modèles d'évaluation. Un programme a été développé pour 

convertir les définitions des surfaces du modèle en formats de fichier spécifiques aux 

programmes de génération de maiIles, pour vérifier que les mailles extérieures de ces 

modèles pourraient être importées avec succès dans les programmes de génération de 

maille, et pour vérifier que les mailles de volume ainsi créées sont topologiquement 

correctes. Les résultats de l'évaluation indiquent que la valeur moyenne des qualités de la 

forme des éléments, la moyenne quadratique des résiduels de solution, et la proximité à la 

solution exacte sont de bons indicateurs de la qualité globale de la maille. Le programme 

de Gmsh est finalement choisi comme étant le meilleur générateur de mailles 3-D pour 

notre chaine de logiciels. 
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CHAPTERI 

INTRODUCTION 

1.1 Background 

The finite-element method is a general tool for solving various physical problems. The 

finite-element method is based on the sub-division of a continuum into a finite number of 

discrete elements. The solution obtained will, in general, be only an approximation to the 

exact solution, which is rarely available when the continuum is an arbitrarily complex 

shape. The process of sub-division of the continuum is called mesh generation. The 

number, order, geometric characteristics (shape, size and orientation) and physical 

characteristics (material properties, boundary conditions and load conditions) of elements 

in the meshes will affect the computer storage requirements, the computation time and the 

accuracy of the finite-element analysis (Zienkiewicz and Taylor 2000). 

Mesh-generation methods can roughly classified into structured and unstructured. 

An unstructured mesh is better for fitting a complex boundary than a structured mesh is. 

Therefore, unstructured mesh-generation methods have gained more attention in 

biome di cal applications where the shapes of structures are arbitrarily complex. Selection 

of a unstructured mesh generator for the se applications involves an assessment of the 

programme with respect not only to good quality, robustness, time efficiency and cost, 

but also to specific requirements of the applications. 

Researchers have been attempting to obtain a good mesh-quality measure for 

mesh generation and mesh improvement. Most mesh-quality measures are dependent on 

geometric characteristics, i.e., the shapes, sizes and orientations of elements. With the 

availability of the finite-element solution, more accurate finite-element mesh-quality 

measures have been proposed that are dependent on not only the geometric characteristics 

but also the physical characteristics of elements. These mesh-quality measures are usually 

expressed in terms of finite-element solution errors that can be divided into two groups, a 

priori error estimates (solution residuals, condition numbers and closeness to the exact 

solution as estimated by the convergence curve), and a posteriori error estimates. Both 
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kinds of error estimate can be used to steer an adaptive mesh-refinement process so that a 

required accuracy of the finite-element solution can be reached. 

1.2 Motivation 

A number of programmes have been developed by Funnell (2006) in our Auditory 

Mechanics Laboratory for finite-element modelling and simulation of complex natural 

structures. These programmes are illustrated in Figure 1.1, where Fie is a programme to 

segment contours in a stack of images, Tr3 is a programme for triangulating 3-D surface 

meshes from a series of cross-sectional contours, Tr4 is programme for tetrahedral mesh 

generation, Fad is a programme for pre-processing finite-element meshes, and Fod is a 

programme for post-processing meshes. Sap (Bathe et al. 1974; Funnell 2006) is a 

programme for finite-element simulation. It was originally developed at UC Berkeley and 

has been modified over the years by Dr. WRJ Funnell, including the addition of 

tetrahedral elements and changes to the handling of shell elements. 

L------r_-.J----
m
-, Tr4 f--n--- L------r--' 

3-D 
mesh-generation 

software 

Figure 1.1 Finite-element modeling and simulation pipeline 

in Auditory Mechanics Laboratory 

Tr4 is a bottleneck in this pipeline because it sometimes fails in the 

mesh-generation process. To address the problem, a former student compared Tr4 with 

two 3-D mesh-generation programmes, GiD (CIMNE Ine. 2005) and GRUMMP 

(Ollivier-Gooch 2005). His conclusion was that GiD would be a good choice to replace 

Tr4 as the 3-D mesh generation software in Figure 1.1 (Siah 2002). 

This project continues Siah's investigation of 3-D mesh-generation software by 

carefully evaluating the finite-element mesh quality with the aim at achieving a reliable 

and accurate finite-element solution. In addtion to GiD and GRUMMP, Gmsh (Geuzain 

and Remacle 2005) and TetGen (Hang 2005a) were selected for evaluation. A set of 
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criteria for assessing mesh quality are proposed for selection of the 3-D mesh generation 

programme that is most suitable for replacing Tr4 and streamlining the finite-element 

modelling and simulation pipeline in our lab. 

1.3 Thesis ontline 

Mesh-generation methods and the detailed descriptions of four mesh-generation methods 

are briefly reviewed in Chapter 2. Mesh-quality measures that are based on the geometric 

characteristics of elements are discussed in Chapter 3. Mesh-quality measures based on 

both the geometric characteristics and the physical characteristics of elements are 

discussed in Chapter 4. The criteria for the evaluation of 3-D mesh-generation software, 

and the models and methods used for the present evaluation, are described in Chapter 5. 

The results of the evaluation of the candidate 3-D mesh-generation software are presented 

and discussed in Chapter 6. Finally, conclusions are summarized and future work is 

suggested in Chapter 7. 
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CHAPTER2 

FINITE-ELEMENT MESH GENERATION 

2.1 Introduction 

A number of comprehensive reviews have been published in the literature about 

finite-element mesh generation (e.g., Cavendish et al. 1985; Boubez et al. 1986a,b; Field 

1995; Ho-Le 1998; Frey and George 2000; Lo 2002). These reviews covered most 

mesh-generation methods in two and three dimensions. As the present project focuses on 

3-D unstructured mesh-generation methods for complex natural structures, this chapter 

emphasizes the discussion of four particular mesh-generation methods rather than ail of 

them. 

Surface mesh-generation methods are discussed in Section 2.2. Volume 

mesh-generation methods are discussed in Section 2.3. Conclusions are given in Section 

2.4. 

2.2 Surface mesh generation 

In biome di cal fields, methods like computed tomography (CT), magnetic resonance 

imaging (MRI), ultrasound imaging and histological sections make it possible to obtain 

pl anar cross sections ofbiological objects. The contours (or boundaries) of the structures 

are created from the planar cross sections by segmentation. Surface meshes are 

reconstructed from these sets of contours for visualization of objects or for generation of 

volume meshes for finite-element analysis. 

Surface mesh generation is a process that generates boundary triangular meshes 

for objects of interest by triangulating the contours of adjacent cross sections. The process 

is composed of generation of the side surface mesh, and triangulation of the top and 

botlom contours. The most important part of the process is to generate the side surface 

mesh, i.e., the mesh joining the various cross sections. A number of algorithms for the 

triangulation of two adjacent sections have been proposed in the literature (e.g., Fuchs et 

al. 1977; Shantz 1981; Ekoule et al. 1991; Meyers et al. 1992; Chae and Lee 1999). 
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Overall, surface mesh generation requires a solution to the correspondence, ttling and 

branching problems. 

The correspondence problem involves fin ding the correct connections between 

the contours of adjacent sections when there are multiple contours in a section. Soroka 

(1981) and Meyers et al. (1992) approximate the contours by ellipses and then assemble 

them into cylinders to determine the correspondence, while Wang and Aggarwal (1986) 

uses the overlapping areas between contours of adjacent sections. 

The tiling problem involves generating a triangular mesh from the points on 

contours of adjacent sections. The problem becomes more difficult when two adjacent 

contours are very different. Optimisation of a metric is a common method to resolve this 

problem. The metrics proposed include maximum enclosing volume (Keppel 1975), 

minimum surface area (Fuchs et al. 1977; Sloan and Painter 1988), minimum edge-length 

(Christiansen and Sederberg 1978; Ekoule et al. 1991), and minimum triangle narrowness 

(FunnellI984). 

The branching problem arises when an object is represented by a different number 

of contours in adjacent sections, for example, a blood vessel bifurcating into two 

branches. Christiansen and Sederberg (1978) and Shantz (1981) proposed to dip down the 

middle of the bridge to model the saddle point of the branching region. Ekoule et al. 

(1991) proposed to form an intermediate contour between two sections for the case of 

one-to-many branching. The second method produces less distortion than the first 

method. 

2.3 Volume mesh generation 

Most 2-D unstructured mesh-generation methods have successfully been extended to 

three dimensions with a careful consideration of problems arising in three dimensions. In 

this section, four 3-D unstructured mesh-generation methods are reviewed. For ease of 

exposition, examples in two dimensions are given to help understand the similar ideas 

implemented in three dimensions. 
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2.3.1 Delaunay-based method 

Delaunay (1934) suggested the Delaunay criterion, which simply states that no node is 

contained within the circumscribed circles of any triangles within the mesh. As a resuIt, it 

is sometimes called the "empty-circle" criterion in two dimensions. Figure 2.1 illustrates 

that the vertex P violates the empty-circle criterion because it is located inside the 

solid-line circle enclosing the triangle L1 ABC. The same is true for vertex C because it is 

located inside the dotted-line circle enclosing the triangle L1 APB . 

" 
" 

A~----------------------~" 

Figure 2.1 Delaunay criterion 

It was not until the late 1970's that the Delaunay criterion was utilized to develop 

algorithms for mesh generation. A number of algorithms have been proposed to 

implement the Delaunay triangulation, e.g., the flipping algorithm (Lawson 1977), the 

incremental point-insertion algorithm (Watson 1981; Bowyer 1981), the 

divide-and-conquer algorithm (Lee and Schachter 1980), and the sweep-line/plane 

algorithm (Fortune 1987 and O'Rourke 1993). As a typical Delaunay-based method, the 

incremental point-insertion algorithm is discussed in the next section to show the basic 

idea of the Delaunay triangulation. 
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2.3.1.1 The incremental point-insertion algorithm 

The general steps of the incremental point-insertion algorithm (Bowyer 1981; Watson 

1981) are illustrated in Figure 2.2. The algorithm implemented in three dimensions 

follows exactly the same steps except that edge, triangle and circumscribed circle are 

replaced by triangle facet, tetrahedron and circumscribed sphere, respectively. 

The steps ofthis algorithm can be summarized as follows: 

• Create a box enclosing the entire domain (Figure 2.2a). 

• Insert the boundary nodes to form an initial Delaunay triangulation. Figure 

2.2b illustrates the triangulation after inserting one node. Figure 2.2c shows 

the completed initial triangulation. 

• Recover the boundary edges and delete the outside triangles (Figure 2.2d). 

• Insert new nodes incrementally inside the initial triangulation (Figure 2.2e). 

The number of new nodes depends on the desired element size. The Delaunay 

triangulation process terminates when ail new nodes have been inserted. 

Three important issues should be considered in the process. They are the Delaunay 

kemel, the node insertion, and the boundary recovery. 
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(a) 

(b) 

(e) 

Figure 2.2 The incrementa/ point-insertion a/gorithm (afler Owen 1998) 
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2.3.1.2 Delaunay kernel 

The mesh is re-triangulated locally as each new node is introduced while maintaining the 

Delaunay criterion. This local triangulation is usually called the Delaunay kemel and it is 

composed of the following three steps. 

• Determine the existing triangles for which the circumscribed circles contain 

the new node (Figure 2.3a). 

• Remove the triangles found in the previous step to form an empty cavity 

(Figure 2.3b). 

• Generate new triangles by linking the new no de to vertices of the empty 

cavity (Figure 2.3c). 

(a) 

(b) 

(c) 

Figure 2.3 Delaunay kernel 
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2.3.1.3 Node insertion 

A number of approaches have been proposed to address where the new nodes are 

inserted. The first and simple st approach is to define the nodes from a regular grid of 

nodes covering the domain at a specified nodal density. The second approach is to 

recursively insert the nodes at the centroids of triangles or tetrahedra provided the 

underlying sizing function is not violated (Herme1ine 1982; Weatherill and Hasson 1994). 

The third approach is to insert nodes at the centres of the circumscribed circles enclosing 

the triangle or the circumscribed spheres enclosing the tetrahedron (Homles and Snyder 

1988; Chew 1989; Ruppert 1992). The fourth approach is to insert the new nodes along 

the existing internaI edges at a specified spacing (Borouchaki et al. 1995; George 1997; 

Simulog Technologies Inc. 2005). The fifth approach (Marcum and Weatherilll995) is to 

determine the positions of the new nodes first using the advancing-front method that is 

discussed in Section 2.3.2, and then insert the nodes using a Delaunay kernel. 

2.3.1.4 Boundary recovery 

There is no guarantee that the boundary edges are maintained in the initial Delaunay 

triangulation of the boundary nodes. Figure 2.4 shows an example in which sorne of the 

boundary edges, represented by thick dotted line segments, are missing in the initial 

triangulation. Therefore, an extra step is required to recover the surface triangulation. 

Figure 2.4 Missing boundary edges in the initial triangulation (afler Owen 1998) 

The missing boundary edges can be recovered by iteratively swapping triangle 

edges as illustrated in Figure 2.5(a) to (d) where two thick line segments are the missing 
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edges finally recovered. However, the process becomes more complex in three 

dimensions since there is no guarantee that the boundary surface mesh can be recovered 

by just swapping the related edges in the boundary surface mesh. An additional recovery 

of the surface triangular facets is required through tetrahedral transformations (Weatherill 

1996). After recovering the boundary entities, such a mesh is no longer in conformance 

with the Delaunay criterion. 

(a) (b) (c) (d) 

Figure 2.5 Boundary edges (thick Une segments) are recovered by diagonal swaps 

2.3.1.5 Discussion 

The Delaunay-based method is an efficient mesh-generation method because it is possible 

to construct several elements when each new node is inserted. However, the Delaunay 

triangulation may give rise to slivers as shown in Figure 2.6 where three vertices of the 

tetrahedron T ABCD are located on the horizontal circle and the fourth vertex D is located a 

very small distance ~d above the circle. Having very small volumes, the slivers are not 

good for finite-element analysis and should be avoided. 

As boundary recovery is necessary in the Delaunay-based triangulation, the mesh 

may not satisfy the Delaunay criterion everywhere. 

Figure 2.6 SUver 
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2.3.2 Advancing-front method 

The advancing-front method was first investigated in two dimensions by George (1971), 

and then extended to three dimensions by Lo (1985). This method is a very powerful 

unstructured mesh-generation method for triangulating a domain of arbitrary shape, and it 

is a strong competitor for the Delaunay-based method. 

2.3.2.1 Pro cess of advancing-front method 

The advancing-front method starts from the boundary entities, i.e., the initial fronts. It 

advances each time an element is constructed, and updates the fronts and elements 

continuously throughout the process. Typically, the process is summarized as the 

following three major steps: 

1. Front initialization: The domain is discretized into the boundary edges as 

shown in Figure 2.7(a). These edges are the initial fronts and are stored in a 

front list. 

2. Element formulation: This step involves the selection of the active front and 

the selection of the best new point. The discussion here is partial and more 

details are given in the next sections. 

• A front is selected as the active front to start the triangulation. 

• The method for selection of the best new point for the associated active 

front is to form a triangle satisfying the desired shape and size criterion, as 

shown in Figure 2.7(b). The point may be an existing point K in the 

current mesh if it falls within the circle of which the best point is the 

centre and the radius satisfies the size criterion, as shown in Figure 2.7(c). 

The new triangle, as shown in Figure 2.7(d), is formed by the point and the 

active front. The new triangle is accepted if it does not intersect with any 

other triangles. 

3. Front updating: The new triangle is then added to the element list. The current 

active front is removed from the front list. The front li st is updated on the 

basis of whether the new triangle introduced new edges. 

Steps 2 and 3 are repeated and the whole meshing process terminates when the 

front list is empty. The resulting mesh is illustrated in Figure 2.7(e). 
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(a) 

A B 
(b) 

K 

(c) 

(d) 

(e) 

Figure 2. 7 The advancing-front method (after Owen 1998) 

2.3.2.2 Selection of an active front 

The mesh elements are created based on the front entities. The objective of the selection 
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of an active front is to generate a good mesh without a possible failure in mesh 

generation. The operation is not a purely local process but involves anticipation of the 

front evolution. AlI fronts are taken into consideration and put in order before the 

selection of the active front. Lohner (1996) suggested that the selection should lead to the 

smalIest new element. 

2.3.2.3 Selection of the best point 

The selection of the best point aims to form an element with high quality, with the 

associated active front. The selection should also satisfy the local element size 

requirement (peraire et al. 1992; Jin and Tanner 1993). In Figure 2.8, the best point PO is 

on normal line passing though the centroid of the active front to form an equilateral 

triangle. An existing point can replace the best point if it is inside the circle with its centre 

at PO and with a radius of r. The radius depends on the desired element size. Three points, 

PI, P2 and P3 shown in Figure 2.8, on the normal line inside the circle are stored in a 

stack in case no best point can be found later during the mesh-generation process. The 

programme will revert back to this stage and the next candidate for the best point will be 

selected to continue the triangulation. 

A B 

Figure 2.8 The best points associated with a front AB 

2.3.2.4 Discussion 

The major advantage of the advancing-front method is that the domain boundary always 
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remains the same throughout the mesh-generation process. However, a successful 

generation is not guaranteed for any arbitrary domain. A typical case of failure is 

illustrated in Figure 2.9 in which the large elements cross over the small elements when 

two very dissimilar fronts are merging together. In this case, the point C is the best point 

for the small front AB while the existing point G is the best point for the large front ED. 

Unfortunately, in this example, the new triangles MBC and AEDG cannot be aceepted 

beeause they both interseet with current triangles in the mesh. 

