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ABSTRACT

The finite-element method is based on the discretization of a distributed system. The
system subdivision process is called mesh generation. The number, order, geometric
characteristics (shape, size and orientation) and physical characteristics (material
properties, boundary conditions and load conditions) of elements in the mesh will affect
the accuracy of the finite-element solution. The objective of this project is to establish a
number of criteria for evaluating 3-D mesh-generation software, and to select the 3-D
mesh generator that is most suitable for use in our software pipeline for modelling and
simulation of complex natural structures. The evaluation criteria for this project include:
ability to preserve the surface mesh during 3-D mesh generation; mesh quality;
robustness; time efficiency; and cost. The mesh quality is assessed by visualization
methods; histograms of the shape qualities and sizes of elements; solution residuals;
condition numbers; and closeness to the exact solution as estimated by a convergence
curve. Four unstructured mesh-generation programmes (GiD, Gmsh, GRUMMP and
TetGen) have been evaluated. A thin block and three structures (one ligament and two
ossicles) of the middle ear were chosen to be the models for the evaluation. A programme
was developed to convert the surface definitions describing the models to the native file
formats of the mesh-generation programmes, to verify that the surface meshes of these
models could be successfully imported into the mesh-generation programmes, and to
verify that the resulting volume meshes are topologically correct. The results of the
evaluation indicate that the mean value of the shape qualities of elements, the root mean
square of the solution residuals, and the closeness to the exact solution are good
indicators of the overall mesh quality. The Gmsh programme is finally selected as the

best 3-D mesh generator for the purposes of our software pipeline.
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RESUME

La méthode d'éléments finis est basée sur la discrétisation d'un systéme distribué. Le
processus de subdivision d'un systéme s'appelle la génération de mailles. Le nombre,
l'ordre, les caractéristiques géométriques (forme, taille et orientation) ainsi que les
caractéristiques physiques (propriétés matérielles, conditions aux extrémités et conditions
de charges) des éléments de la maille affecteront I'exactitude de la solution d'éléments
finis. L'objectif de ce projet est d'établir un certain nombre de critéres pour évaluer le
logiciel de la génération de mailles 3-D, et de choisir le générateur de mailles 3-D le plus
approprié a notre chaine de logiciels pour la modélisation et la simulation des structures
complexes. Les criteres d'évaluation pour ce projet incluent: la capacité de préserver la
maille extérieure pendant la génération de la maille 3-D; la qualité de la maille; la
robustesse; I'optimisation du temps; et le coiit. La qualité de la maille est évaluée par des
méthodes de visualisation; des histogrammes des qualités de forme et des tailles des
éléments; des résiduels de solution; des nombres de condition; et la proximité a la
solution exacte telle qu'estimée par une courbe de convergence. Quatre programmes de
génération de mailles non structurés (GiD, Gmsh, GRUMMP et TetGen) ont été évalués.
Un bloc mince et trois structures (un ligament et deux osselets) de 1'oreille moyenne ont
ét¢ choisis pour €tre les modéles d'évaluation. Un programme a €té développé pour
convertir les définitions des surfaces du modele en formats de fichier spécifiques aux
programmes de génération de mailles, pour vérifier que les mailles extérieures de ces
modeles pourraient €tre importées avec succeés dans les programmes de génération de
maille, et pour vérifier que les mailles de volume ainsi créées sont topologiquement
correctes. Les résultats de I'évaluation indiquent que la valeur moyenne des qualités de la
forme des éléments, la moyenne quadratique des résiduels de solution, et la proximité a la
solution exacte sont de bons indicateurs de la qualité globale de la maille. Le programme
de Gmsh est finalement choisi comme étant le meilleur générateur de mailles 3-D pour

notre chaine de logiciels.
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CHAPTER 1
INTRODUCTION

1.1 Background

The finite-element method is a general tool for solving various physical problems. The
finite-element method is based on the sub-division of a continuum into a finite number of
discrete elements. The solution obtained will, in general, be only an approximation to the
exact solution, which is rarely available when the continuum is an arbitrarily complex
shape. The process of sub-division of the continuum is called mesh generation. The
number, order, geometric characteristics (shape, size and orientation) and physical
characteristics (material properties, boundary conditions and load conditions) of elements
in the meshes will affect the computer storage requirements, the computation time and the
accuracy of the finite-element analysis (Zienkiewicz and Taylor 2000).