H 

D~----------r-~~--------~E 

F 

Figure 2.9 Merging two very dissimilar fronts 

2.3.3 Quadtree/octree-based method 

The quadtree/oetree-based mesh-generation method has been a research topie in the past 

two decades sinee Yerry and Shephard (1983 & 1984) initiated the application of 

quadtree/oetree encoding to mesh generation. Quadtree encoding refers to tree data 

structures that identifY the nested decompositions of a quadrilateral into four quadrants in 

two dimensions. A hexahedron is decomposed into eight octants for octree encoding in 

three dimensions. This method generates quadrilaterals in the interior of the boundary 
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domain and triangles near to the boundary. Those quadrilaterals could be further broken 

down into triangles so that aIl elements in the mesh are triangular elements for 

finite-element analysis (Shephard and Georges 1991). 

2.3.3.1 Pro cess of quadtree-based method 

A typical process of the quadtree-based method is composed of the following three steps: 

• Create a bounding box that encloses the object domain to be meshed (Figure 

2.1 Oa). 

• Construct the tree structure by recursively sub-dividing the box into quadrants 

depending on the intersections between quadrant boundaries and object 

boundary entities (Figure 2.10b). 

• If the quadrant lies entirely outside the domain, then it is rejected. 

• If the quadrant lies entirely inside the domain, then it requires no further 

subdivision. 

• If the quadrant lies partially inside and partially outside the domain, then it 

may or may not require a further subdivision depending on whether the 

user-defined refinement level has been reached. 

• Create the triangular mesh by dividing the quadrants (Figure 2.1 Oc). 
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Figure 2.10 The quadtree-based method (after Owen 1998) 

2.3.3.2 Discussion 

The quadtree/octree-based method is able to guarantee finite-element meshes with 

well-shaped elements and to generate graded finite-element meshes for objects. However, 

a small number of very large elements may be needed for the interior while a much larger 

number of much smaller elements is required for a satisfactory geometric representation 

of the boundary. As a result, the transition between the neighbouring quadrants may not 

be smooth because their side lengths are very different, and the resulting mesh is not 

conforming. 
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2.3.4 Coring method 

Thacker (1980) first proposed this idea for mesh generation in two dimensions. Boubez et 

al. (1986a,b) and Funnell & Funnell (1988) in our lab extended this idea to three 

dimensions by developing Tr4 (Funnell 2006), a volume mesh generator. 

In this method, a grid of regular prisms is constructed in the interior of the 

domain. Each prism in the core is divided into a number of tetrahedral elements with 

good quality, leaving a relatively sm aIl region around the boundary which is to be 

discretized into tetrahedral elements. As a result, the quality of the tetrahedral elements 

near the boundary will be affected by the irregularity of the domain. 

This 3-D mesh-generation method is specifically designed to work from sets of 

boundary contours defined on 2-D cross-sections. The cross-sectional surfaces are each 

triangulated on a regular grid of nodes, using the same grid for aIl the sections. Grid 

points in si de each contour are joined to form a set of equilateral triangles. The nodes on 

the external boundary of this internai mesh are joined to the nodes on the contour 

boundary to form a triangulation. Adjacent sections contain identical nodes and triangles 

within their overlapping areas. 

Figure 2.11 The core mesh and the ring mesh of a sUce 
([rom Boubez et al. 1986b) 

As shown in Figure 2.11, a central core of pentahedral prisms is generated by 
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pairing up the matching triangles from the upper and lower triangulations on the two 

adjacent sections. Each of the prisms is then shredded into three tetrahedra. The 

remaining portion between the two adjacent sections, a torus-like structure surrounding 

the core, is assembled into a polyhedron represented by lists of related triangular faces, 

edges and vertices, and then me shed using four topological operators (Boubez et al. 

1986b). Each pair of adjacent sections is processed in a similar way. AlI of them are 

assembled to form the complete three-dimensional mesh. FinalIy, the internaI nodes are 

iteratively relaxed to improve the quality of the tetrahedral elements near the boundary. 

This method generates a core mesh with high quality. Furthermore, the boundary 

points and their triangulation are preserved, thus retaining the slice structure. However, 

the mesh quality of the volume mesh near the boundary will be affected by the irregular 

shape of the domain. Badly shaped triangular elements may often be generated on the side 

surface mesh when two adjacent contours are very different. Moreover, the meshing of 

the ring may fail in the special case of a Schonhardt polyhedron, as illustrated in Figure 

2.12. There is no way to subdivide this polyhedron into tetrahedra without creating new 

vertices. 

F 

B 

Figure 2.12 Schonhardt polyhedron 
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2.4 Conclusions 
The surface mesh-generation methods used in biomedical applications are described. 

Three problems (correspondence, tiling and branching) encountered in these methods and 

their respective remedies are introduced. 

Four unstructured mesh-generation methods are discussed. The Delaunay-based 

method has gained increasing attention because of its supposed robustness and efficiency. 

Sorne of the boundary entities may be missing and thus additional procedures are required 

to recover them. Furthermore, slivers are often generated and they need to be removed by 

topological modification. The advancing-front method maintains the domain boundary 

during mesh generation, which is useful for parallel mesh generation, but the mesh 

generation may fail since the algorithm may not be able to determine an acceptable next 

point during the process. The quadtree/octree-based method is able to generate good 

meshes but may introduce a very non-uniform mesh to approximate the object domain 

when the boundary is an arbitrary shape with high curvature. The coring method 

generates a core mesh with high quality and retains the slice structure, but may fail in 

mesh generation of the ring. 

Combining two different mesh-generation approaches off ers a possible better 

solution for mesh generation. The combined approach can effectively alleviate or 

eliminate the drawbacks in each method. For example, in the advancing-front-Delaunay 

approach (Mavriplis 1992 and Frey et al. 1998), the advancing-front method is used to 

determine the best points with respect to the active front entity while the Delaunay-based 

method is used to connect vertices. The approach helps not only to reduce the possibility 

of failure by the advancing-front method, but also to reduce the possibility of generation 

of slivers by the Delaunay-based method while increasing the efficiency because the 

Delaunay-based insertion of a single new node results in the creation of several new 

elements. Similarly, combining the Delaunay-based method and the 

quadtree/octree-based method or combining the advancing-front method and the 

quadtree/octree-based method are also possible alternatives to take advantage of the 

strong points of each method. 
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CHAPTER3 

GEOMETRIC MESH-QUALITY MEASURES 

3.1 Introduction 

As the finite-element method receives increasing attention, whether a mesh is good for 

finite-element analysis is an important topic. One of the main problems in finite-element 

generation is how to generate well-shaped elements since badly shaped elements often 

result in poor numerical performance. 

Mesh-quality measures are used to evaluate the quality of individual elements in 

finite-element meshes. These measures can be grouped into two categories depending on 

how they are derived: geometric mesh-quality measures that are computed purely on the 

basis of the geometric characteristics of elements, and finite-element mesh-quality 

measures that are calculated on the basis of information from the finite-element solution. 

Geometric mesh-quality measures may characterize the shape and size of an 

element. These measures consist of two types depending on their derivations. One type, 

geometrically based, uses direct geometric characteristics of an element. The other type, 

Jacobian-based, uses the element Jacobian matrices relating the reference, regular and 

physical spaces. The geometric mesh-quality measures are discussed in this chapter, and 

the finite-element mesh-quality measures will be discussed in the next chapter. 

In this chapter, badly shaped tetrahedral elements are classified in Section 3.2. The 

geometrically based shape-quality measures are discussed in Section 3.3. The 

Jacobian-based shape-quality measures are discussed in Section 3.4. The results of 

previously published comparisons among the shape-quality measures are presented in 

Section 3.5. Conclusions are given in Section 3.6. 

3.2 What are badly shaped tetrahedral elements? 

As tetrahedral mesh generators will be investigated in this project, only tetrahedral 

elements will be discussed in the rest of this chapter. Badly shaped tetrahedral elements 

can be characterized by the fact that their volumes are nearly zero. These elements may 
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have an infmite number of shapes, which can be roughly classified into two categories 

depending on whether the four vertices of the tetrahedron are close to a line, or close to a 

plane but not to a line (Cheng et al. 1999; Freitag and Knupp 2002) . 

Needle Spear Spindle 

, 

. , 

Spike 

, 
, . 
. 
. 

Splinter 

Figure 3.1 Badly shaped narrow tetrahedral elements 

Figure 3.1 shows typical badly shaped narrow tetrahedral elements with their four 

vertices close to a line. This category is further classified by Cheng et al. (1998) into five 

subcategories that are characterized by the relative positions of the four vertices along the 

line. A needle is a tetrahedron with three vertices close to one end of the line and the 

fourth vertex as the other end of the line. A spear is a tetrahedron with two vertices 

defining the line and the other two vertices near the mid-point of the line. A spindle is a 

tetrahedron with four vertices roughly evenly spaced along the line. A spike is a 

tetrahedron with two vertices close to one end of the line, the third vertex as the other end 

of the line, and the fourth vertex close to the mid-point of the line. A splinter is a 

tetrahedron with two vertices close to one end of the line and the other two close to the 

other end of the line. 
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Wedge Spade Cap Sliver 

Figure 3.2 Badly shapedJlat tetrahedral elements 

Figure 3.2 illustrates typical badly shaped flat tetrahedral elements with their four 

vertices close to a plane but not to a line. Similar to the first category, this category is 

further classified by Cheng et al. (1998) into four subcategories depending on how the 

four vertices are located with respect to the plane. The further classification is actually 

characterized by the position of the fourth vertex. If the fourth vertex is close to one of 

the first three vertices, the tetrahedron is a wedge. If the fourth vertex is close to the 

mid-point of one of the three edges of the triangle, the tetrahedron is a spade. If the fourth 

vertex is close to the geometric centre of the triangle, the tetrahedron is a cap. If the 

fourth vertex and the other three vertices are roughly equally spaced around a circle, but it 

is raised slightly above the circle, then the tetrahedron is a sliver. 

3.3 Geometrically based shape quality measures 

These mesh-quality measures are directly derived from geometry and they are defmed to 

evaluate the shape of an element, thus they are also called shape-quality measures or 

simply shape measures. 

3.3.1 Attributes for a good shape measure 

Field (2000) suggested that a good shape measure for elements should possess the 

following attributes: 

• Ability to detect aIl possible badly shaped elements 

• Dimensionlessness, that is, independence of element size 

• Normalization by an optimal value within a range [0,1], where 1 is for an 
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equilateral tetrahedron and 0 is for a degenerate tetrahedron 

• Boundedness, that is, no arbitrarily large value is produced 

• Invariance under translation, rotation and uniform scaling 

3.3.2 Geometrically based shape measures for tetrahedral elements 

A number of shape measures have been proposed to characterize the shape of a 

tetrahedron. Nguyen (1982) and Van Oosterom and Strackee (1983) proposed the 

minimum sol id angle in a tetrahedron as the shape measure. In Figure 3.3, a solid angle 

with unit of steradians is represented for the tetrahedron T ABCP by the spherical triangle 

abc of the unit sphere centred at vertex P and bounded by the three triangular faces 

sharing the vertex P. Cavendish et al. (1985) suggested that a tetrahedron can be 

characterized by the ratio of the circumscribed sphere radius to the inscribed sphere 

radius. Baker (1989) proposed the combined use of the ratios of the maximum edge 

length to the inscribed sphere radius, and of the maximum edge length to the minimum 

edge length. Cougny et al. (1990) utilized the tetrahedron volume and the four triangular 

facet areas to define a dimensionless normalized aspect ratio. Dannelongue and Tanguy 

(1991) used the ratio of the volume and the average edge length of the six edges of a 

tetrahedron. They also suggested an alternative by replacing the average edge length with 

the root mean square of the six edge lengths. 

B--__ ~ 

Figure 3.3 Solid angle represented by the shaded area 
abc in a tetrahedron 
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Freitag and Ollivier-Gooch (1996) proposed five shape measures based on 

dihedral angles. A dihedral angle is defined as an angle between two planes, in this case, 

an angle LEDB between the two triangular facets L1 ABC and Ll AEC that are 

illustrated in Figure 3.4. Their shape measures include the maximum dihedral angle, the 

minimum dihedral angle, the maximum co sine of the dihedral angles, the minimum 

cosine of the dihedral angles and the minimum sine of the dihedral angles. The last three 

shape measures are actually trigonometric functions of the first two measures. As a result, 

only the first two shape measures are listed in Table 3.2. 

E 

c 

A B 

Figure 3.4 Dihedral angle in a tetrahedron 

3.4 Jacobian-based shape-quality measures 

The Jacobian matrix defined for fmite elements can be factored into geometrically 

meaningful parts including the shape, size and orientation of an element (Knupp 1999 & 

2000 & 2001). The measures based on the element Jacobian matrices are able to 

characterize not on1y the shape but also the other geometric properties of an element. 

In this section, only shape measures are discussed. The element Jacobian matrices 

are defined in Section 3.4.1. The use of the Jacobian matrices to construct shape measures 

is discussed in Section 3.4.2. 

3.4.1 Element Jacobian matrix 

The element matrix is the affine transformation associated with a triangle or a 

tetrahedron. Taking a triangle, for example, let t k E R2
, k = 0, 1,2, represent the 
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coordinates of the three vertices of the triangle in physical space. Let ~k represent the 

coordinates of the four vertices in reference space, where O::::;~k::::; 1 with ~O+~I +~2= 1 . 

The affine transformation from reference space to physical space is defined by 

I(~J=L ~ktk 
k*i 

(3.1) 

where k ,i=0,1,2. 

2 

By expansion and the fact that L ~k= 1 , Equation 3.1 can be explicitly written as 
k=O 

t= (1-~1-~2) 10+~1 II +~2 t 2 

giving (3.2) 

In Equation 3.2, t= (x, y f and UO=(~I' ~2f represent vertex coordinates, 

10= (xo' Yo) is a translation vector, and Ao is a 2-by-2 matrix representing the affine 

transformation that is referenced to vertex t 0 and is written as 

(3.3) 

As a triangle has three vertices, there are three such Jacobian matrices Ak for a 

triangular element. Similarly, there are four 3-by-3 Jacobian matrices Ak for a tetrahedral 

element with k=0,1,2,3 . 

26 



Reference element R.egular element Physical element 

Figure 3.5 Relationships of Jacobian matrices among the 
reference, regular and physical triangles 

Figure 3.5 illustrates the relationships of the element Jacobian matrices among the 

reference, regular and physical triangles. The three triangles are related via three 2-by-2 

matrices Wh M k and Ah where k=O,1,2 is the local vertex index in a triangle and 

the Wk are the 2-by-2 Jacobian matrices of the regular element. The Jacobian matrix Ak 

is invariant under translation, rotation, scaling, and combinations of scaling and rotation, 

but it is not invariant to k. As a result, the mesh-quality measures based on Ak will vary 

with k. To address the problem, Freitag and Ollivier-Gooch (1996) suggested and proved 

that the weighted Jacobian matrices Mk=AkW~! are independent of k, where the M k 

are the linear transformations between the regular element and the physical element. The 

M k are dimensionless because W k and Ak both have units of length. Therefore, the 

M k, or simply M, are used to define nodally invariant element-quality measures. 

3.4.2 Jacobian-based shape measures for tetrahedral elements 

Liu and Joe (1994b) proposed the use of the mean ratio 17, which is based on the weighted 

Jacobian matrix M, to characterize the quality of a tetrahedron. The mean ratio 11 of a 

tetrahedron in physical space is defined as the ratio of the geometric mean to the algebraic 

mean of the three eigenvalues À!, À2' À3 of the 3-by-3 matrix MT M. As we know, the 

geometric mean is less than or equal to the algebraic mean for positive numbers. Liu and 

Joe (1994a) proved that 11 is a shape measure based on the edge lengths of a tetrahedron: 
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(3.5) 

Os, s5 

Freitag and Knupp (1999) suggested that c=3/ K(M) IS capable of 

characterizing the element quality, where K(M)=IIMII*IIM- 1
11 is the condition number 

of the weighted Jacobian matrix M =A W- I 
• Similar to '1, c is a shape measure for a 

tetrahedral element. 

Both '1 and c possess ail the attributes of a good shape measure except that they 

are not invariant under uniform scaling. As a result, the sizes of elements would be taken 

into consideration when assessing the shape qualities of elements in the meshes. 

3.5 Comparison among shape measures 

The shape measures for tetrahedral elements discussed in the previous sections are 

summarized in Table 3.2. To assist in understanding their mathematical interpretation, the 

notation is tirst given in Table 3.1. Most symbols utilized here are the same as those used 

by Parthasarathy (1993) and Lewis et al. (1996). 

ln Table 3.2, "Optimal value" is the shape measure of an equilateral tetrahedron, 

and "Bounds" specifies the range normalized by the optimal value. 

Table 3.1 Notation used in Table 3.2 

CR Circumscribed sphere radius 

IR Inscribed sphere radius 

L Length of an edge 

H Height with one triangle as the base 

S Surface area of a triangular facet 

V Volume 

~ Dihedral angle 

f) Solid angle 
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Table 3.2 Shape measures for a tetrahedral element 

Expression Unit 
Invariance to Optimal 

Bounds 
uniform scaling value 

IR 
No Yes 

1 
[0,1 ] P=CR -

3.0 
IR 

a=--
Lmax 

No Yes 0.204124145 [0,1 ] 

Lmax 
No Yes 1.632993162 [0,1 ] w=--

CR 

(= IR 
Hmax 

No Yes 4.0 [0,1] 

Lmin 
No Yes 1.0 [0,1 ] T=--

Lmax 

V
4 

4.572473708 f3= 

L~3 s;r No Yes [0,1] 
xl0-4 

V 
lX=-

L~!! 
No Yes 0.11785113 [0,1] 

V 
Y=T No Yes 0.11785113 [0,1 ] 

rms 

°max Degree Yes 70.52877937 [1,2.552149656] 

°m;n Degree Yes 70.52877937 [0,1] 

8min Steradian Yes 0.5512856 [0, 1] 

_ 12(3V?13 
11- L 2 No No 1.0 [0,1 ] L; 

0<;<5 

3 
No No 1.0 [0,1] c= K(M) 

Parthasarathy (1993) compared the first seven shape measures listed in Table 3.2 

by carrying out four sets of sensitivity tests. The tests were designed to simulate a change 

from an equilateral tetrahedron to a badly shaped tetrahedron corresponding to four 

possible badly shaped tetrahedra: needle, wedge, cap and sliver. The lX, p, a, y and 

f3 were able to characterize distortions in aIl four cases. The T could not detect badly 

shaped tetrahedra without short edges, such as slivers. The w was limited to detecting 

slivers. FinaIly, Parthasarathy (1993) recommended the use of y because of its low 

computational cost. 
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Liu and Joe (l994b) established a relationship among e min' P and T]. In short, 

for any two different measures p and v (0.::;; p , v.::;; 1 ) among the three measures, the 

relationship between p and v can be represented by a form Copeo,::;;v'::;;Cl pe, where Co, 

Cl, eo and el are positive constants. The relationship implies that if one measure 

approaches zero for a badly shaped tetrahedron, so do the others. They concluded that ail 

three measures are equivalent in this sense but that they do not approach 0 or 1 at the 

same rates for tetrahedra with different shapes. Any one of the three measures can 

approach 0 faster than the others for different badly shaped tetrahedra. They are, however, 

in a fixed order that is (} min < P < 17 when they are close to 1 for a regular tetrahedron. 

p is more uniformly distributed in the interval of [0,1] than the others. 

Dompierre et al. (1998) compared (}min, Ômin ' p, 17, T and (Y using unit 

tetrahedron, cube and sphere. They obtained the order (} min < T < Ômin < P < 17 for the 

average of the above shape measures in a mesh. This order is consistent with the order 

obtained by Liu and Joe (1994b). 

Freitag and Knupp (2002) compared C with the two shape measures ômin and y 

by doing experiments on a series of badly shaped tetrahedra. They concluded that both y 

and C are able to efficiently detect ail nine types of badly shaped tetrahedra. They found, 

however, that ômin is unable to detect needles, spears or spindles, and that it is also 

computationally expensive. 

3.6 Conclusions 

A mesh-quality measure is used for evaluating geometric properties, in most cases the 

shape of an element. It may be derived from the geometry of the element, or from the 

element Jacobian matrices. 

The mesh-quality measures discussed in this chapter are used for tetrahedral 

elements. Many geometrically based shape measures are available to characterize the 

shape qualities of tetrahedral elements. The measures lX, p, (Y, y, f3, (} min' 17 and C 

are able to detect sorne of or ail of the nine types of badly shaped tetrahedral elements, 

but they do not approach 0 or 1 at the same rates for the different types. 
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Jacobian-based mesh-quality measures are based on element Jacobian matrices, 

W, M and A in the reference, regular and physical spaces, respectively. The weighted 

Jacobian matrix M =A W- l is used to construct the shape measures 11 and c. They 

satisfy aIl the requirements of a good mesh-quality measure except that they are not 

invariant under uniform scaling. 

Apart from the shape of an element, the element Jacobian matrices also contain 

the other geometrical information, i.e., the size and orientation of the element. Therefore, 

the Jacobian-based mesh-quality measures are able to quantify these geometrical 

characteristics, which could provide comprehensive geometrical information about 

elements for the purpose of finite-element analysis. 

The shape measures usually do a good job in identifying badly shaped tetrahedra 

in meshes. However, the appropriateness of the meshes for finite-element analysis may 

not be decided by the shape measures alone. Since the sizes of elements play an important 

role in characterizing finite-element meshes (Shewchuk 2002), a better geometric 

mesh-quality measure should be able to assess both the shape qualities and the sizes of 

elements. 
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CHAPTER4 

FINI TE-ELEMENT MESH-QUALITY 

MEASURES 

4.1 Introduction 

The objective of the finite-element method is to seek a reliable approximate solution. The 

reliability of the approximate solution has to be judged by the difference between the 

exact solution and the approximate solution. As the exact solution is rarely known in 

practical problems, the assessment of the reliability of the approximate solution becomes 

one of the most difficult aspects of finite-element analysis (Babuska and Strouboulis 

2001). However, it is possible to construct quantitative estimates for the solution error 

and to determine the rate of change of the error as the number of degrees of freedom in 

the finite-element model increases. A good mesh usually results in a small solution error, 

for this reason, error estimates are regarded as finite-element mesh-quality measures in 

this chapter. 

A considerable amount of research has been devoted in the past two decades to the 

development of reliable error estimates and feedback procedures by which the required 

accuracy of a finite-element solution can be reached at a reasonable computational cost 

(e.g., Babuska and Rheinboldt 1978a,b; Kelly et al. 1983; Oden et al. 1986; Zienkiewicz 

and Zhu 1987; Ewing 1990; Verfurth 1994; Ainsworth and Oden 2000; Gratsch and 

Bathe 2005). Researchers often refer to two types of error estimates, a priori error 

estimates and a posteriori error estimates. It is unclear what is used to explicitly 

differentiate between a priori and a posteriori. In this project, a priori error estimates are 

computed on the basis of the system stiffness matrices or the global solution, and they 

include solution residuals, condition numbers and convergence rate estimates. In contrast, 

a posteriori error estimates are calculated on the basis of solutions for individual 

elements. Both types of error estimate are able to provide more accurate estimates of 

mesh quality than geometric mesh-quality measures do, and to steer mesh refinement. 

In this chapter, sources of error in finite-element solutions are summarized in 
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Section 4.2. Basic requirements for error estimators are described in Section 4.3. Section 

4.4 introduces error norms, a model problem as a basis for explanations in later 

discussions, and error measures. A priori error estimators and a posteriori error 

estimators are discussed in Sections 4.5 and 4.6, respectively. Mesh refinement strategies 

based on error estimates are introduced in Section 4.7. Finally, conclusions are given in 

Section 4.8. 

4.2 Sources of error 

There are a number of sources of error in finite-element solutions. They are generally 

classified into five groups (Noor and Babuska 1987; Tarnhuvud et al. 1990): 

• Reliability of the mathematical model that is used for describing a physical 

model being analysed 

• Uncertainties in the parameters (geometry, material properties, boundary 

conditions and load conditions) describing the mathematical model 

• Discretization errors caused by the numerical discretization of the continuous 

mathematical model, which are greatly influenced by the types, shapes and 

sizes of elements in the mesh 

• Interpolation errors that depend on the polynomial order of the shape function, 

that is, the orders of elements in the mesh 

• Round-off errors and truncation errors that occur in numerical computations 

on computers with finite precision 

In fact, the discretization errors and the interpolation errors are both directly 

influenced by the element characteristics in the mesh. Thus, they are closely interrelated 

in the finite-element method. In most cases, the term 'discretization error' is used to refer 

to the difference between the exact solution and the approximate solution. The 

interpolation error is then implicitly assumed to be one source of the discretization errors. 

4.3 Basic requirements for an error estimator 

The purpose of a finite-element error estimator is to provide an estimate for the solution 

error. Such an error estimator should possess the following characteristics (Gratsch and 
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Bathe 2005): 

• be accurate, that is, the predicted error should be close to the exact error, 

which is however generally unknown 

• ensure that the error estimate asymptotically approaches zero at the same rate 

as the exact error does when the number of degrees of freedom increases 

• be able to yield guaranteed and sharp lower and upper bounds for the exact 

error 

• be computationally inexpensive 

• be robust, that is, it can be applied in a wide range of applications 

• be able to steer mesh refinement so as to optimize the mesh with respect to the 

required accuracy 

It is difficult to find an error estimator that meets ail these requirements. This is 

mainly caused by either a very high computational cost or a lack of guaranteed bounds for 

the errors in practical problems. 

4.4 Error norms and error measures 

In this section, a model problem and its application in sol id mechanics are described in 

Section 4.4.1. The concepts of error norms are introduced in Section 4.4.2. Error 

measures are presented in Section 4.4.3. 

4.4.1 Model problem 

To illustrate the error estimators, let us consider an elliptie problem in a domain .Q with 

a boundary condition T, which is partly Dirichlet and partly Neumann (Zienkiewiez and 

Taylor 2000). The problem is given by 

Lu=f (4.1) 

where L is a linear differential operator, u is the exact solution and f is the source 

function. 

Let û be the approximate solution. The finite-element solution error can then be 
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written as 

e=u-û (4.2) 

In solid mechanics, e, u and û may refer to displacement, stress or strain. To 

derive the operator L, we need to use the relation between stress and strain as given by 

E=SU (4.3) 

and Hooke's law as given by 

a=DE (4.4) 

where E and a are strain and stress, respectively. 

The operator L, derived by Zienkiewicz and Zhu (1987), takes the form 

(4.5) 

4.4.2 Error norms 

Error norms are introduced to quantitatively measure the overall magnitude of errors in 

finite-element solutions. There are three measures commonly used in the finite-element 

method: the energy norm IleilE or LI norm, the mean-square norm Ilello or L2 norm, and 

the maximum norm llelloo or LX) norm. 

The energy norm or LI norm of an error is the square root of the energy of the 

error over the entire domain: 

(4.6) 

The mean-square norm or L2 norm of an error measures the root-mean square of 

the error over the entire domain: 
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(4.7) 

The maximum norm or Loo norm of an error measures the maximum absolute 

value of the error over the entire domain: 

1 le 1/", = max le (x)1 
xEn 

(4.8) 

The energy norm IleilE and the mean-square norm Ilello are more often used in 

finite-element analysis than the maximum norm llell",. IleilE involves the derivatives 

introduced by the linear differential operator L, and thus contains the physical meaning of 

the model. llello is a straightforward and easily computed norm without an involvement 

of derivatives, but it has little physical meaning. 

4.4.3 Error measures 

A finite-element solution is more accurate when the error norm is smaller. Hence, the 

error norm is a natural and exact error measure in the finite-element method 

(Chellamuthu and Ida 1994). 

To derive an error in terms ofthe energy norm for the model problem in Equation 

4.1, we substitute Equation 4.5 into Equation 4.6 and obtain 

1IeIIE=[f n (Sef D{Se)d .0(2 

=[f n (S{U-Û))T D{S(u-û))d .0(2 

[ f T ]112 = ne,De,d.o 

=[f T d .0]1/2 ne,eu (4.9) 

where e, = E - Ê is the error of strain and eu = u - fT is the error of stress. 

Equation 4.9 shows that the energy norm of an error corresponds to the square 
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root of the strain energy of the error of the finite-element solution. 

The three error norms (LI, L2 and L'X)) are defined over the entire domain, and the 

square of each of them can be obtained by summation of element contributions, that is 

(4.10) 

where m represents the total number of elements. 

The global relative error norm is defined by 

(4.11) 

The exact solution is approximated by summation of the approximate solution and 

the estimated error in order to compute the global relative error norm as 

( 4.12) 

Assuming that the energy of the global solution error is equally distributed among 

elements, the admissible local element-error norm can be derived from the global relative 

error norm and the total number of elements: 

(4.13) 

The admissible local element-error norm is used for adaptive mesh refinement as 

will be discussed in Section 4.7. 

4.5 A priori error estimators 

A priori error estimators provide information about the errors of the global solution rather 
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than of the individual solutions for each element. They include the use of solution 

residuals, condition number, and convergence rate estimate. 

4.5.1 Solution residuals 

Solution residuals are a way to assess the finite-element solution error, which in tum 

leads to the assessment of the overall mesh quality. Consider the model problem as a 

linear static finite-element analysis, where the linear differential operator is the system 

stiffness matrix. The problem is then expressed by 

Ku=f (4.14) 

where K is the system stiffness matrix, u is the displacement vector and f is the load 

vector. The global solution residual is defined by 

R=f-Kû (4.15) 

where û is the approximate solution obtained by the finite-element method. 

By substituting Ku for finto Equation 4.15, the residual becomes 

R=K(u-û)=Ke (4.16) 

and the solution error e is then expressed by 

(4.17) 

In practice, the purpose of calculating solution residuals is to see how inaccurate 

the matrix inversion might have been. An approximate solution that is more accurate 

must have a small R, which results in a small solution error as long as K is weIl 

conditioned (Bathe 1996). 
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4.5.2 Condition number 

The condition number of the system stiffness matrix is another possible way to assess the 

solution error (Bathe 1996). If K and u in Equation 4.14 are modified by small amounts, 

then the problem in Equation 4.1 is expressed by 

(K+8K)(u+8u)=f (4.18) 

By substituting Equation 4.14 into Equation 4.18 and eliminating the small terms 

8 K 8 u , the small displacement change 8 u is given by 

(4.19) 

Taking the energy norm on both sides of Equation 4.19 gives 

(4.20) 

where .\n is the largest eigenvalue of the system stiffness matrix K, .\1 is the smallest 

eigenvalue, and .\).\1 is defined as the condition number (Bathe 1996). 

A large condition number indicates that large solution errors are more likely to 

appear. The formulation of the system stiffness matrix K requires the availability of the 

boundary conditions and material properties. 

The condition number could be used to assess mesh quality and mesh uniformity. 

If the mesh has no badly shaped tetrahedra, the largest eigenvalue, .\n, is related to the 

longest length in the entire mesh. The smallest eigenvalue, .\1' is related to the smallest 

element volume. Non-uniform meshes and meshes with badly shaped tetrahedra will have 

larger condition numbers (Shewchuk 2002). Condition numbers are also affected by 

boundary conditions and material properties. 
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4.5.3 Convergence error estimate 

A finite-element approximation is known to converge in tenns of the energy nonn (Bathe 

1996). Equation 4.21 expresses the nature of the convergence of the error norm: 

(4.21) 

where IleilE represents the energy norm of the solution error, p is a positive integer 

representing the polynomial order of the shape function, h denotes the maximum 

normalized element size (h < 1), and c is a constant independent of h but dependent on 

material properties. 

As the element size h tends to zero or the polynomial order p of the shape function 

goes to infinity, the approximate solution will asymptotically approach the exact solution 

as long as no singularities exist (Noor and Babuska 1987). 

The convergence curve can be drawn on the basis of the approximate solutions 

and the corresponding total numbers of nodes, or elements, or degrees of freedom. With 

the curve, it is possible to estimate the qualities of the meshes generated by 3-D mesh 

generators for the same problem by looking at how close the solution based on a mesh is 

to the exact solution as estimated by the convergence curve. 

4.6 A posteriori error estimators 

This section is mainly based on Zienkiewicz and Taylor (2000) and Gratsch and Bathe 

(2005). 

A posteriori error estimators use infonnation obtained in the solution process to 

compute individual element-error estimates for the solution. These error estimates 

accomplish two goals. Firstly, they provide a quantitative idea of the exact error. 

Secondly, they are often used to steer adaptive mesh refinement. In this section, three a 

posteriori error estimators will be briefly discussed: explicit, implicit and Z-Z. 

4.6.1 Explicit error estimators 

Explicit error estimators are directly based on the approximate finite-element solution. 
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Babuska and Rheinboldt (l978a,b) established the fundamental of the explicit error 

estimators, and derived, for the model problem described in Equation 4.1, a bound for the 

explicit error estimates as 

(4.22) 

where m is the total number of elements, k is the global element index, CI and C 2 are 

constants, hk is the size of the element k, .1 Rk is the interior element residual of the 

element k and Jo, is the jump of the gradient across the boundary Ok of the element k. 

The residual .1 Rk of element k is given by 

where f k is the load vector for the element k, and ûk is the approximate solution of 

element k. The jump Jo, is given by 

n,Vuk + n',Vu!, 

Jo k = g k - n' V u k 

o 

if r e r 
if r E r N 

if r e rD 
(4.24) 

where n is the outward unit vector normal to r, gk is the Neumann boundary value, V 

is the gradient operator, )' are the element edges that separate the element k and its 

neighbouring element k' when they are inter-element edges. 

The expression in Equation 4.22 directly leads to the local element-error norm 

given by 

(4.25) 

The constants CI and C2 are in general unknown and depend on the specific 
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problem. However, the element-error norm defined in Equation 4.25 is often used, with 

approximate constants, to steer adaptive mesh refinement. 

4.6.2 Implicit error estimators 

Implicit error estimators require the solution of auxiliary local boundary-value problems 

whose solutions may yield accurate approximations to the solution error. The boundary 

value problems are to be locally solved on individual elements or sub-domains. Hence 

there are two methods for implicit error estimators, the element residual method and the 

sub-domain residual method. 

The element residual method reqU1res the approximation of the prescribed 

Neumann boundary conditions on each individual element. The upper error bound 

derived from this method is guaranteed only when the local problems are computed 

exactly. On the other hand, the sub-domain residual method implicitly takes the 

inter-element jumps of stress into consideration because the local problems on each 

sub-domain have already considered the inter-element edges. However, this method is 

computationally very expensive since each element is considered several times (Gratsch 

and Bathe 2005). 

4.6.3 Z-Z error estimators 

Z-Z error estimators were named after Zienkiewicz and Zhu (1987), who suggested 

post-processing the discontinuous gradient to obtain a more accurate strain (J' that is 

interpolated using the same shape function as for the displacement û. 

In a finite-element formulation, the displacement is approximated by 

u~û=Nii (4.30) 

where N is the shape function, u is the exact displacement, û is the approximate 

displacement, and u is the vector of unknown coefficients that need to be determined. 