Mesh-generation methods can roughly classified into structured and unstructured.
An unstructured mesh is better for fitting a complex boundary than a structured mesh is.
Therefore, unstructured mesh-generation methods have gained more attention in
biomedical applications where the shapes of structures are arbitrarily complex. Selection
of a unstructured mesh generator for these applications involves an assessment of the
programme with respect not only to good quality, robustness, time efficiency and cost,
but also to specific requirements of the applications.

Researchers have been attempting to obtain a good mesh-quality measure for
mesh generation and mesh improvement. Most mesh-quality measures are dependent on
geometric characteristics, i.e., the shapes, sizes and orientations of elements. With the
availability of the finite-element solution, more accurate finite-element mesh-quality
measures have been proposed that are dependent on not only the geometric characteristics
but also the physical characteristics of elements. These mesh-quality measures are usually
expressed in terms of finite-element solution errors that can be divided into two groups, a
priori error estimates (solution residuals, condition numbers and closeness to the exact

solution as estimated by the convergence curve), and a posteriori error estimates. Both



kinds of error estimate can be used to steer an adaptive mesh-refinement process so that a

required accuracy of the finite-element solution can be reached.

1.2 Motivation

A number of programmes have been developed by Funnell (2006) in our Auditory
Mechanics Laboratory for finite-element modelling and simulation of complex natural
structures. These programmes are illustrated in Figure 1.1, where Fie is a programme to
segment contours in a stack of images, Tr3 is a programme for triangulating 3-D surface
meshes from a series of cross-sectional contours, Tr4 is programme for tetrahedral mesh
generation, Fad is a programme for pre-processing finite-element meshes, and Fod is a
programme for post-processing meshes. Sap (Bathe et al. 1974; Funnell 2006) is a
programme for finite-element simulation. It was originally developed at UC Berkeley and
has been modified over the years by Dr. WRJ Funnell, including the addition of

tetrahedral elements and changes to the handling of shell elements.

Fie —» T3 Tr4 Fad » Sap |— Fod

3-D
mesh-generation
software

Figure 1.1 Finite-element modeling and simulation pipeline

in Auditory Mechanics Laboratory

Tr4 is a bottleneck in this pipeline because it sometimes fails in the
mesh-generation process. To address the problem, a former student compared Tr4 with
two 3-D mesh-generation programmes, GiD (CIMNE Inc. 2005) and GRUMMP
(Ollivier-Gooch 2005). His conclusion was that GiD would be a good choice to replace
Tr4 as the 3-D mesh generation software in Figure 1.1 (Siah 2002).

This project continues Siah’s investigation of 3-D mesh-generation software by
carefully evaluating the finite-element mesh quality with the aim at achieving a reliable
and accurate finite-element solution. In addtion to GiD and GRUMMP, Gmsh (Geuzain
and Remacle 2005) and TetGen (Hang 2005a) were selected for evaluation. A set of
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criteria for assessing mesh quality are proposed for selection of the 3-D mesh generation
programme that is most suitable for replacing Tr4 and streamlining the finite-element

modelling and simulation pipeline in our lab.

1.3 Thesis outline

Mesh-generation methods and the detailed descriptions of four mesh-generation methods
are briefly reviewed in Chapter 2. Mesh-quality measures that are based on the geometric
characteristics of elements are discussed in Chapter 3. Mesh-quality measures based on
both the geometric characteristics and the physical characteristics of elements are
discussed in Chapter 4. The criteria for the evaluation of 3-D mesh-generation software,
and the models and methods used for the present evaluation, are described in Chapter 5.
The results of the evaluation of the candidate 3-D mesh-generation software are presented
and discussed in Chapter 6. Finally, conclusions are summarized and future work is

suggested in Chapter 7.