For the Z-Z method, the stress is approximated by 
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(J " = NiT" (4.31) 

where N is the shape function which is the same as for the displacement, (J" is the 

approximate displacement, and iT" is the vector of unknown coefficients that need to be 

determined. 

The approximate stress solution â ensures (Zienkiewicz and Zhu 1987) that 

(4.32) 

where â=DS û=(DSN)u 

Substitution of Equation 4.31 into Equation 4.32 yields an approximate u" given 

by 

(4.33) 

where 

The difference between the exact stress and the approximate stress is the error for 

the stress, that is written as 

e ::: (J " - (J~ 
a (4.34) 

The approximate stress (J " is then obtained by using Equation 4.31. Zienkiewicz 

and Zhu (1987) proved that the (J " in Equation 4.34 is a better approximation to the exact 

stress than â is. Therefore, it is convenient to use e a to evaluate various error norms. 

The Z-Z error estimators are effective in problems where the order of the shape 

functions is one. However, they still have two drawbacks. One drawback is that they 

cannot handle the case when material discontinuities exist. The other drawback is the 

implicit assumption that smooth stresses mean accurate stresses, an assumption that may 
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not be true in practice (Gratsch and Bathe 2005). 

4.7 Mesh refinement 

A mesh can be refined (or coarsened) to achieve an desired accuracy of the finite-element 

solution. Error estimates are essential to steer either global mesh refinement or local 

adaptive mesh refinement. 

A priori error estimates are usually used to drive global mesh refinement in which 

the element size h is reduced or the polynomial order p of the shape function is increased 

over the entire domain so as to reach a desired accuracy of the solution (Janicke and Kost 

1996) . 

A posteriori error estimates are often intended to steer local adaptive mesh 

refinement. By the end of the refinement, the contribution of each element to the total 

error should be about the same. This can be translated into checking whether the 

element-error norm is less than or equal to the admissible element-error norm. An 

effectivity index is introduced to determine where refinement is necessary: 

(4.35) 

where Ihll is element-error norm of the eh element and Ilella IS the admissible 

element-error norm. 

Local adaptive mesh refinement is an iterative process, which can generally be 

summarized in the following steps (Verfurth 1994): 

1. Construct a coarse mesh approximating the geometric domain of a 

finite-element model. 

2. Obtain the finite-element solution on the initial coarse mesh. 

3. Compute a posteriori error estimates and then the effectivity index of each 

element in the mesh. 

4. Check the effectivity index on each element to decide whether or not the 

element has to be refined or coarsened. The ideal effectivity index for each 
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element should he one. 

Çk> 1 +c 

Çk < l-c 

Refine mesh 

Coarsen mesh 

l-c<çk < 1 + c No change 

where c is a sm aIl positive numher. Noor and Bahuska (1987) suggested 

c=O.2. 

5. Replace the previous mesh by the new refined mesh and repeat steps 2 to 4 

until each element's effectivity index is close to one. 

There are four versions of local adaptive mesh refinement (Ewing 1990). 

• h version 

The local elements are subdivided into elements with smaller sizes or combined 

into elements with larger sizes. The type of the new elements is the same as that 

originally used and the same polynomial order p (typically p = 1 or 2) of the shape 

function is maintained. 

• p version 

The local elements are not subdivided, but the polynomial order p of the shape 

function is allowed to increase to a higher value. As a result, new nodes are 

introduced on the edges of and/or inside existing elements. 

• hp version 

A mixed version that combines the h version and the p version. 

• r version 

A version that is based on node relocation in a mesh by moving nodes to regions 

where large errors are identified. 

The h version requires more computer storage than the other versions do. The p 

version results in more dense matrices than the h version and is more convenient to 

implement (Noor and Babuska 1987). Both the h version and the p version have a 

polynomial rate of convergence in terms of the number of degrees of freedom (Verfurth 

1994). The hp version is based on a sequence ofrefinement steps. Only the h version or 
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the p version is allowed in each step, with the typical refinement sequence being first the 

h version and then the p version. Unlike the h version and the p version, the hp version 

achieves an exponential rate of convergence with respect to the number of degrees of 

freedom. 

The h version and the p version are more commonly used in practical problems 

than the hp version and the r version are. This is mainly due to the fact that the 

mathematical foundations for the hp version and the r version are less developed than for 

the other versions (Noor and Babuska 1987). 

4.8 Conclusions 

In the finite-element method, any error estimators involve questions of reliability, 

accuracy and computational cost. 

As a priori error estimates, solution residuals, condition numbers and 

convergence rate estimates may be used for evaluating the overall mesh quality and to 

steer global mesh refinement so that the approximate solution asymptotically approaches 

the exact solution. However, the drawback of global mesh refinement is that it also 

subdivides regions of low error, thus causing unnecessary high computation al cost. 

A posteriori error estimates obtained during the finite-element solution process 

not only provide quantitative estimates of the element errors but also can be used to steer 

adaptive mesh refinement in which only the particular elements introducing large errors 

are refined. Among a posteriori error estimators, the Z-Z error estimators have gained 

more attention than others because of their high efficiency and reasonable accuracy. It is 

in general difficult for error estimators to provide guaranteed error bounds because error 

bounds for complex problems are either guaranteed but hardly computable or computable 

but not guaranteed. 

Compared with the geometric mesh-quality measures discussed in Chapter 3, a 

priori error estimates and a posteriori error estimates are able to provide more accurate 

information about the solution error. The finite-element mesh-quality measures are able 

to assess not only the geometric characteristics (shape, size and orientation) but also the 

physical characteristics (material properties, boundary conditions and load conditions) of 

elements in a mesh. Therefore, it is reasonable to use the fmite-element mesh-quality 
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measures to compare mesh qualities when the same finite-element definitions are 

maintained for a model with its volume meshes generated by different 3-D 

mesh-generation programmes. 
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CHAPTER5 

EVALUATION OF 

3-D MESH-GENERATION SOFTWARE 

5.1 Introduction 

In this chapter, Section 5.2 outlines our guidelines for the selection of candidate 3-D 

mesh-generation software and describes the basic features of the candidate software 

selected. The evaluation criteria for our project are presented in Section 5.3. The models 

used for the evaluation are introduced in Section 5.4. The mesh processing is discussed in 

Section 5.5. The methods used for the evaluation ofmesh quality are discussed in Section 

5.6. The hardware and software environment for the evaluation is described in Section 

5.7. Finally, conclusions are given in Section 5.8. 

5.2 Selection of candidate software 

Our guidelines for the selection of candidate software for further evaluation can be 

briefly summarized as follows: 

• Candidate permits a surface mesh as its input for 3-D mesh generation 

• Candidate generates unstructured volume meshes that include tetrahedral 

meshes 

• Candidate is available for Linux and/or Windows operating systems 

The 3-D mesh-generation software was chosen from two Web sites, Mesh 

Generation & Grid Generation on the Web (Schneiders 2005), and Mesh Research 

Corner (Owen 2005). The first Web site lists 158 software products, among which 64 

products generate tetrahedral elements. The second Web site lists 94 software products, 

among which 42 products generate tetrahedral elements. There is sorne overlap in the lists 

on the two Web sites, which list most of the 3-D mesh-generation software currently 

available, both free and commercial. 
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Table 5.1 lists seven free and four commercial 3-D unstructured mesh-generation 

programmes selected based on the guidelines given above. Of the free programmes, COG 

no longer provides any support; SolidMesh has no version available for either Windows 

or Linux; DistMesh requires that MA TLAB be installed, which introduces an extra cost 

for the MA TLAB licence; and the mesh-generation code of NETGEN is included in 

Gmsh. Therefore, COG, SolidMesh, DistMesh and NETGEN are excluded from 

evaluation. Among the commercial programmes, the one-year licenses for ADINA, 

ANSYS and HyperMesh cost a few thousand dollars, which is very expensive. GiD is 

much less expensive, and we already have a permanent licence for version 6.1.2 that was 

initially used by Siah (2002) for his thesis project. In this project, version 7.2 of GiD is 

evaluated (as a trial version). 

Table 5.1 Unstructured mesh-generation software 

Free software 

Software Developers Platform Aigorithm Optimization 

COG Schmelzer 1 Linux Delaunay Yes 

DistMesh Perrson P-O Linux & Windows Delaunay No 
using MA TLAB 

Gmsh Geuzaine C Linux, Mac & Delaunay Yes 
Windows 

GRUMMP Ollivier-Gooch C Linux Delaunay Yes 

NETGEN Schoberl J Linux, Unix & Delaunay Yes 
Windows 

TetGen HangS Linux & Windows Delaunay Yes 

SolidMesh MSU-ERC Unix advancing-front NIA 

Commercial software 

Software Developers Platform Aigorithm Optimization 

ADINA ADINA Inc. Linux, Mac & Delaunay or Yes 
Windows advancing-front 

ANSYS ANSYS Inc. Linux, Mac & Delaunay or Yes 
Windows advancing-front 

HyperMesh Altair Inc. Linux, Mac & advancing-front Yes 
Windows 

GiD CIMNE Linux & Windows advancing-front Yes 
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Finally, GiD, Gmsh, GRUMMP and TetGen were chosen for the evaluation. GiD 

utilizes the advancing-front method and the remaining three programmes utilize the 

Delaunay-based method. Their important features are summarized in Table 5.2, which 

lists the element types that the candidate programmes can generate; the file formats, 

including the formats peculiar to themselves and the formats used by other software; and 

the mesh-density and mesh-gradation control mechanisms used. Every programme but 

GRUMMP has a GUI. 

Table 5.2 Major features of candidate software 

Features GiD Gmsh GRUMMP TetGen 

Element types 
quadri 1 ateral , 

triangle, triangle and triangle and triangle and 
hexahedron and tetrahedron tetrahedron tetrahedron 

tetrahedron 

.bdry, 
.node, .ele, .face, 

native .msh and .gid .geo and .msh .smesh and 
.smesh and .poly 

.vmesh 

File NASTRAN 
formats (.nas), AutoCAD Medit (.mesh), 

handled other 
(.dxf), Stereolithography 

No 
Geoviw (.off) and 

Stereolithography (.stl) Stereolithography 
(.stl) and IGES (.stl) 
(.iges or .igs) 

length scale 
Maximum-

Mesh-density characteristic 
(resolution) 

tetrahedron-
control 

element size 
length 

or 
volume 

coarsen 
constraint 

routine 

Mesh-gradation size-transition characteristic length scale 
No 

control coefficient length (grading) 

Yes with 
GUI Yes Yes No TetView (Rang 

2005b) 
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5.3 Evaluation criteria 
The goal of our evaluation is to pick the programme that is most suitable for our overall 

purposes, which leads to specific criteria for the present evaluation. There are five criteria 

that are discussed in the following sub-sections. 

5.3.1 Preservation of boundary-surface mesh 

As discussed in Chapter l, the goal of our project is to streamline our software pipeline so 

as to generate finite-element volume meshes for complex structures with multiple parts. 

Each individual part with its surface mesh definition is imported for 3-D mesh generation 

separately, then the resulting volume meshes are joined together to form the complex 

structure. The join operation requires that those parts of the surfaces touching each other 

should be identical or almost identical. Moreover, it is necessary that the boundary 

conditions and the load conditions defined in the Fie programme for the surface mesh can 

be assigned to the same nodes on the resulting volume mesh. It is therefore necessary that 

the initial triangulated boundary surface mesh be preserved unchanged by the 

volume-mesh generation process. 

5.3.2 Mesh quality 

The candidate programme should be able to generate meshes with high quality as 

assessed by a number of methods, i.e., visual inspection, histograms of the shape quality 

and of the size of elements, solution residuals and condition numbers, and closeness to 

the exact solution approximated by the convergence curve. 

5.3.3 Robustness 

The candidate programme should be robust in that it can always succeed in generating 

volume meshes for aIl models used for the evaluation. 

5.3.4 Time efficiency 

Based on the current hardware and software environment, the time required for 3-D mesh 

generation by the candidate programme should be reasonably short. 
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5.3.5 Cost of programme 

The candidate programme should be low-cost or free of charge. 

5.4 Models 

To evaluate the 3-D mesh-generation software, four models with different complexities of 

shape were selected. 

One model is a simple thin block created in GiD. The model has a length of 10, a 

width of 6 and a height of 1. An element size of 0.5 was selected to generate the surface 

triangular mesh. 

The remaining three models consist of one ligament that is the lateral bundle of 

the posterior incudal ligament, referred to simply as pillat, and two ossicles, the incus and 

malleus. These models were based on high-resolution magnetic-resonance images of the 

human middle ear, provided by Henson and Henson (2005). The segmentation was done 

by various members of our lab and the surface triangular meshes were generated using 

our Tr3 programme. 

Information about the surface meshes for aIl four models is listed in Table 5.3. 

Table 5.3 Information about surface meshes ofmodels 

Model NO.ofnodes No. of elements (triangles) 

thin block 362 720 

pillat 241 478 

mcus 1870 3736 

malleus 2118 4232 

The thin block is shown in Figure 5.1 and the remaining three models are 

illustrated in Figure 5.2. AlI ofthem are rendered with flat lighting in GiD. 
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Figure 5.1 Thin-block model 

pillaI incus mal/eus 

Figure 5.2 Three structures ofmiddle ear 

5.5 Mesh processing 

This section discusses the processing of mesh files and meshes. Section 5.5.1 discusses 

the conversion from a surface mesh definition generated by the Tr3 programme to the 

native files of the candidate programmes for 3-D mesh generation. Section 5.5.2 

discusses how the mechanical parameters are added to the volume mesh for the purpose 

offinite-element analysis. The pre-processing of the surface mesh and the post-processing 

of the volume mesh are discussed in Sections 5.5.3 and 5.5.4, respectively. A programme 

called Fcfwas developed to realize aIl of the se functions. 
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5.5.1 Mesh file format conversion 

The Tr3 programme can produce three different file formats: the native file format for 

GRUMMP, the file format with an extension of .wrl for visualization in Virtual Reality 

Modelling Language (VRML) viewers, and the file format with an extension of .sap for 

finite-element analysis using the Sap programme. These formats cannot be directly 

imported into GiD, Gmsh or TetGen. The Fcf programme was used here to convert the 

surface mesh file with an extension of either .wrl or .sap to the native file formats for 

GiD, Gmsh and TetGen. 

5.5.2 Assignment of the mechanical parameters to the volume mesh 

For the purpose offinite-element simulation with the Sap programme, the Fcfprogramme 

reads the boundary conditions and the load conditions defined at nodes in the surface 

mesh file with an extension of .sap that is created by our Tr3 programme, and assigns 

these conditions to the corresponding nodes on the surface of the resulting volume mesh. 

In addition, the material properties of the shell elements of the surface mesh are assigned 

to the tetrahedral elements of the volume mesh. These properties include the Young's 

modulus and the Poisson's ratio. 

5.5.3 Pre-processing the surface mesh 

A surface mesh generated by the Tr3 programme needs to be verified to ensure that it has 

consistent triangle orientations and that it is simple and closed. Once the surface mesh 

passes the pre-processing test, it can proceed to 3-D mesh generation. 

5.5.3.1 Surface closure check 

The surface mesh represents a simple closed surface if every one of its edges is shared by 

exactly two neighbouring triangles, neither more nor fewer. The Fcfprogramme reads the 

surface mesh produced by the Tr3 programme, with its definition containing ail vertex 

coordinates followed by lists of vertices defining elements. The F cf programme then 

checks for closure of the surface mesh. The programme starts from an initially selected 

triangle and scans aIl other triangles to check wh ether the three edges are shared by 
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neighbouring triangles. For each edge, a flag is initially set to 1 before checks start and 

the flag is incremented by 1 only if the edge is shared by a neighbouring triangle. The 

process is repeated until aIl triangles on the surface mesh have been checked. Upon 

completion of the process, if aIl edges on the surface mesh have flag values of 2, the 

surface mesh is confirmed to be closed. In contrast, those edges with flag values of 1 are 

boundary edges, and those edges with flag values larger than 2 correspond to locations 

where two or more surfaces touch each other. In any case, the global vertex indices and 

coordinates of these edges are exported to a text file. Based on this file, a corrective 

modification can be performed manually in the Fie programme so that a simple closed 

surface mesh can be generated. 

5.5.3.2 Surface triangle orientation detection and correction 

The surface triangle orientations are consistent if the vertices of any triangle on the 

surface mesh are numbered counter-clockwise (CCW) when viewed from outside the 

boundary surface. Incorrect orientations would cause new nodes to be inserted outside 

rather than inside the boundary-surface mesh during the generation of the volume mesh. 

For example, the advancing-front method inserts points with respect to the orientations of 

the active fronts to make sure that the points are inserted inside rather than outside the 

model domain. The same is true for the Delaunay-based method. Inconsistent orientations 

may be caused by software error when the surface mesh is created or by a user's mistake 

while doing segmentation manuaIly. In addition to flagging those triangles that have 

incorrect orientations, the Fcf programme can also automatically correct them. The steps 

for detecting and correcting the incorrect orientations are summarized in the following: 

1. Finding a starting triangle 

Select a point outside the model domain: determine a box enclosing the 

mode l, and then select a point along the x axis at a distance from the 

geometrical centre of the box that is equal to the x length of the box 

Define a ray: the ray has its origin at the point selected in step 1 and its 

direction pointing to the geometrical centre of the box. 

Find the intersection points where the ray passes through the surface mesh 

of the model: the number of intersection points should be even if the 
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surface mesh is closed (O'Rourke 1998). It is possible that there are no 

intersection points. In such a case, the ray can be slightly rotated around an 

axis that passes through the geometrical centre of the box and is parallel to 

the x, y or z axis until an intersection occurs. 

Find the starting triangle: the intersection point nearest to the origin of the 

ray is determined by comparing the distances between the intersection 

points and the origin of the ray. The triangle on which the nearest 

intersection point is located is defined as the starting triangle for the 

purpose of mesh-orientation detection and correction. 

2. Detecting and correcting the orientation of the starting triangle 

Whether or not the triangle is correctly oriented is determined by the sign 

of the volume of the tetrahedron with its four vertices (Xi' Yi' Zi) 

(i=O,I,2,3), of which three vertices (i=O,I,2) correspond to the starting 

triangle and the fourth vertex (i=3) is the origin of the ray. The volume is 

given by: 

Xo Yo Zo 1 

V=! XI YI ZI (5.1) 
6 x 2 Y2 Z2 1 

x 3 Y3 Z3 1 

If the sign of the volume is positive, then the orientation of the starting 

triangle is correct; otherwise, the orientation incorrect. 

The correction is performed on the basis of the sign of the tetrahedron 

volume. If the sign ofthe volume is negative, swapping any two vertices in 

the starting triangle results in the correct orientation. 

3. Detecting and correcting orientations of the remaining triangles 

An edge shared by two neighbouring triangles should have opposite 

orientations in the two triangles if they are numbered consistently. The 

orientations of neighbouring triangles are detected on the basis of the 

correct orientation of the current triangle. A neighbouring triangle which 
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has an incorrect orientation IS corrected by swapping any two of its 

vertices. 

The process of detection and correction is iterated. The overaIl process 

terminates when aIl triangles in the mesh have been processed. 

5.5.4 Post-processing the volume mesh 

A volume mesh may be topologicaIly incorrect because of failure of the mesh -generation 

algorithms. For example, sorne nodes may be inserted outside the model domain during 

3-D mesh generation, or sorne elements may have negative volumes, or there may be 

overlapping elements, or gaps between elements. 

To detect such problems, the Fcf programme was used to confirm the correctness 

of a volume mesh by checking whether each element in the mesh has a positive volume, 

and whether the volume enclosed by the surface mesh equals the volume obtained by 

summing together the volumes of aIl tetrahedral elements. The tolerance for checking for 

volume equality of the two floating-point numbers is set to 10-25
• 

5.6 Mesh evaluation 

The overall mesh quality of a volume mesh is assessed by a number of methods as 

described in the following subsections. Visual inspection is discussed in Section 5.6.1. 

Histograms of the shapes and sizes of elements are discussed in Section 5.6.2. 

Finite-element solution residuals and condition numbers are discussed in Section 5.6.3. 

Closeness of the finite-element solution to the exact solution approximated by a 

convergence curve is discussed in Section 5.6.4. 

5.6.1 Visualization of the volume mesh 

Few methods are available to effectively visualize the interior elements of a volume 

mesh. The mesh quality of an element can be roughly evaluated by visual inspection. 

However, the visual inspection becomes more difficult for a volume mesh with a lot of 

elements. Nevertheless, several methods have been attempted for this purpose. 

Figure 5.3(a) shows an example of the wire-frame viewing method, which 
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provides an overview of mesh density at different locations but does not give a clear 

impression of the shapes of the interior elements. 

Figure 5.3(b) gives an example of the cutting-plane viewing method, which 

provides the shapes of elements intersecting with a user-specified plane. The plane is 

selected to be parallel to the x-y plane in this example. By moving the plane along the z 

axis, the user is able to inspect the entire mesh. In the figure, aqua is used for the 

elements intersecting the user-specified plane and fuchsia indicates the remaining 

elements beneath the cutting plane. 

Figure 5.3(c) provides an illustration of the point-cloud viewing method that 

display the boundary-surface mesh and the nodes inside the boundary surface. This 

method is better for visualizing point spacing for 2-D meshes than for 3-D meshes 

(Remotigue et al. 1994). 

Figure 5.3(d) shows a representation of the shrinking-element viewing method. It 

allows the user to inspect the shapes of the interior elements, but it gives only a limited 

idea of mesh quality through gaps between the shrunk elements. 

In addition, Haimes et al. (1993) proposed a visualization method in which 

elements can be opaque or transparent depending on their shape qualities. The 

implementation of this method also appears in a commercial software package called 

P ASTEK (NEeS Inc. 2005). This method is good for determining the locations of badly 

shaped or well-shaped elements by modifying the threshold value. It is difficult, however, 

to determine the number of opaque elements, and also difficult to determine the overall 

mesh quality. 

Interactivity is generally a great help in visualization via rotation, translation and 

zooming. lt is commonly used in combination with the above methods in practical 

applications. 
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(a) Wire-frame view (b) Cutting-plane view 

(c)Point-cloud view (d) Shrinking-elements view 

Figure 5.3 Four visualization methods 

5.6.2 Histograms of the shape qualities or sizes of elements 

As discussed in Chapter 3, most mesh-quality measures are dependent on the shapes of 

elements. Three tetrahedral shape measures ( e min' P and 11) are chosen here for the 

evaluation. The first measure, e min' is the minimum solid angle of a tetrahedron. This 

measure is able to detect most types of badly shaped tetrahedra. The second measure, p, 

is the ratio of the radii of the circumscribed sphere to the inscribed sphere of a 

tetrahedron. This ratio is used in the Delaunay-based mesh-generation method. The third 

measure, 11, is the ratio between the volume and the sum of the squares of the edge 

lengths of a tetrahedron, which is used in the advancing-front method. 
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Apart from the shape qualities of elements, the sizes of elements in a mesh also 

influence the finite-element solution accuracy. As a result, the sizes of elements are also 

taken into consideration in the evaluation. The size of an element is characterized by the 

volume v or by the average of the edge lengths of the element, lavg. 

The histogram is used here for addressing overall mesh-quality assessment. It 

gives the user a sense of mesh quality throughout the entire domain. In a shape-quality 

histogram, the horizontal axis represents the shape quality, that is normalized within a 

range between 0 and 1, where 0 represents a flat tetrahedron and 1 represents an 

equilateral tetrahedron; the vertical axis represents the percentage of elements for each 

bin. The number of bins is chosen here to be 50. Using shape-quality histograms, it is 

easy to make comparisons among the four 3-D mesh-generation programmes by looking 

at the distributions of badly shaped tetrahedra and their normalized shape qualities. 

Similarly, in the size histograms, the horizontal axis represents the volumes or the 

averages of the edge lengths of the elements, and the vertical axis represents the 

percentage of elements for each bin. The number of bins is again chosen to be 50. In both 

the shape-quality and size histograms, the linear scale will be replaced by a logarithmic 

scale when the region of interest in the histograms is concentrated at very small values. 

To quantitatively describe the histograms for models, statistical information about 

the three shape measures and the two size measures are computed. The information 

includes: 

• Maximum, minimum, mean, standard deviation and skewness of normalized 

values of the three shape measures. 

• The number and the percentage of tetrahedra having normalized values less 

than 0.1. Su ch tetrahedra are taken to be badly shaped. 

• The number and the percentage of tetrahedra having normalized values larger 

than 0.9. Su ch tetrahedra are taken to be weil shaped. 

• Maximum, minimum, mean, standard deviation and skewness of the two size 

measures. 

The standard deviation and skewness are two measures for assessing the 

variability of a data set. The standard deviation is a measure for characterizing how the 
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data values spread out in the data set, and it is defined by 

std=l± (x;-:X?/(N-l) 
;=1 

(5.2) 

where N is the number of samples in the data set and x is the mean value. The mean 

value and standard deviation become less meaningful when the histogram is 

asymmetrical. The skewness is a measure of the degree of asymmetry of a distribution, 

and it is defined by 

N 

L (X;_X)3 
;=1 

skewness= 3 

(N-I)std 

(5.3) 

Any symmetric distribution will have a skewness of zero. Negative skewness 

values indicate data that are skewed to the left and positive skewness values indicate data 

that are skewed to the right. 'Skewed to the left' me ans that the left tail is long relative to 

the right tail. Similarly, 'skewed to the right' means that the right tail is long relative to 

the left tail. 

It is better to use the percentage of badly shaped or well-shaped tetrahedra, rather 

than the number, when comparing volume meshes. A higher percentage of tetrahedra 

with normalized values less than 0.1 indicates that the overall mesh quality is likely to be 

worse. In contrast, a higher percentage of tetrahedra with normalized values larger than 

0.9 means that the overall mesh quality is probably better. 

The F cf programme is used to compute the three shape measures and the two size 

measures. MA TLAB (The Math Works, 2006) is used to compute the maximum, 

minimum, standard deviation and skewness of the above measures, and to draw the 

histogram figures. 

5.6.3 Solution residuals and condition number 

As discussed in Sections 4.6.1 and 4.6.2, solution residuals and the condition number of 
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the system stiffness matrix may be used to evaluate the overall mesh quality. The same 

mechanical parameters (boundary conditions, load conditions and material properties) 

were defined for the volume meshes produced by ail of the programmes, and then 

simulations were run using the Sap programme. The root mean squares of residuals were 

computed and compared. The condition number was calculated using Luk, a programme 

developed by Funnell (2006). The Luk programme reads the system stiffness matrix 

produced by the Sap programme, uses Eispack (NetLib 2005) routines to compute 

eigenvalues, and computes the condition number. 

5.6.4 Closeness to the exact solution 

The convergence curve discussed in Section 4.5.3 shows that the approximate solution 

approaches the exact solution as the mesh density increases. A convergence curve for the 

thin-block model was obtained by running COMSOL (COMSOL Inc. 2006), a 

commercial finite-element package for which we already have a licence. Using 

COMSOL, it is easy to generate the regular geometric shape of the thin-block model, to 

assign mechanical parameters, and to do the finite-element simulations. Moreover, the 

user does not have to use the Fcfprogramme twice, once for the file format conversion of 

the surface mesh and once for the assignment of mechanical parameters to the resulting 

volume, for each different mesh density. 

The quality of the volume meshes can be evaluated by looking at how close the 

solutions based on those volume meshes are to the exact solution that is estimated by the 

convergence curve. 

5.7 Evaluation environment 

The same computing environment was maintained throughout the evaluation. GiD, Gmsh 

and TetGen provide both a Windows version and a Linux version, while GRUMMP 

provides a Linux version only. As a result, Linux was chosen as the operating system. 

Moreover, to accurately calculate the time required for the 3-D mesh-generation process, 

no other processes were permitted to run during 3-D mesh generation. 

The operating system used was Debian GNUlLinux version 3.1 ('Sarge') with 
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kemel version 2.6.8. The computer hardware specifications are listed below: 

CPU: Intel Pentium 3.0 GHz 

Hard drive: WDC 80G 7200 RPM 

Memory: 1 Gbyte 

Video card: Nvidia 5200FX 

5.8 Conclusions 

Four models (a thin block, and one ligament and two ossicles of the hum an middle ear) 

with different complexities of shape were chosen as the input surface triangular meshes 

for the evaluation. 

A programme called Fcf was developed to verify the closure and consistency of 

the input boundary-surface meshes before 3-D mesh generation, and to verify the 

topological correctness of the resulting volume meshes. The Fcf programme was also 

used for file format conversion, and for retrieving the mechanical parameters from the 

input boundary-surface mesh and then assigning them to the resulting volume mesh. 

To evaluate the candidate software, tive criteria have been proposed. The tirst 

criterion is that the candidate software is able to preserve the boundary-surface mesh. 

With the boundary-surface mesh preserved, the mechanical parameters for the input 

surface mesh can be accurately assigned to the resulting volume mesh, and furthermore 

two or more models can be accurately joined at their interfaces. The second criterion is 

that the volume mesh generated by the candidate software should possess a high quality. 

The mesh quality was evaluated in four ways. Firstly, visual inspection using the wire­

frame viewing method and the cutting-plane method provided the tirst impressions. 

Secondly, the overall mesh quality was evaluated based on shape-quality histograms and 

size histograms. Three shape measures and two size measures were selected for 

evaluating mesh quality. Thirdly, solution residuals and condition numbers were used to 

evaluate mesh quality in terms of tinite-element solution accuracy. Lastly, closeness to 

the exact solution estimated by the convergence curve was also used to evaluate mesh 

quality. 

According to the remaining criteria, the candidate software should be robust, 
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should be low cost or free of charge, and should require a short time for 3-D mesh 

generation. 

During the evaluation, the two methods for visual inspection will be compared, 

and the same is true for the three shape measures as weil as the two size measures. The 

methods that are able to effectively evaluate mesh quality will be summarized. 
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6.1 Introduction 

CHAPTER6 

RESULTS 

In this chapter, the results of the evaluation of four 3-D mesh-generation programmes 

(GiD-7.2, Gmsh-1.60, GRUMMP-O.3.0 and TetGen-1.3.4) are presented and discussed. 

Section 6.2 presents an initial evaluation using a thin-block model to determine how the 

candidate software controls mesh density. Section 6.3 presents the results of evaluating 

mesh quality based on visualization methods and on histograms of the shape qualities and 

sizes of elements in the meshes of three structures of the human middle ear. Sections 6.4 

to 6.6 presents the results of the evaluation of the residuals of the finite-element solution, 

the condition numbers of the system stiffness matrix, and the closeness to the exact 

solution as estimated by a convergence curve, respectively. Finally, conclusions are 

presented in Section 6.7. 

For ease of explanation In what follows, 'surface mesh' is used to refer to 

triangular meshes while 'volume mesh' is used to refer to tetrahedral meshes. 

6.2 Initial evaluation 

As discussed in Chapter 5, the first requirement of the evaluation is the ability to preserve 

the boundary-surface mesh unchanged during 3-D mesh generation. An initial evaluation 

is done by using a simple thin-block model to determine what mesh-density parameters 

are appropriate for preserving the boundary-surface mesh. The results of the initial 

evaluation will lead to choosing the proper mesh-density parameters for the remaining 

models. The boundary-surface mesh is preserved when the candidate programmes do not 

pro duce extra nodes on the boundary-surface mesh in the resulting volume mesh. 

GiD (CIMNE Inc. 2005) utilizes a parameter called element size to control mesh 

density. The element size is set either automatically, by averaging edge lengths of the 

active-front triangles, or manually by the user. The relationship between the number of 

extra surface nodes and the element size is illustrated in Figure 6.1, in which the number 
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of extra surface nodes decreases as the element size increases to 0.86, which is the 

average edge length within the mesh. There are no extra surface nodes when the element 

size is larger than 0.86. 
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Figure 6.1 Number of extra surface nodes vs. element size in GiD 

Similar to GiD, Gmsh (Geuzain and Remacle 2005) uses a parameter called 

characteristic length to modify mesh density. The relationship between the number of 

extra surface nodes and the characteristic length is illustrated in Figure 6.2, in which the 

number of extra surface nodes decreases as the characteristic length increases to 0.5 and 

remains zero when the characteristic length is larger than 0.5. 
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Figure 6.2 Number of extra surface nodes vs. characteristic length in Gmsh 
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GRUMMP (Ollivier-Gooch 2005) utilizes a parameter called length scale to 

modify mesh density. The relationship between the number of extra surface nodes and the 

length scale is illustrated in Figure 6.3, in which the number of extra surface nodes 

decreases as the length scale decreases and remains at 47 when the characteristic length is 

less than 0.1. As a result, the boundary-surface mesh is not preserved. GRUMMP also 

offers a coarsen routine which does help to remove sorne of the extra surface nodes, but 

the coarsen routine greatly modifies the topological relations among nodes of the 

boundary-surface mesh of the resulting volume mesh, as shown in Figure 6.4, which 

illustrates the same region of the resulting volume mesh before and after use of the 

coarsen routine. 
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Figure 6.3 Number of extra surface nodes vs. length scale in GRUMMP 

Figure 6.4 Calling coarsen routine in GRUMMP 

(a) Initial mesh (b) Mesh after calling coarsen routine 

(a) 

(bj 

To preserve the boundary-surface mesh, the original version of GRUMMP was 

modified (in the 'tetra' function of its source code) so as to generate an initial 

tetrahedralization only, without the further mesh improvement that is normally done by 
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default. The initial tetrahedralization does preserve the boundary-surface mesh for the 

thin-block model. It should be mentioned that this modification violates the design 

philosophy of GRUMMP. The modified version of GRUMMP is referred to below as 

GRUMMP-m. 

TetGen (Hang 2005a) uses a parameter called maximum-tetrahedron-volume 

constraint to modify mesh density. The actual initial maximum tetrahedron volume is 

available once the initial mesh, a mesh that has not been optimized yet by calling 

optimization routine, has been generated. The relationship between the number of extra 

surface nodes and the maximum-tetrahedron-volume constraint is illustrated in Figure 

6.5, in which the number of extra surface nodes mcreases as the 

maximum-tetrahedron-volume constraint decreases. The number of extra surface nodes 

remains at 4 when the constraint is larger than 0.13, which is the actual initial maximum 

tetrahedron volume for the thin-black model. Thus, the boundary-surface mesh is not 

preserved for any value of the constraint. 
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Figure 6.5 Number of extra surface nodes vs. maximum-tetrahedron­
volume constraint in TetGen 

In summary, GiD uses the average edge length, Gmsh uses the characteristic 

length that is equal to the average edge length, and GRUMMP-m uses the default length 

scale, to preserve the boundary-surface mesh. GRUMMP and TetGen are unable ta 

preserve the boundary-surface mesh for the thin-block mode l, which may not be true for 

the remaining models. As the evaluation focuses on the assessment of mesh quality, 
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GRUMMP and TetGen are evaluated along with GiD, Gmsh, GRUMMP-m. 