CHAPTER 2
FINITE-ELEMENT MESH GENERATION

2.1 Introduction
A number of comprehensive reviews have been published in the literature about
finite-element mesh generation (e.g., Cavendish et al. 1985; Boubez et al. 1986a,b; Field
1995; Ho-Le 1998; Frey and George 2000; Lo 2002). These reviews covered most
mesh-generation methods in two and three dimensions. As the present project focuses on
3-D unstructured mesh-generation methods for complex natural structures, this chapter
emphasizes the discussion of four particular mesh-generation methods rather than all of
them.

Surface mesh-generation methods are discussed in Section 2.2. Volume

mesh-generation methods are discussed in Section 2.3. Conclusions are given in Section

2.4,

2.2 Surface mesh generation

In biomedical fields, methods like computed tomography (CT), magnetic resonance
imaging (MRI), ultrasound imaging and histological sections make it possible to obtain
planar cross sections of biological objects. The contours (or boundaries) of the structures
are created from the planar cross sections by segmentation. Surface meshes are
reconstructed from these sets of contours for visualization of objects or for generation of
volume meshes for finite-element analysis.

Surface mesh generation is a process that generates boundary triangular meshes
for objects of interest by triangulating the contours of adjacent cross sections. The process
is composed of generation of the side surface mesh, and triangulation of the top and
bottom contours. The most important part of the process is to generate the side surface
mesh, i.e., the mesh joining the various cross sections. A number of algorithms for the
triangulation of two adjacent sections have been proposed in the literature (e.g., Fuchs et

al. 1977, Shantz 1981; Ekoule et al. 1991; Meyers et al. 1992; Chae and Lee 1999).



Overall, surface mesh generation requires a solution to the correspondence, tiling and
branching problems.

The correspondence problem involves finding the correct connections between
the contours of adjacent sections when there are multiple contours in a section. Soroka
(1981) and Meyers et al. (1992) approximate the contours by ellipses and then assemble
them into cylinders to determine the correspondence, while Wang and Aggarwal (1986)
uses the overlapping areas between contours of adjacent sections.

The tiling problem involves generating a triangular mesh from the points on
contours of adjacent sections. The problem becomes more difficult when two adjacent
contours are very different. Optimisation of a metric is a common method to resolve this
problem. The metrics proposed include maximum enclosing volume (Keppel 1975),
minimum surface area (Fuchs et al. 1977; Sloan and Painter 1988), minimum edge-length
(Christiansen and Sederberg 1978; Ekoule et al. 1991), and minimum triangle narrowness
(Funnell 1984).

The branching problem arises when an object is represented by a different number
of contours in adjacent sections, for example, a blood vessel bifurcating into two
branches. Christiansen and Sederberg (1978) and Shantz (1981) proposed to dip down the
middle of the bridge to model the saddle point of the branching region. Ekoule et al.
(1991) proposed to form an intermediate contour between two sections for the case of
one-to-many branching. The second method produces less distortion than the first

method.

2.3 Volume mesh generation

Most 2-D unstructured mesh-generation methods have successfully been extended to
three dimensions with a careful consideration of problems arising in three dimensions. In
this section, four 3-D unstructured mesh-generation methods are reviewed. For ease of
exposition, examples in two dimensions are given to help understand the similar ideas

implemented in three dimensions.



2.3.1 Delaunay-based method

Delaunay (1934) suggested the Delaunay criterion, which simply states that no node is
contained within the circumscribed circles of any triangles within the mesh. As a result, it
is sometimes called the “empty-circle” criterion in two dimensions. Figure 2.1 illustrates
that the vertex P violates the empty-circle criterion because it is located inside the

solid-line circle enclosing the triangle A ABC . The same is true for vertex C because it is

located inside the dotted-line circle enclosing the triangle A APB.

Figure 2.1 Delaunay criterion

It was not until the late 1970’s that the Delaunay criterion was utilized to develop
algorithms for mesh generation. A number of algorithms have been proposed to
implement the Delaunay triangulation, e.g., the flipping algorithm (Lawson 1977), the
incremental  point-insertion  algorithm (Watson 1981; Bowyer 1981), the
divide-and-conquer algorithm (Lee and Schachter 1980), and the sweep-line/plane
algorithm (Fortune 1987 and O’Rourke 1993). As a typical Delaunay-based method, the
incremental point-insertion algorithm is discussed in the next section to show the basic

idea of the Delaunay triangulation.