6.3 Evaluation of mesh quality 

The remaining three models described in Section 5.4 are evaluated. The mesh-density 

parameters used here for aIl three models are based on the results of the evaluation in the 

previous section. The element-size parameter for GiD was set to 0.8, and the 

characteristic-Iength parameter for Gmsh was set to 0.01. TetGen, GRUMMP and 

GRUMMP-m utilize the default parameters for their initial meshes. 

Information about the volume meshes generated for the models are listed in 

Tables 6.1 to 6.3. The information includes the numbers of nodes and elements; the 

numbers of nodes inserted on and inside the boundary-surface mesh; and the times spent 

for 3-D mesh generation. 

Table 6.1 Information about volume meshfor the pillat model 

No. of No. of elements Inserted nodes 
Time 

Software Inside 
nodes (tetrahedra) On surface 

domain (Seconds) 

GiD 257 694 0 16 2.0 

Gmsh 298 909 0 57 1.8 

GRUMMP 1400 4717 838 321 2.2 

GRUMMP-m 241 654 0 0 0.6 

TetGen 1348 4607 863 244 0.4 

Table 6.2 Information about volume meshfor the incus model 

No. of No. of elements Inserted nodes 
Time 

Software On Inside 
nodes (tetrahedra) surface domain 

(Seconds) 

GiD 2424 8308 0 554 61.8 

Gmsh 2348 7630 0 478 121.2 

GRUMMP 26227 109557 12927 11430 18.6 

GRUMMP-m 1872 6060 2 0 3.8 

TetGen 12808 47983 7698 5110 4.9 

69 



Table 6.3 Information about volume meshfor the mal/eus model 

No. of No. of elements Inserted nodes 
Time 

Software Inside 
nodes (tetrahedra) On surface 

domain (Seconds) 

GiD fail 

Gmsh 2635 8559 0 526 154.5 

GRUMMP 13535 50662 7154 6381 24.8 

GRUMMP-m 2122 6812 4 0 4.0 

TetGen 15735 59229 9554 6181 6.4 

The time spent on 3-D mesh generation by either Gmsh or GRUMMP is the total 

time including the initial mesh generation and the use of an optimisation routine a 

number of times. The number of uses of the optimisation routine was determined by 

calling it repeatedly until there was no noticeable further change in the resulting mesh. 

The number of optimisations for Gmsh is three, and for GRUMMP it is one. In contrast, 

the times for both GiD and TetGen include only the time spent on the initial mesh 

generation since there is no optimisation routine available for them. 

6.3.1 Visualizations 

The wire-frame viewing method and the cutting-plane viewing method were used to 

visualize the volume meshes. The wire-frame views ofmodels are generated in GiD. The 

cutting-plane views ofmodels are generated using TetView (Bang 2005b), a visualization 

programme for TetGen. 

6.3.1.1 R'ire:trame vielVS 

The wire-frame viewing method provides a better overview of mesh density than of mesh 

quality. Figures 6.6 to 6.8 illustrate that GiD, Gmsh and GRUMMP-m generate similar 

mesh densities, and that both GRUMMP and TetGen generate higher mesh densities than 

the others do. It can be seen in the se figures that GRUMMP-m generates many badly 

shaped tetrahedra in the volume meshes. Most badly shaped tetrahedra are long and thin. 
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GRUMMP-m 

Figure 6.6 Wire-frame views of the pillat model 
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Figure 6.7 Wire-frame views of the incus model 
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Figure 6.8 Wire-frame views of the mal/eus model (GiD fails in this case) 

6.3.1.2 Cutting-plane views 

The cutting-plane viewing method is able to provide a local visual assessment of both 

mesh density and mesh quality in a volume mesh. The overall mesh was visualized by 

moving the cutting-plane along the x, y and z axes. In Figures 6.9 to 6.11, the cutting­

plane is selected at a plane that is parallel to the x-y plane and passes through the centre of 

the z length of the box endosing the model. Aqua is used for the elements intersecting the 

user-specified plane, and fuchsia is used for the remaining elements beneath the cutting 

plane. Similar to the results of the wire-frame viewing method, these figures iIlustrate that 

GiD, Gmsh and GRUMMP-m produce lower mesh densities than GRUMMP and TetGen 

do. Furthermore, it is easy to identify that GRUMMP-m generates a number of badly 

shaped tetrahedra that are long and thin. 
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Figure 6.9 Cutting-plane views of the pillat model 
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GR1JMMP-m 

Figure 6.10 Cutting-plane views of the incus mode! 
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GRUMMP 

GRUMMP-m 

Figure 6.11 Cutting-plane views of the mal/eus model 

(GiD faUs in this case) 

6.3.1.3 Discussion 

The two visualization methods are able to provide limited visual assessments of mesh 

density. They may be used to visually evaluate mesh quality by identifying the presence 

ofbadly shaped elements in a volume mesh. 

6.3.2 Histograms of shape and size measures 

Histograms of the three shape measures and two Slze measures and the statistical 

information about these measures, discussed in Section 5.6.2, are presented in this 
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section. The three shape measures in the evaluation include the minimum solid angle, 

(} min; the ratio of radii between circumscribed sphere and inscribed sphere, p; and the 

ratio between volume and sum of squares of edge lengths, 17. The two size measures 

include the volume v and the average of edge lengths, 1 avg' The statistical information 

about these measures includes the maximum, minimum, mean, standard deviation and 

skewness. 

6.3.2.1 Pillat model 

The histograms of the three shape measures are skewed distributions, as shown in Figures 

6.12 to 6.14. The histograms of (}min are ail skewed to the right. The histograms of p 

and 17 for ail programmes except GRUMMP-m are skewed to the left, and they are 

similar to each other for each programme. 

The order GRUMMP>Gmsh>TetGen>GiD>GRUMMP-m lS obtained from 

Tables 6.4 to 6.6 for the mean values of ail three shape measures. TetGen is the 

programme that generates both the best and worst values of ail three measures, which 

may explain why it is in the third position in the above order. Different orders are 

obtained when considering the standard deviations across the three measures. Different 

orders are also obtained when comparing the skewness values across the three measures. 

GRUMMP-m is an exception because it generates positive skewness values for ail three 

measures. Considering the percentage oftetrahedra with values less than 0.1 for the three 

measures, one obtains the result that GRUMMP generates the smallest percentages and 

GRUMMP-m generates the largest percentages, while GiD, Gmsh and TetGen present 

themselves in different orders. Considering the percentage of tetrahedra with values larger 

than 0.9 for the three measures, one obtains the result that GRUMMP generates the 

largest percentages and GRUMMP-m generates the smallest percentages, while GiD, 

Gmsh and TetGen present themselves in different orders. 

The mean values of the two size measures decrease as the mesh density increases. 

For the volume histograms in this section and the next two sections, the horizontal axis 

uses a logarithmic scale, and v is scaled by 1012 and 1 avg is scaled by 104
• One obtains 

the result for both size measures that GRUMMP and TetGen generate smaller mean 
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values th an the others because of their high mesh densities. 

It can be seen in Tables 6.7 and 6.8 that TetGen generates the smallest minimum 

sizes and GRUMMP-m generates the largest maximum sizes for the two size measures. 

The order GRUMMP<TetGen<Gmsh<GiD<GRUMMP-m is obtained for the standard 

deviations of v with Gmsh and GiD having very similar values. A different order, 

GRUMMP<TetGen<GiD<Gmsh<GRUMMP-m, which is different from the above order 

only in swapping Gmsh and GiD, is obtained for the standard deviations of 1 m'~. The 

results based on the standard deviation for both size measures imply that GRUMMP 

generates the most uniform meshes and GRUMMP-m generates the least uniform 

meshes. Considering the skewness values, Gmsh generates the largest positive values for 

the two size measures, which implies that its histograms have the longest right tails. 

Overall, GRUMMP is the best and GRUMMP-m is the worst programme in terms 

of the mean values for the three shape measures and the standard deviations of the two 

size measures. TetGen is the third best programme in terms of the three shape measures 

and the second best in terms of the two size measures. Since neither GRUMMP nor 

TetGen can preserve the boundary-surface mesh, Gmsh becomes the best programme. 
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Figure 6.12 Histograms of () min for the pillat model 

Table 6.4 Statistical information about () min for the pillat model 

()mm GiD Gmsh GRUMMP GRUMMP-m TetGen 

max 0.771 0.897 0.940 0.771 0.947 

min 0.121 0.026 0.035 0.121 0.008 

mean 0.313 0.352 0.406 0.238 0.338 

std 0.147 0.161 0.168 0.152 0.159 

skewness 0.536 0.437 0.323 0.932 0.562 

<0.1 24 (3.46%) 30 (3.26%) 47 (0.10%) 129 (19.72%) 139 (3.02%) 

>0.9 0(0%) 0(0%) 1 (0.02%) 0(0%) 1 (0.02%) 
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Figure 6.13 Histograms of p for the pillat model 

Table 6.5 Statistical information about p for the pillat model 

p GiD Gmsh GRUMMP GRUMMP-m TetGen 

max 0.965 0.9958 0.996 0.965 0.998 

min 0.035 0.068 0.119 0.020 0.005 

mean 0.576 0.618 0.677 0.460 0.607 

std 0.188 0.181 0.160 0.190 0.174 

skewness -0.306 -0.540 -0.328 0.371 -0.252 

<0.1 8 (1.16%) 1 (0.11%) 0(0%) 18 (2.75%) 6(0.13%) 

>0.9 14 (2.02%) 21 (2.28%) 325 (6.90%) 10(1.53%) 164 (3.56%) 
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Figure 6. J 4 Histograms of 1') for the pillat model 

Table 6.6 Statistical iriformation about 1') for the pillat model 

GiD Gmsh GRUMMP GRUMMP-m TetGen 

0.972 0.997 0.997 0.972 0.999 

0.130 0.199 0.213 0.074 0.061 

0.654 0.686 0.738 0.526 0.669 

0.150 0.145 0.185 0.127 0.150 

skewness -0.313 -0.456 -0.350 0.184 -0.393 

<0.1 0(0%) 0(0%) 0(0%) 2(0.31%) 1 (0.02%) 

>0.9 26 (3.75%) 32 (3.48%) 470 (9.96%) 16 (2.45%) 251 (5.45%) 
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Figure 6.15 Histograms of v scaled by 1012 for the pillat model 

Table 6.7 Statistical information about v scaled by 1012 for the pillat model 

Tetrahedron GiD Gmsh GRUMMP GRUMMP-m TetGen 

max 4.866 5.049 1.322 6.546 1.572 

v min 0.048 0.057 6.42e-6 0.008 4.27e-8 

mean 0.689 0.520 0.101 0.731 0.104 

std 0.590 0.583 0.l27 0.784 0.152 

skewness 2.637 3.839 3.553 3.237 3.288 
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Figure 6.16 Histograms of 1 avR scaled by 104 for the pillat model 

Table 6.8 Statistical iriformation about 1 ffi'R scaled by 104 for the pillat model 

Tetrahedron GiD Gmsh GRUMMP GRUMMP-m TetGen 

max 3.694 4.348 2.482 4.450 2.553 

l",'R min 1.236 0.970 0.050 1.236 0.028 

mean 2.061 1.795 0.921 2.319 0.946 

std 0.494 0.571 0.394 0.781 0.424 

skewness 0.668 1.161 0.021 0.899 0.512 
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6.3.2.2 Incus model 

Similar to the characteristics of the histograms of the shape measures for the pillat model, 

the histograms of the three shape measures are again skewed, as illustrated in Figures 

6.17 to 6.19. The histograms of B min are again aIl skewed to the right. The histograms of 

p and 17 for aIl programmes except GRUMMP-m are again skewed to the left, and they 

are similar to each other for each programme. 

From Tables 6.9 to 6.l1, GRUMMP generates the largest maximum values for aIl 

three shape measures. GRUMMP-m generates the smaIlest minimum p and TetGen 

generates the smaIlest mInImUm B min and 17 . The order 

GRUMMP>Gmsh>GiD>TetGen>GRUMMP-m is obtained for the mean values of B min 

as shown in Table 6.9. The order, Gmsh>GRUMMP>GiD>TetGen>GRUMMP-m, which 

is different from the above order in the first two places, is obtained for both p and 17 

from Tables 6.10 and 6.l1. The values for Gmsh and GRUMMP are similar in aIl three 

cases. Different orders are obtained when considering the standard deviations across aIl 

three measures. One obtains the order GiD<Gmsh<GRUMMMP<TetGen<GRUMMP-m 

when considering the skewness values for both p and 17. Considering the percentage of 

tetrahedra with values less than 0.1 for the three shape measures, one obtains the order 

GRUMMP<Gmsh<TetGen<GiD<GRUMMP-m with GRUMMP and Gmsh being very 

similar. Considering the percentage of tetrahedra with values larger than 0.9, one obtains 

the order Gmsh>GRUMMP>GiD>TetGen>GRUMMP-m for both p and 17, but a 

different order GRUMMP>Gmsh>TetGen>GiD>GRUMMP-m for Bmin. 

GRUMMP and TetGen generate smaIler mean values for the two size measures 

than the programmes because of their high mesh densities. It can be seen in Tables 6.12 

and 6.13 that GRUMMP-m generates the largest maximum size for the two size measures 

while GRUMMP and TetGen generate the smaIlest minimum sizes. The order 

GRUMMP<TetGen<GiD<Gmsh<GRUMMP-m is obtained for the standard deviations of 

the two size measures. The results based on the standard deviation for both size measures 

imply that GRUMMP generates the most uniform meshes and GRUMMP-m generates 

the least uniform meshes. Considering the skewness values, the order 

TetGen>GRUMMP>GiD>GRUMMP-m>Gmsh is obtained for the two size measures, 
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which indicate that the histograms for Gmsh are least skewed to the right and the 

histograms for TetGen are most skewed to the right. 

GRUMMP and TetGen are excluded since they are unable to preserve the 

boundary-surface mesh. Gmsh is again the best programme when evaluating the three 

shape measures for the incus model. Although Gmsh is after GiD in the rankings for the 

standard deviations of the two size measures, the values generated by Gmsh and GiD are 

very close for 1 avg (0.885 and 0.918, respectively) and practically identical for v (2.942 

and 2.943, respectively). As was found for the pillat model, GRUMMP-m is the worst 

candidate programme. Finally, Gmsh is the best programme in terms of both shape and 

Slze measures. 
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Figure 6_17 Histograms of () min for the incus model 

Table 6_9 Statistical iriformation about (}min for the incus model 

(}min GiD Gmsh GRUMMP GRUMMP-m TetGen 

max 0.919 0.922 0.990 0.774 0.957 

min 0.001 0.041 0.002 0.002 9.870e-4 

mean 0.344 0.415 0.420 0.111 0.324 

std 0.149 0.164 0.152 0.088 0.153 

skewness 0.518 0.403 0.407 1.582 0.749 

<0.1 255 (2.84%) 21 (0.28%) 270 (0.25%) 3278 (54.09%) 1344 (2.80%) 

> 0.9 2 (0.02%) 5 (0.06%) 91 (0.08%) 0(0%) 14 (0.03%) 

86 



Hislogramofnorrnali:zadratioofradil Hlstogram afnormalizld ratro ofradM 

GiD Gmsh 

Norrnallzedratio ofradM Normallzedratlo afradil 

Histogramofnorrnallzadratloofradii Histogram ofnormallzadratlo atradll 

GRUMMP GRUMMP·m 

0.1 0.2 0.8 0.9 1 
Norrnalizadratloofradii Norma~Zld nHl(! of radll 

Hisiogramofnormalizedratioofradii 

TetGen 

Normallzed ratio afradii 

Figure 6.18 Histograms of p for the incus model 

Table 6.10 Statistical information about p for the incus mode! 

p GiD Gmsh GRUMMP GRUMMP-m TetGen 

max 0.997 0.994 1.000 0.942 0.999 

min 8.516e-4 0.076 0.025 1.50ge-4 0.006 

mean 0.624 0.713 0.698 0.236 0.595 

std 0.185 0.140 0.143 0.135 0.172 

skewness -0.582 -0.422 -0.370 1.060 -0.163 

<0.1 71 (0.79%) 1 (0.01%) Il (0.01%) 892 (14.72%) 45 (0.09%) 

>0.9 324 (3.60%) 654 (8.57%) 7655 (6.99%) 2 (0.03%) 1672 (3.48%) 
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Figure 6.19 Histograms of '1 for 1ncus model 

Table 6.11 Statistical information about '1 for Incus model 

GiD Gmsh GRUMMP GRUMMP-m TetGen 

0.997 0.994 1.000 0.955 0.999 

0.032 0.248 0.036 0.030 0.026 

0.696 0.765 0.756 0.307 0.662 

0.147 0.113 0.110 0.143 0.147 

skewness -0.658 -0.404 -0.304 0.842 -0.300 

<0.1 8 (0.09%) 0(0%) 11 (0.01%) 181 (2.30%) 6 (0.01%) 

>0.9 527 (5.86%) 938 (12.30%) 10786(9.85%) 3 (0.05%) 2332(4.86%) 
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Figure 6.20 Histograms of v scaled by 1012 for the incus model 

Table 6.12 Statistical information about v scaled by 1012 for the incus model 

Tetrahedron GiD Gmsh GRUMMP GRUMMP-m TetGen 

max 37.782 21.385 19.390 132.190 45.863 

v min 0.001 0.108 3.194e-7 0.004 3.142e-7 

mean 2.338 2.755 0.192 3.469 0.438 

std 2.942 2.943 0.614 6.008 1.444 

skewness 3.930 1.963 10.257 6.493 11.149 
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Figure 6.21 Histograms of lavg scaled by 104 for the incus modeJ 

Table 6.13 Statistical information about lavg scaled by 104 for the incus model 

Tetrahedron GiD Gmsh GRUMMP GRUMMP-m TetGen 

max 7.627 6.068 5.766 13.918 7.734 

lavg min 0.403 1.044 0.026 1.233 0.039 

mean 2.838 2.875 0.941 4.537 1.351 

std 0.885 0.918 0.609 2.561 0.801 

skewness 1.254 0.648 1.799 0.9233 1.948 
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6.3.2.3 Mal/eus model 

GiD fails to generate a volume mesh for the malleus model. Figures 6.22 to 6.24 show 

that the histograms of the three shape measures are still skewed and have the same 

characteristics as those for the pillat model and the incus model. 

The order Gmsh>GRUMMP>TetGen>GRUMMP-m is obtained from Tables 6.14 

to 6.16 for the three shape measures in terms of the mean values and the percentages of 

tetrahedra with values larger than 0.9. The orders are not the same when considering the 

percentages of tetrahedra with values smaller than 0.1, the standard deviations, or the 

skewness values. GRUMMP-m has the largest percentage of tetrahedra with values 

smaller than 0.1 and the largest skewness for ail the shape measures, which indicates that 

there are more element qualities close to 0 than for the other candidates. 

Similar to the results of the two size measures for the pillat model, TetGen 

generates the smallest minimum sizes and GRUMMP-m generates the largest maximum 

sizes for the two size measures, as shown in Tables 6.17 and 6.18. One obtains the order 

GRUMMP<TetGen<Gmsh<GRUMMP-m in terms of the standard deviations for the two 

slze measures. 

TetGen and GRUMMP agam are excluded because they cannot preserve the 

boundary-surface mesh. The results of the three shape measures show that Gmsh 

generates the best meshes and GRUMMP-m generates the worst meshes. Gmsh still 

generates more uniform meshes than GRUMMP-m does. Overall, Gmsh is the best 

programme when evaluating the malleus model. 
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Figure 6.22 Histograms of (Jmin for the malle us model 

(GiD fails in this case) 

Table 6.14 Statistical information about (Jmin for the malle us model 

(Jmin Gmsh GRUMMP GRUMMP-m TetGen 

max 0.937 0.960 0.827 0.978 

min 0.0077 0.002 4.374e-4 0.001 

mean 0.4027 0.393 0.125 0.325 

std 0.160 0.163 0.096 0.153 

skewness 0.371 0.426 1.726 0.725 

<0.1 93 (1.08%) 483 (0.95%) 3254 (47.77%) 1810 (3.05%) 

> 0.9 7 (0.08%) 28 (0.06%) 0(0%) 21 (0.04%) 
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Figure 623 Histograms of p for the mal/eus model 

(GiD fails in this case) 
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Table 6_15 Statistical information about p for the malleus model 

Gmsh GRUMMP GRUMMP-m TetGen 

0.993 0.998 0.951 0.998 

0.003 0.032 1.018e-5 0.002 

0.700 0.672 0.250 0.594 

0.150 0.156 0.145 0.123 

-0.868 -0.286 0.974 -0.197 

47 (0.55%) 63 (0.03%) 999 (14.67%) 56 (0.09%) 

577 (6.71%) 3275 (6.46%) 9 (0.13%) 2000 (3.37%) 
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Figure 6.24 Histograms of 11 for the malle us model 

(GiD fails in this case) 

Table 6.16 Statistical information about 11 for the malleus model 

Gmsh GRUMMP GRUMMP-m TetGen 

0.994 0.999 0.960 0.999 

0.069 0.035 0.009 0.034 

0.754 0.732 0.338 0.661 

0.123 0.126 0.147 0.149 

skewness -0.943 -0.331 0.695 -0.352 

<0.1 5 (0.06%) 6 (0.12%) 162 (2.38%) 16 (0.03%) 

> 0.9 851 (9.90%) 4607 (9.09%) 10 (0.15%) 2796 (4.72%) 
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Figure 6.25 Histograms of v scaled by 1012 for the mal/eus model 

(GiD fails in this case) 

Table 6.17 Statistical information about v scaled by 1012 for the mal/eus model 

Tetrahedron Gmsh GRUMMP GRUMMP-m TetGen 

max 20.269 28.021 169.768 45.877 

v min 0.036 4.765e-7 6.0IOe-4 3.270e-ll 

mean 2.077 0.353 2.622 0.301 

std 2.364 0.935 6.586 1.099 

skewness 2.350 10.928 10.404 14.303 
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Figure 6.26 Histograms of lavg scaled by 104 for the mal/eus model 

(GiD fails in this case) 

Table 6.18 Statistical iriformation about lavg scaled by 104 for the mal/eus model 

Tetrahedron Gmsh GRUMMP GRUMMP-m TetGen 

max 7.260 6.761 12.805 7.607 

lavg min 1.085 0.043 1.213 0.001 

mean 2.640 1.300 3.835 1.195 

std 0.827 0.645 2.105 0.704 

skewness 0.882 1.622 1.381 1.954 

6.4 Solution residuals 

Solution residuals, discussed in Chapter 5.6.3, offer a way to evaluate the overall mesh 

quality that is based on the finite-element solution. The model for this evaluation is the 

pillat model. The mechanical parameters are defined as follows: 

• Boundary conditions: All nodes connecting to the cavity wall are fully 

clamped, as shown in Figure 6.27(a) where the red tetrahedra represent those 
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nodes. 

• Load conditions: A pressure load of 1.0 Pa is applied on the interface between 

the pillat model and the incus model, as shown in Figure 6.27(b) where the red 

circles represent those nodes on the interface. 

• Material properties: Young's modulus is 20 MPa and Poisson's ratio is 0.3 

(a) (b) 

Figure 6.27 Boundary conditions (a) and load conditions (b) for the pillaI model 

The results of the evaluation in the previous section indicate that GiD, Gmsh and 

GRUMMP-m are able to preserve the boundary-surface mesh for sorne or all models. In 

contrast, GRUMMP and TetGen are unable to meet this criterion for any model. 

Therefore, only GiD, Gmsh and GRUMMP-m are evaluated for the finite-element 

mesh-quality measures in this section and the following two sections. 

As shown in Figure 6.28, most residuals are small. The larger residuals occur on 

those degrees of freedom that correspond to where the load conditions are applied. 

From the root mean squares of residuals in Table 6.19, one obtains the order 

Gmsh<GiD<GRUMMP-m. The finite-element solution using the volume mesh generated 

by Gmsh results in the smallest root mean square of residuals. In contrast, the 

finite-element solution using the volume mesh generated by GRUMMP-m results in the 

largest root mean square of residuals. Therefore, Gmsh is able to generate the best mesh 
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and GRUMMP-m generates the worst mesh. It should be mentioned that the three root 

mean squares of residuals differ by a factor of less than 2. 
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Figure 6.28 Residuals vs. degrees offreedom 

Gmsh 

Table 6.19 Root mean squares ofresidualsfor the pillat model 

Software Degrees of freedorn RMS( resid uals) 

GiD 570 0.031 

Gmsh 537 0.026 

GRUMMP-m 693 0_043 

6.5 Condition number 

The condition number, discussed in Chapter 5.6.3, is another way to evaluate the overall 

mesh quality. Its computation requires material properties and boundary conditions in 

order to formulate the system stiffness matrix. 

The condition numbers listed in Table 6.20 for the three programmes are very 

close to each other. As discussed in Section 6.3, Gmsh and GiD are able to generate good 

volume meshes, and GRUMMP-m generates the worst mesh, composed of many long 

and thin tetrahedra. It is not surprising that the finite-element solutions using the volume 
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meshes generated by Gmsh and GiD have small condition numbers. The finite-element 

solution using the volume mesh generated by GRUMMP-m, however, would have been 

expected to have a larger condition number, which is actually not true. 

Table 6.20 Condition numbers for the pillat model 

Software Condition number 

GiD 9792 

Gmsh 7553 

GRUMMP-m 8646 

The condition number could not be used to evaluate the overall mesh quality 

because the finite-element solution using a bad mesh also had a small condition number. 

6.6 Closeness to the exact solution 

As discussed in Section 4.5.3, the exact solution is generally more accurately 

approximated as mesh density increases, so the exact solution can be estimated by doing a 

convergence test. If an approximate solution produced by a particular mesh is doser to 

that estimated exact solution than are the solutions produced by the other meshes, then 

that mesh is better than the others. 

As shown in Figure 6.29, for this test, the mechanical parameters for the 

thin-block model are defined as follows: 

• Boundary conditions: One face is fully clamped 

• Load conditions: A compression load of 1 N/m2 is applied on opposite face 

• Material properties: Young's modulus is 20 MPa and Poisson's ratio is 0.3 

• Boundary Comilion 

• Load CondHlon 

Figure 6.29 Meehanieal parameters for the thin-bloek model 
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Using COMSOL (COMSOL Inc. 2006) as discussed in Section 5.6.4, the 

approximate solution monotonically converges to the exact solution as the number of 

elements increases, as can be seen in Figure 6.30. The simulation results based on the 

volume meshes generated by the candidate programmes suggest the order 

Gmsh>GiD>GRUMMP-m. The solution by Gmsh is closer to the exact solution than the 

others are. The order is actually the same as the order obtained from the three shape 

measures discussed in Section 6.3 . 
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Figure 6.30 Comparing closeness to convergence curve 
for the thin-block model 

6.7 Conclusions 

The evaluation involved comparisons in a number of key respects: visual inspections, 

mesh quality, ability to preserve boundary-surface mesh, robustness, time required for the 

generation of volume mesh, and cost of software. The overall results of the evaluation are 

summarized in Table 6.21. 

Visual inspections suggest that GRUMMP-m generates bad meshes and the other 

programmes produce good meshes. According to the histograms of shape measures, 

Gmsh and GRUMMP are able to generate the best meshes, followed by TetGen, GiD and 

GRUMMP-m. GiD is the only one that was found not to be robust because it failed for 

the malleus model, and it is also the only commercial software among the candidate 

software. Only Gmsh is capable of preserving the boundary-surface mesh for all models. 
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Table 6.21 Overall results of evaluation 

Software GiD Gmsh GRUMMP GRUMMP-m TetGen 

Visualization Good Good Good Bad Good 

Mesh quality Good Best Best Bad Better 

Preserving 
boundary- Sometimes Yes No Sometimes No 

surface mesh 

Robustness No Yes Yes Yes Yes 

Time Medium Slow Fast Fast Fast 

Cost Non-free Free Free Free Free 

TetGen and GRUMMP are similar in that they generate volume meshes with high 

density, in which the boundary-surface mesh is not preserved. Because of this, TetGen 

and GRUMMP are excluded as final choices for our project although they may generate 

good meshes. 

Considering the finite-element mesh-quality measures, the analysis of solution 

residuals could be a useful method to evaluate the overall mesh quality, although the root 

mean squares of the residuals of GiD, Gmsh and GRUMMP-m varied by less than a 

factor of 2. The closeness to the convergence curve is also an effective method to 

evaluate the overall mesh quality, but it is computationally expensive as the convergence 

curve must be obtained for the comparison. The above two methods reach the same 

result, that Gmsh generates the best mesh and GRUMMP-m generates the worst mesh. 

The analysis of the condition number indicates that the condition number is not a good 

mesh-quality indicator because GRUMMP-m produced an unexpectedly small value of 

condition number. 

Comparing every aspect of the evaluation, GRUMMP-m generates the worst 

mesh. This conclusion can easily be drawn just on the basis of visual inspections. As 

mentioned previously, GRUMMP-m is a modification of GRUMMP for the purpose of 

preserving the boundary-surface mesh, a specifie requirement for our project, and the 

modification violates the design philosophy of GRUMMP. GRUMMP itselfproduces as 

high a mesh quality as Gmsh does. 

Gmsh is the only candidate that satisfies aIl of our evaluation criteria as discussed 
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in Chapter 3. The time required for volume mesh generation is the highest among the 

candidate software, but it falls within a reasonable range. It should be mentioned that the 

time spent by Gmsh for 3-D mesh generation includes calling the optimization routine 

three times, which certainly takes more time than the other candidate programmes. 

The results for the three shape measures ( e min' P and 11) indicate that the mean 

value of a shape measure is a trustworthy indicator to assess the overall mesh quality. The 

histograms of the shape measures are skewed, and they present different orders in terms 

of skewness values for the three measures. The same is true for the standard deviations 

for the three measures. Meanwhile the percentages of tetrahedra with the normalized 

measures less than 0.1 or larger than 0.9 offer limited information about the quality of the 

overall mesh. 

The two size measures (v and 1 avg ) are equivalent for characterizing the size of a 

tetrahedron because the same order was always obtained from their standard deviations 

for the three models. Since the histograms of the two size measures are also skewed, their 

standard deviations may not provide reasonable estimates of the extent of mesh 

uniformity, and they do not predict mesh quality weIl. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

This project is an attempt to establish a number of criteria for evaluating 3-D 

mesh-generation software, and to select the 3-D mesh generator that is most suitable for 

use in our software pipeline for finite-element modelling and simulation of complex 

natural structures. 

The evaluation criteria for our project include the following characteristics: ability 

to preserve the boundary-surface mesh, volume mesh quality, robustness, time efficiency 

and cost. Four models are chosen for the evaluation. One model is a simple thin block. 

The others represent three structures ofthe human middle ear. One structure is the lateral 

bundle of the posterior incudal ligament, here referred to simply as pillat. The remaining 

structures are two ossicles, the incus and malleus. 

To import surface triangular meshes generated by our Tr3 programme into the 

candidate software for 3-D mesh generation, a programme called Fcf was developed to 

convert the surface definitions describing the models to the native file formats of the 

mesh-generation programmes, to pre-process the surface triangular meshes to verify that 

the meshes are closed and consistently oriented, and to post-process the volume 

tetrahedral meshes to verify that the meshes are topologically correct. 

The results of an initial evaluation using a thin-block model provide the gui ding 

information for proper selection of parameters in de ci ding volume mesh density for the 

three structures of the middle ear. The boundary-surface meshes were most likely to be 

preserved in the coarsest volume meshes that were generated by the candidate software. 

The results of the evaluation of the preservation of the boundary-surface meshes 

show that Gmsh is the only programme that is able to preserve the boundary-surface 

meshes for ail models. GiD is able to preserve the boundary-surface meshes for the pillat 

model and the incus model, but fails to generate a volume mesh at ail for the malleus 

model. GRUMMP and TetGen are unable to preserve the boundary-surface meshes for 

any of the models. A modified version ofGRUMMP, referred to here as GRUMMP-m, is 
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able to preserve the boundary-surface mesh for the pillat only. 

The visual inspection of mesh quality by either the wire-frame viewing method or 

the cutting-plane viewing method is useful for assessing mesh density. The two methods 

are not so useful for evaluating mesh quality but may provide qualitative information 

about mesh quality when the volume mesh has many badly shaped elements. 

Three shape-quality measures are investigated in the evaluation. They are (J min' P 

and 'fi, where (Jmin is the minimum solid angle, pis the ratio of the circumscribed sphere 

radius to the inscribed sphere radius, and 'fi is the ratio between the volume and the sum of 

squares of the edge lengths, for a tetrahedron. The results from the histograms of the three 

measures indicate that the three measures are equivalent. The average of any one of these 

element shape qualities for a volume mesh would be a good indicator for comparing the 

overall mesh quality. 

The results of the histograms of element sizes indicate that the volume and the 

average edge length of an e1ement are equivalent in characterizing the sizes of elements. 

The quality order derived from the size histograms is not, however, the same as the order 

derived from the shape histograms for ail models. 

The analysis of solution residuals indicates that the root mean square of solution 

residuals may be a good indicator of mesh quality because it gives the same order as that 

obtained from the evaluation of the e1ement shape qualities. The condition number of the 

system stiffness matrix is a very generous indicator of mesh quality and it is 

computationally very expensive. The analysis of c10seness to the exact solution seems to 

be a good indicator of mesh quality, but it is also computationally very expensive since it 

requires a convergence test to estimate the exact solution. 

The overall result is that Gmsh is the best 3-D mesh generator for use in our 

finite-element modelling and simulation pipeline. 
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Figure 7.1 Finite-element modeling and simulation pipeline 
in Auditory Mechanics Laboratory 

As shown in Figure 7.1, each simple closed surface mesh of a complex model 

generated by Tr3 is converted to the native file format of Gmsh using Fcf, and then they 

are separately imported into Gmsh for 3-D mesh generation. The mechanical parameters 

(boundary conditions, load conditions and material properties) that were defined on the 

surface meshes are assigned to the resulting volume meshes by using Fcf again. These 

models are combined together using F ad to form the complex model. There are two types 

of output from Fad. One output, with extension .sap, can be imported into Sap for 

finite-element simulation. For the other output, with extension .nastran, only geometric 

information about the complex model is preserved and can be imported into COMSOL. 

Thus, the mechanical parameters must be manually assigned to the resulting volume mesh 

before finite-element simulation in COMSOL. 

7.2 Future work 

The current pipeline can be improved in at least four respects. First, an improvement 

would be to modify Tr3 so that it outputs multiple simple parts at once. With the help of a 

scripting language, the multiple simple parts could be processed automatically. Second, 

an improvement would be to integrate the file-format conversion function (Tr3 to Gmsh) 

of Fcf into Tr3. Third, the pre-processing function of Fcf could be integrated into Tr3. 

Last, the post-processing function of Fcf could be integrated into Fad. These 

improvements would simplify the pipeline structure and increase the overall efficiency. 