2.3.1.1 The incremental point-insertion algorithm

The general steps of the incremental point-insertion algorithm (Bowyer 1981; Watson
1981) are illustrated in Figure 2.2. The algorithm implemented in three dimensions
follows exactly the same steps except that edge, triangle and circumscribed circle are
replaced by triangle facet, tetrahedron and circumscribed sphere, respectively.
The steps of this algorithm can be summarized as follows:
¢ Create a box enclosing the entire domain (Figure 2.2a).
¢ Insert the boundary nodes to form an initial Delaunay triangulation. Figure
2.2b illustrates the triangulation after inserting one node. Figure 2.2¢ shows
the completed initial triangulation.
+ Recover the boundary edges and delete the outside triangles (Figure 2.2d).
+ Insert new nodes incrementally inside the initial triangulation (Figure 2.2e).
The number of new nodes depends on the desired element size. The Delaunay

triangulation process terminates when all new nodes have been inserted.

Three important issues should be considered in the process. They are the Delaunay

kernel, the node insertion, and the boundary recovery.



(a)

(b)

(c)

(d)

(e)
Figure 2.2 The incremental point-insertion algorithm (after Owen 1998)



2.3.1.2 Delaunay kernel
The mesh is re-triangulated locally as each new node is introduced while maintaining the
Delaunay criterion. This local triangulation is usually called the Delaunay kernel and it is
composed of the following three steps.
+ Determine the existing triangles for which the circumscribed circles contain
the new node (Figure 2.3a).
o Remove the triangles found in the previous step to form an empty cavity
(Figure 2.3b).
+ Generate new triangles by linking the new node to vertices of the empty

cavity (Figure 2.3c).

(©)
Figure 2.3 Delaunay kernel



2.3.1.3 Node insertion

A number of approaches have been proposed to address where the new nodes are
inserted. The first and simplest approach is to define the nodes from a regular grid of
nodes covering the domain at a specified nodal density. The second approach is to
recursively insert the nodes at the centroids of triangles or tetrahedra provided the
underlying sizing function is not violated (Hermeline 1982; Weatherill and Hasson 1994).
The third approach is to insert nodes at the centres of the circumscribed circles enclosing
the triangle or the circumscribed spheres enclosing the tetrahedron (Homles and Snyder
1988; Chew 1989; Ruppert 1992). The fourth approach is to insert the new nodes along
the existing internal edges at a specified spacing (Borouchaki et al. 1995; George 1997;
Simulog Technologies Inc. 2005). The fifth approach (Marcum and Weatherill 1995) is to
determine the positions of the new nodes first using the advancing-front method tﬁat is

discussed in Section 2.3.2, and then insert the nodes using a Delaunay kernel.

2.3.1.4 Boundary recovery

There is no guarantee that the boundary edges are maintained in the initial Delaunay
triangulation of the boundary nodes. Figure 2.4 shows an example in which some of the
boundary edges, represented by thick dotted line segments, are missing in the initial

triangulation. Therefore, an extra step is required to recover the surface triangulation.
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Figure 2.4 Missing boundary edges in the initial triangulation (after Owen 1998)

The missing boundary edges can be recovered by iteratively swapping triangle

edges as illustrated in Figure 2.5(a) to (d) where two thick line segments are the missing
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edges finally recovered. However, the process becomes more complex in three
dimensions since there is no guarantee that the boundary surface mesh can be recovered
by just swapping the related edges in the boundary surface mesh. An additional recovery
of the surface triangular facets is required through tetrahedral transformations (Weatherill

1996). After recovering the boundary entities, such a mesh is no longer in conformance

PN

with the Delaunay criterion.

(a) (b) (©) (d)
Figure 2.5 Boundary edges (thick line segments) are recovered by diagonal swaps

2.3.1.5 Discussion
The Delaunay-based method is an efficient mesh-generation method because it is possible
to construct several elements when each new node is inserted. However, the Delaunay
triangulation may give rise to slivers as shown in Figure 2.6 where three vertices of the
tetrahedron 7T ,pcp are located on the horizontal circle and the fourth vertex D is located a
very small distance Ad above the circle. Having very small volumes, the slivers are not
good for finite-element analysis and should be avoided.

As boundary recovery is necessary in the Delaunay-based triangulation, the mesh

may not satisfy the Delaunay criterion everywhere.

Figure 2.6 Sliver
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2.3.2 Advancing-front method

The advancing-front method was first investigated in two dimensions by George (1971),
and then extended to three dimensions by Lo (1985). This method is a very powerful
unstructured mesh-generation method for triangulating a domain of arbitrary shape, and it

is a strong competitor for the Delaunay-based method.

2.3.2.1 Process of advancing-front method

The advancing-front method starts from the boundary entities, i.e., the initial fronts. It
advances each time an element is constructed, and updates the fronts and elements
continuously throughout the process. Typically, the process is summarized as the
following three major steps:

1. Front initialization: The domain is discretized into the boundary edges as
shown in Figure 2.7(a). These edges are the initial fronts and are stored in a
front list.

2. Element formulation: This step involves the selection of the active front and
the selection of the best new point. The discussion here is partial and more
details are given in the next sections.

+ A front is selected as the active front to start the triangulation.

¢ The method for selection of the best new point for the associated active
front is to form a triangle satisfying the desired shape and size criterion, as
shown in Figure 2.7(b). The point may be an existing point K in the
current mesh if it falls within the circle of which the best point is the
centre and the radius satisfies the size criterion, as shown in Figure 2.7(c).
The new triangle, as shown in Figure 2.7(d), is formed by the point and the
active front. The new triangle is accepted if it does not intersect with any
other triangles.

3. Front updating: The new triangle is then added to the element list. The current
active front is removed from the front list. The front list is updated on the
basis of whether the new triangle introduced new edges.

Steps 2 and 3 are repeated and the whole meshing process terminates when the

front list is empty. The resulting mesh is illustrated in Figure 2.7(e).
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(e)
Figure 2.7 The advancing-front method (after Owen 1998)

2.3.2.2 Selection of an active front

The mesh elements are created based on the front entities. The objective of the selection

13



of an active front is to generate a good mesh without a possible failure in mesh
generation. The operation is not a purely local process but involves anticipation of the
front evolution. All fronts are taken into consideration and put in order before the
selection of the active front. Lohner (1996) suggested that the selection should lead to the

smallest new element.

2.3.2.3 Selection of the best point

The selection of the best point aims to form an element with high quality, with the
associated active front. The selection should also satisfy the local element size
requirement (Peraire ef al. 1992; Jin and Tanner 1993). In Figure 2.8, the best point PO is
on normal line passing though the centroid of the active front to form an equilateral
triangle. An existing point can replace the best point if it is inside the circle with its centre
at PO and with a radius of . The radius depends on the desired element size. Three points,
P1, P2 and P3 shown in Figure 2.8, on the normal line inside the circle are stored in a
stack in case no best point can be found later during the mesh-generation process. The
programme will revert back to this stage and the next candidate for the best point will be

selected to continue the triangulation.

Figure 2.8 The best points associated with a front AB

2.3.2.4 Discussion

The major advantage of the advancing-front method is that the domain boundary always

14



remains the same throughout the mesh-generation process. However, a successful
generation is not guaranteed for any arbitrary domain. A typical case of failure is
illustrated in Figure 2.9 in which the large elements cross over the small elements when
two very dissimilar fronts are merging together. In this case, the point C is the best point
for the small front 4B while the existing point G is the best point for the large front ED.
Unfortunately, in this example, the new triangles AABC and AEDG cannot be accepted

because they both intersect with current triangles in the mesh.

Figure 2.9 Merging two very dissimilar fronts

2.3.3 Quadtree/octree-based method

The quadtree/octree-based mesh-generation method has been a research topic in the past
two decades since Yerry and Shephard (1983 & 1984) initiated the application of
quadtree/octree encoding to mesh generation. Quadtree encoding refers to tree data
structures that identify the nested decompositions of a quadrilateral into four quadrants in
two dimensions. A hexahedron is decomposed into eight octants for octree encoding in

three dimensions. This method generates quadrilaterals in the interior of the boundary
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domain and triangles near to the boundary. Those quadrilaterals could be further broken
down into triangles so that all elements in the mesh are triangular elements for

finite-element analysis (Shephard and Georges 1991).