Only three shape measures and two size measures were used and compared in our 
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evaluation. Since the Jacobian-based mesh-quality measures, as discussed in Section 3.4, 

can contain not only the shape and size but also the orientation of an element, such 

measures might be better in evaluating the comprehensive quality of an element than 

either a shape measure or a size measure alone. 

As discussed in Chapter 4, a priori finite-element mesh-quality measures, such as 

solution residuals and the closeness to the exact solution as approximated by a 

convergence curve, are able to provide only qualitative information about the overall 

mesh quality. In contrast, a posteriori finite-element mesh-quality measures are able to 

quantitatively characterize the error contribution of each element, which in turn reflects 

the element quality. In this case, the element quality contains not only the geometrical 

information but also the information that is closely related to the finite-element 

formulation. Hence, a posteriori measures are very promising measures for estimating 

the element quality as weIl as the overall mesh quality. 

Material-property discontinuities may result in large errors in finite-element 

solutions (Muller and Korvink 2003). Most discussions of mesh-quality measures do not 

consider material properties as possible factors. Further experiments on a complex model 

with multiple material properties could help in understanding how material properties 

affect the finite-element solution accuracy. 

106 



REFERENCES 

ADINA Inc. (2005): ADINA. http://www.adina.com/ 

Ainsworth M and Oden JT (2000): A posteriori error estimation in finite element 

analysis. John Wiley & Sons, New York. 

Altair Engineering Inc. (2005): HyperMesh. http://www.altair.com/software/hw_hm.htm 

ANSYS Inc. (2005): ANSYS. http://www.ansys.com/ 

Babuska 1 and Rheinboldt WC (1978a): A posteriori error estimates for the finite element 

method. Int J Numer Methods Engng, 12: 1597-1615. 

Babuska 1 and Rheinboldt WC (1978b): Analysis of optimal finite element meshes in RI. 

Math Comput, 33: 435-463. 

Babuska 1 and Vogelius M (1984): Feedback and adaptive finite element solution of 

one-dimensional boundary value problems. Numer Math, 44: 75-102. 

Babuska 1 and Strouboulis T (2001): The Finite Element Method and its Reliability. 

Oxford Science Publications. 

Baker Tl (1989): Element quality in tetrahedral meshes. Proceedings of the 7th 

International Conference on Finite Element Methods in Flow Problems. Huntsville, AL, 

April,3-7. 

Bathe KJ, Wilson EL and Peterson FE (1974): SAP IV: a structural analysis programfor 

static and dynamic response of linear systems. Report UCBIEERC-73/11, Earthquake 

Engineering Research Center, Berkeley. 

107 



Bathe KJ (1996): Finite element procedures. Prentice Hall, New Jersey. 

Borouchaki H, Hecht F, Saltel E and George PL (1995): Reasonably efficient Delaunay 

based mesh generator in 3 dimensions. Proceedings 4th International Meshing 

Roundtable, October, 3-14. 

Boubez TI, Funnell WRJ, Lowther DA and Pinchuk AR (1986a): Mesh generation for 

computational analysis: Part 1 - Electromagnetic and technical considerations for mesh 

generation. Comput Aided Engng J, October, 190-195 

Boubez TI, Funnell WRJ, Lowther DA and Pinchuk AR (1986b): Mesh generation for 

computational analysis: Part II - Geometrie and topological considerations for 

three-dimensional mesh generation. Comput Aided Engng J, October, 196-201 

Bowyer A (1981): Computing Dirichlet tessellations. The Comput J, 24(2): 162-166. 

Chae SW and Lee GM (1999): Volume triangulation from planar cross sections. Comput 

& Struct, 72: 93-108. 

Cavendish JC, Field DA and Frey WH (1985): An approach to automatic 

three-dimensional fmite element mesh generation. Int J Numer Meth Engng, 21: 329-347. 

Chellamuthu KC and Ida N (1994): 'A posteriori' element by element local error 

estimation technique and 2D & 3D adaptive finite element mesh refinement. IEEE 

Transactions on Magnetics, 30(5): 3527-3520. 

Cheng SW, Dey T, Edelsbrunner H, Facello M and Teng SH (1999): Sliver exudation. In 

ACM Symposium on Computational Geometry, 1-13. 

Chew LP (1989): Constrained Delaunay triangulation. Algorithmica, 4: 97-108. 

108 



Christiansen RN and Sederberg TW (1978): Conversion of complex contour line 

definitions into polygonal element mosaics. Comput Graph, 12(2): 187-192. 

CIMNE Inc. (2005): Gin. http://gid.cimne.upc.es/ 

COMSOL Inc. (2006): COMSOL. http://www.comsol.com/ 

Cougny HL, Shephard MS and George MK (1990): Explicit node point smoothing within 

oetree. Report No. 10-1990, SCOREC, RPI, Troy, NY. 

Dannelongue HH and Tanguy PA (1991): Three-dimensional adaptive finite element 

computations and applications for non-Newtonian flows. Int J Num Meth Fluids, 13: 

145-165. 

Delaunay BN (1934): Sur la sphère vide. Bulletin of the Academy of Science of the 

USSR VII. Class Sci Mat Nat, 6: 793-800. 

Dompierre J, Labbe P, Guibault P and Camerero R (1998): ProposaI of benchmarks for 

3D unstructured tetrahedral mesh optimization. Proeeedings of the 'lh International 

Meshing Roundtable, Dearbom, MI. Sandia Report SAND 98-2250, Sandia National 

Laboratories, Albuquerque, NM, 459--478. 

Ekoule AB, Peyin FC and Odet CL (1991): A triangulation algorithm from arbitrary 

shaped multiple planar contours. ACM Trans Graph, 10(2): 182-199. 

Ewing RE (1990): A posteriori error estimation. Comput Methods in Appl Meeh Engng, 

82: 59-72. 

Field DA (1995): The legacy of automatic mesh generation from solid modelling. 

Computer Aided Geometrie Design, 12: 651-673. 

109 



Field DA (2000): Qualitative measures for initial meshes. Int J Numer Meth Engng, 47: 

887-906. 

Fortune Sl (1987): A sweepline algorithm for Voronoi diagrams. Algorithmica, 2: 

153-174. 

Freitag LA and Ollivier-Gooch CF (1996): A companson of tetrahedral mesh 

improvement techniques. Proceedings of the 5th International Meshing Roundatable, 

Sandia National Laboratories, 87-106. 

Freitag LA and Knupp PM (1999): Tetrahedral element shape optimization via the 

Determinant and condition number. Proceedings of the 8th International Meshing 

Roundtable, 247-258. 

Freitag LA and Knupp PM (2002): Tetrahedral mesh improvement via the optimization of 

the element condition number. Int J Numer Methods Engng, 53(6): 1377-1391. 

Frey Pl, Boroucahki H and George PL (1998): 3D Delaunay mesh generation coupled 

with an advancing-front approach. Comput Methods Appl Mech Engng, 157: 115-131. 

Frey Pl and George PL (2000): Mesh generation: application to finite elements. Hermes 

Science Publishing, United Kingdom. 

Fuchs H, Kedem ZM and Uselton SP (1977): Optimal surface reconstruction from planar 

contours. ACM, 10: 693-70. 

Funnell WRJ (1984): On the choice of a co st function for the reconstruction of surfaces 

by triangulation between contours. Comput & Struct, 18(1): 23-26 

Funnell SM and Funnell WRJ (1988): An approach to finite-element modelling of the 

middle ear. Proceedings of the 14th Can Med & Biol Eng Conf, 101-102. 

110 



Funnell WRJ (2006): AudiLab software. 

http://audilab.bmed.mcgill.ca/~funnell/ AudiLab/sw/ 

George PL (1971): Computer implementation of the finite element method. PhD thesis, 

Dept of Computer Science, Stanford University. 

George PL (1997): Improvement on Delaunay based 3D automatic mesh generator. Finite 

Elements in Analysis and Design, 25: 297-317. 

Geuzain C and Remacle J-F (2005): Gmsh. http://www.geuz.org/gmsh/ 

Gratsch T and Bathe KJ (2005): A posteriori error estimation techniques in practical finite 

element analysis. Comput & Struct, 83: 235-265. 

Haimes R, Connell SD and Vermeersch SA (1993): Visual grid quality assessment for 3D 

unstructured meshes. AIAA paper, 93-3352, Orlando, FL. 

Hang S (2005a): TetGen. http://tetgen.berlios.de/ 

Hang S (2005b): TetView. http://tetgen.berlios.de/tetview.html 

Henson OW and Henson M (2005): MRM dataset ofhuman middle ear structure. 

http://cbaweb2.med.unc.edu/henson_ mrrnlpages/Scans _Primates.html 

Hermeline F (1982): Triangulation automatique d'un polyhedre en dimension N. RAIRO 

Analyse Numerique, 16(3): 211-242. 

Ho-Le K (1988): Finite element mesh generation techniques: a review and classification. 

Computer-Aided Design, 20(1): 27-38. 

III 



Homles DG and Snyder DD (1988): The generation of unstructured triangular meshing 

using Delaunay triangulation. Numerical grid generation in computational jluid 

mechanics '88, Miami, 643-652. 

Janicke Land Kost A (1996): Error estimation and adaptive mesh generation in the 2D 

and 3D finite element method. IEEE Transactions On Magnetics, 32(3): 1334-1337. 

Jin H and Tanner RI (1993): Generation of unstructured tetrahedral meshes by 

advancing-front method. Int J Numer Methods Engng, 36: 1805-1823. 

Kelly DW, Gago OC, Zienkiewicz OC and Babuska 1 (1983): A posteriori error analysis 

and adaptive processes in the finite element method: Part 1 - error analysis. Int J Numer 

Methods Engng, 19: 1953-1619. 

Keppel E (1975): Approximating complex surfaces by triangulation of contour lines. IBM 

J Res Dev, 19: 2-11. 

Knupp PM (1999): Achieving finite element mesh quality via optimization of the 

Jacobian matrix norm and associated quantities, Part II - A framework for volume mesh 

optimization. Technical Report SAND 99-0709J, Sandia National Laboratories. 

Knupp PM (2000): Achieving finite element mesh quality via optimization of the 

Jacobian matrix norm and associated quantities, Part 1 - A framework for surface mesh 

optimization. Int J Numer Methods Engng, 48(3):401-420. 

Knupp PM (2001): Algebraic mesh quality metrics. SIAM J Sci Comput, 23(1): 193-218. 

Lawson CL (1977): Software for Cl Surface Interpolation. Mathematical Software III, J 

Rice ed., Academic Press, New York,161-194. 

112 



Lee DT and Schachter BJ (1980): Two algorithms for constructing a Delaunay 

triangulation. Int J Comput Inf Sei, 9(9): 219-242. 

Lewis RW, Zheng y and Gethin DT (1996): Three-dimensional unstructured mesh 

generation: Part 3. Volume meshes. Comput Methods Appl Mech Engng, 134: 285-310. 

Liu A and Joe B (1994a): On the shape of tetrahedra from bisection. Mathematics of 

Computation, 63(207): 141-154. 

Liu A and Joe B (1994b): Relationship between tetrahedron shape measures. BIT, 34: 

268-287. 

Lohner R (1996): Extensions and improvements of advancing-front grid generation 

method. Commun Numer Methods Eng, 12: 683-702. 

Lo SH (1985): A new mesh generation scheme for arbitrary planar domains. Int J Numer 

Methods Engng, 21: 1403-1426. 

Lo SH (2002): Finite element mesh generation and adaptive meshing. Prog Struct Engng 

Mater, 4: 381-399. 

Marcum DL and Weatherill NP (1995): Unstructured grid generation using iterative point 

insertion and local reconnection. AIAA Journal, 33(9): 1619-1625. 

The MathWorks (2006): MATLAB. http://www.mathworks.com/ 

Mavriplis Dl (1992): An advancing front Delaunay triangulation algorithm designed for 

robustness. IGASE report, 92-99. 

Meyers D, Skinner S and Sloan K (1992): Surface from contours. Compt Graph Image 

Process, 11(3): 228-258. 

113 



MSU-ERC (2005): SolidMesh. http://www.erc.rnsstate.edu/sirncenter/docs/solidrneshl 

Muller J and Korvink JG (2003): A general purpose adaptivity driver for FE software. 

Softw Pract Exper, 33:1097-1116. 

NetLib (2005): Eispack. http://www.netlib.org/eispackl 

Nguyen VP (1982): Automatic mesh generation with tetrahedron elements. Int J Numer 

Methods Engng, 18: 273-389. 

Noor AK and Babuska 1 (1987): Quality assessment and control of finite element 

solutions. Finite Element in Analysis and Design, 3: 1-26. 

Numerical Engineering & Consulting Service Inc. (2005): PASTEK. 

http://www.necs.fr/out_ divers.php 

Oden JT, Strouboulis T, Devloo P and Howe M (1986): Recent advances in error 

estimation and adaptive improvement of finite element calculations. Computational 

Mechanics Advances and Trends, 75:369-400. 

Ollivier-Gooch CF (2005): GRUMMP. http://tetra.mech.ubc.ca/GRUMMP/ 

O'Rourke J (1998): Computational geometry in C. Cambridge University Press, 

Cambridge, UK. 

Owen SJ (1998): A survey of unstructured mesh generation technology. Proceedings of 

the rh International Meshing Roundtable, Dearbom, MI. October. 

Owen SJ (2005): Meshing research corner. 

http://www .andrew .cmu.edu/user/sowen/mesh.html 

114 



Parthasarathy VN (1993): A comparison oftetrahedron quality measures. Finite Elements 

in Analysis and Design, 15: 255-261. 

Peraire J, Peiro J and Morgan K (1992): Adaptive remeshing for three-dimensional 

compressible flow computations. J Comput Phys, 103: 269-285. 

Perrson P-O (2005): DistMesh. http://www-math.mit.edul~persson/mesh/ 

Remotigue MG and The NGP Team (1994): The national grid project: Making dreams 

into reality, in: N.P. Weatherill, P.R. Eiseman, J. Hauser and J.F. Thompson (eds.). 

Numerical Grid Generation in Computational Fluid Dynamics and Related Fields. 

Proceedings of the 4th International Conference, 429-439, Swansea, UK. 

Ruppert J (1992): A new simple algorithm for quality 2-dimensional mesh generation. 

Technical Report UCB/CSD 92/694, University ofCalifomia, Berkeley, Califomia. 

Schmelzer 1 (2005): COG. http://www.wias-berlin.de/software/cog/ 

Schneiders R (2005): Software. 

http://www-users.infonnatik.rwth-aachen.de/~roberts/software.html 

Schoberl J (2005): NETGEN. http://www.hpfem.jku.at/netgen/ 

Shantz M (1981): Surface definition for branching contour-defined objects. Computer 

Graphies, 15(2): 242-270. 

Shephard MS and Georges MK (1991): Three-dimensional mesh generation by finite 

octree technique. Int J Numer Methods Engng, 32: 709-749. 

115 



Shewchuk JR (2002): What is a good linear element? Interpolation, conditioning and 

quality measures. Proceedings of the 1 ph International Meshing Roundtable, Sandia 

National Laboratories. September 15-18, 115-126. 

Siah TS (2002): Finite-element modelling of the mechanics of the coupling between the 

incus and stapes in the middle ear. M.Eng Thesis, Dept. of Biomedical Engineering, 

McGill University. 

Simulog Technologies Inc. (2005): TetMesh GSH3D. http://www.simulog.fr/tetmesh/ 

Sloan KR and Painter J (1988): Pessimal guess may be optimal. A constitutive search 

result IEEE Trans Pattern Anal Mach Intel!, 10(6): 949-955. 

Soroka BI (1981): Generalized cones from seriaI sections. Compt Graph Image Process, 

15: 154-166. 

Tarnhuvud T, Reichert K and Skoczylas J (1990): Problem-oriented adaptive 

mesh-generation for accurate finite-element calculation. IEEE Transactions on 

Magnetics, 26(2): 779-782. 

Thacker WC, Gonzalez A and Putland GE (1980): A method for automating the 

construction of irregular computational grids for storm surge forecast models. J Comput 

Phys, 37(3): 37-387. 

Van Oosterom A and Strackee J (1983): The solid angle of a plane triangle. IEEE Trans 

Biomed Eng, 30: 125-126. 

Verfurth R (1994): A posteriori error estimation and adaptive mesh-refinement 

techniques. J Comput Appl Math, 50: 67-83. 

116 



Wang YF and Aggarwal JK (1986): Surface reconstruction and representation of 3-D 

scenes. Pattern Recognition, 19(3): 197-207. 

Watson DF (1981): Computing the n-dimensional Delaunay tessellation with application 

to Voronoi polytopes. Comput J, 24(2): 167-172. 

Weatherill NP and Hasson 0 (1994): Efficient three-dimensional Delaunay triangulation 

with automatic point creation and imposed boundary constraints. Int J Numer Methods 

Engng, 37: 2005-2039. 

Weatherill NP (1996): The reconstruction of boundary contours and surfaces in arbitrary 

unstructured triangular and tetrahedral grids. Engineering Computations, 13(8): 66-81. 

Yerry MA and Shephard MS (1983): A modified quadtree approach to finite element 

mesh generation. IEEE Comput Graph Appl, 1 :39-46. 

Yerry MA and Shephard MS (1984): Automatic three-dimensional mesh generation by 

the modified-octree technique. Int J Numer Methods Engng, 20: 1965-1990. 

Zienkiewicz OC and Zhu JZ (1987): A simple error estimator and adaptive procedure for 

practical engineering analysis.Int J Numer Methods Engng, 24: 337-357. 

Zienkiewicz OC and Taylor RL (2000): The Finite Element Method Volume 1. Basic 

Formulation and Linear Problems. McGraw-Hill. 

117 