2.3.3.1 Process of quadtree-based method
A typical process of the quadtree-based method is composed of the following three steps:
¢ Create a bounding box that encloses the object domain to be meshed (Figure
2.10a).
¢ Construct the tree structure by recursively sub-dividing the box into quadrants
depending on the intersections between quadrant boundaries and object
boundary entities (Figure 2.10b).
« If the quadrant lies entirely outside the domain, then it is rejected.
+ If the quadrant lies entirely inside the domain, then it requires no further
subdivision.
» If the quadrant lies partially inside and partially outside the domain, then it
may or may not require a further subdivision depending on whether the
user-defined refinement level has been reached.

¢ Create the triangular mesh by dividing the quadrants (Figure 2.10c).
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(©)
Figure 2.10 The quadtree-based method (after Owen 1998)

2.3.3.2 Discussion

The quadtree/octree-based method is able to guarantee finite-element meshes with
well-shaped elements and to generate graded finite-element meshes for objects. However,
a small number of very large elements may be needed for the interior while a much larger
number of much smaller elements is required for a satisfactory geometric representation
of the boundary. As a result, the transition between the neighbouring quadrants may not
be smooth because their side lengths are very different, and the resulting mesh is not

conforming.
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2.3.4 Coring method

Thacker (1980) first proposed this idea for mesh generation in two dimensions. Boubez e?
al. (1986a,b) and Funnell & Funnell (1988) in our lab extended this idea to three
dimensions by developing Tr4 (Funnell 2006), a volume mesh generator.

In this method, a grid of regular prisms is constructed in the interior of the
domain. Each prism in the core is divided into a number of tetrahedral elements with
good quality, leaving a relatively small region around the boundary which is to be
discretized into tetrahedral elements. As a result, the quality of the tetrahedral elements
near the boundary will be affected by the irregularity of the domain.

This 3-D mesh-generation method is specifically designed to work from sets of
boundary contours defined on 2-D cross-sections. The cross-sectional surfaces are each
triangulated on a regular grid of nodes, using the same grid for all the sections. Grid
points inside each contour are joined to form a set of equilateral triangles. The nodes on
the external boundary of this internal mesh are joined to the nodes on the contour
boundary to form a triangulation. Adjacent sections contain identical nodes and triangles

within their overlapping areas.

Figure 2.11 The core mesh and the ring mesh of a slice
(from Boubez et al. 1986b)

As shown in Figure 2.11, a central core of pentahedral prisms is generated by
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pairing up the matching triangles from the upper and lower triangulations on the two
adjacent sections. Each of the prisms is then shredded into three tetrahedra. The
remaining portion between the two adjacent sections, a torus-like structure surrounding
the core, is assembled into a polyhedron represented by lists of related triangular faces,
edges and vertices, and then meshed using four topological operators (Boubez et al.
1986b). Each pair of adjacent sections is processed in a similar way. All of them are
assembled to form the complete three-dimensional mesh. Finally, the internal nodes are
iteratively relaxed to improve the quality of the tetrahedral elements near the boundary.
This method generates a core mesh with high quality. Furthermore, the boundary
points and their triangulation are preserved, thus retaining the slice structure. However,
the mesh quality of the volume mesh near the boundary will be affected by the irregular
shape of the domain. Badly shaped triangular elements may often be generated on the side
surface mesh when two adjacent contours are very different. Moreover, the meshing of
the ring may fail in the special case of a Schonhardt polyhedron, as illustrated in Figure
2.12. There is no way to subdivide this polyhedron into tetrahedra without creating new

vertices.

Figure 2.12 Schonhardt polyhedron
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2.4 Conclusions

The surface mesh-generation methods used in biomedical applications are described.
Three problems (correspondence, tiling and branching) encountered in these methods and
their respective remedies are introduced.

Four unstructured mesh-generation methods are discussed. The Delaunay-based
method has gained increasing attention because of its supposed robustness and efficiency.
Some of the boundary entities may be missing and thus additional procedures are required
to recover them. Furthermore, slivers are often generated and they need to be removed by
topological modification. The advancing-front method maintains the domain boundary
during mesh generation, which is useful for parallel mesh generation, but the mesh
generation may fail since the algorithm may not be able to determine an acceptable next
point during the process. The quadtree/octree-based method is able to generate good
meshes but may introduce a very non-uniform mesh to approximate the object domain
when the boundary is an arbitrary shape with high curvature. The coring method
generates a core mesh with high quality and retains the slice structure, but may fail in
mesh generation of the ring.

Combining two different mesh-generation approaches offers a possible better
solution for mesh generation. The combined approach can effectively alleviate or
eliminate the drawbacks in each method. For example, in the advancing-front-Delaunay
approach (Mavriplis 1992 and Frey et al. 1998), the advancing-front method is used to
determine the best points with respect to the active front entity while the Delaunay-based
method is used to connect vertices. The approach helps not only to reduce the possibility
of failure by the advancing-front method, but also to reduce the possibility of generation
of slivers by the Delaunay-based method while increasing the efficiency because the
Delaunay-based insertion of a single new node results in the creation of several new
clements.  Similarly, combining the Delaunay-based method and the
quadtree/octree-based method or combining the advancing-front method and the
quadtree/octree-based method are also possible alternatives to take advantage of the

strong points of each method.
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CHAPTER 3
GEOMETRIC MESH-QUALITY MEASURES

3.1 Introduction

As the finite-element method receives increasing attention, whether a mesh is good for
finite-element analysis is an important topic. One of the main problems in finite-element
generation is how to generate well-shaped elements since badly shaped elements often
result in poor numerical performance.

Mesh-quality measures are used to evaluate the quality of individual elements in
finite-element meshes. These measures can be grouped into two categories depending on
how they are derived: geometric mesh-quality measures that are computed purely on the
basis of the geometric characteristics of elements, and finite-element mesh-quality
measures that are calculated on the basis of information from the finite-element solution.

Geometric mesh-quality measures may characterize the shape and size of an
element. These measures consist of two types depending on their derivations. One type,
geometrically based, uses direct geometric characteristics of an element. The other type,
Jacobian-based, uses the element Jacobian matrices relating the reference, regular and
physical spaces. The geometric mesh-quality measures are discussed in this chapter, and
the finite-element mesh-quality measures will be discussed in the next chapter.

In this chapter, badly shaped tetrahedral elements are classified in Section 3.2. The
geometrically based shape-quality measures are discussed in Section 3.3. The
Jacobian-based shape-quality measures are discussed in Section 3.4. The results of
previously published comparisons among the shape-quality measures are presented in

Section 3.5. Conclusions are given in Section 3.6.

3.2 What are badly shaped tetrahedral elements?
As tetrahedral mesh generators will be investigated in this project, only tetrahedral
elements will be discussed in the rest of this chapter. Badly shaped tetrahedral elements

can be characterized by the fact that their volumes are nearly zero. These elements may
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have an infinite number of shapes, which can be roughly classified into two categories
depending on whether the four vertices of the tetrahedron are close to a line, or close to a

plane but not to a line (Cheng et al. 1999; Freitag and Knupp 2002) .

p

haat \

Needle Spear Spindle Spike Splinter

Figure 3.1 Badly shaped narrow tetrahedral elements

Figure 3.1 shows typical badly shaped narrow tetrahedral elements with their four
vertices close to a line. This category is further classified by Cheng et al. (1998) into five
subcategories that are characterized by the relative positions of the four vertices along the
line. A needle is a tetrahedron with three vertices close to one end of the line and the
fourth vertex as the other end of the line. A spear is a tetrahedron with two vertices
defining the line and the other two vertices near the mid-point of the line. A spindle is a
tetrahedron with four vertices roughly evenly spaced along the line. A spike is a
tetrahedron with two vertices close to one end of the line, the third vertex as the other end
of the line, and the fourth vertex close to the mid-point of the line. A splinter is a
tetrahedron with two vertices close to one end of the line and the other two close to the

other end of the line.
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Wedge Spade Cap Sliver

Figure 3.2 Badly shaped flat tetrahedral elements

Figure 3.2 illustrates typical badly shaped flat tetrahedral elements with their four
vertices close to a plane but not to a line. Similar to the first category, this category is
further classified by Cheng et al. (1998) into four subcategories depending on how the
four vertices are located with respect to the plane. The further classification is actually
characterized by the position of the fourth vertex. If the fourth vertex is close to one of
the first three vertices, the tetrahedron is a wedge. If the fourth vertex is close to the
mid-point of one of the three edges of the triangle, the tetrahedron is a spade. If the fourth
vertex is close to the geometric centre of the triangle, the tetrahedron is a cap. If the
fourth vertex and the other three vertices are roughly equally spaced around a circle, but it

is raised slightly above the circle, then the tetrahedron is a sliver.

3.3 Geometrically based shape quality measures
These mesh-quality measures are directly derived from geometry and they are defined to
evaluate the shape of an element, thus they are also called shape-quality measures or

simply shape measures.

3.3.1 Attributes for a good shape measure
Field (2000) suggested that a good shape measure for elements should possess the
following attributes:

+ Ability to detect all possible badly shaped elements

+ Dimensionlessness, that is, independence of element size

+ Normalization by an optimal value within a range [0,1}, where 1 is for an
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equilateral tetrahedron and 0 is for a degenerate tetrahedron
+ Boundedness, that is, no arbitrarily large value is produced

+ Invariance under translation, rotation and uniform scaling

3.3.2 Geometrically based shape measures for tetrahedral elements

A number of shape measures have been proposed to characterize the shape of a
tetrahedron. Nguyen (1982) and Van Oosterom and Strackee (1983) proposed the
minimum solid angle in a tetrahedron as the shape measure. In Figure 3.3, a solid angle
with unit of steradians is represented for the tetrahedron 7 45, by the spherical triangle
abc of the unit sphere centred at vertex P and bounded by the three triangular faces
sharing the vertex P . Cavendish et al. (1985) suggested that a tetrahedron can be
characterized by the ratio of the circumscribed sphere radius to the inscribed sphere
radius. Baker (1989) proposed the combined use of the ratios of the maximum edge
length to the inscribed sphere radius, and of the maximum edge length to the minimum
edge length. Cougny et al. (1990) utilized the tetrahedron volume and the four triangular
facet areas to define a dimensionless normalized aspect ratio. Dannelongue and Tanguy
(1991) used the ratio of the volume and the average edge length of the six edges of a
tetrahedron. They also suggested an alternative by replacing the average edge length with

the root mean square of the six edge lengths.

Figure 3.3 Solid angle represented by the shaded area
abc in a tetrahedron

24



Freitag and Ollivier-Gooch (1996) proposed five shape measures based on
dihedral angles. A dihedral angle is defined as an angle between two planes, in this case,
an angle «<EDB between the two triangular facets A ABC and A AEC that are
illustrated in Figure 3.4. Their shape measures include the maximum dihedral angle, the
minimum dihedral angle, the maximum cosine of the dihedral angles, the minimum
cosine of the dihedral angles and the minimum sine of the dihedral angles. The last three
shape measures are actually trigonometric functions of the first two measures. As a result,

only the first two shape measures are listed in Table 3.2.

A B
Figure 3.4 Dihedral angle in a tetrahedron

3.4 Jacobian-based shape-quality measures
The Jacobian matrix defined for finite elements can be factored into geometrically
meaningful parts including the shape, size and orientation of an element (Knupp 1999 &
2000 & 2001). The measures based on the element Jacobian matrices are able to
characterize not only the shape but also the other geometric properties of an element.

In this section, only shape measures are discussed. The element Jacobian matrices
are defined in Section 3.4.1. The use of the Jacobian matrices to construct shape measures

is discussed in Section 3.4.2.

3.4.1 Element Jacobian matrix

The element matrix is the affine transformation associated with a triangle or a

tetrahedron. Taking a triangle, for example, let ¢, € R, k=0,12, represent the
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coordinates of the three vertices of the triangle in physical space. Let &, represent the

coordinates of the four vertices in reference space, where 0<&,<1 with §,+§,+&,=1.

The affine transformation from reference space to physical space is defined by

HE)=2 &ty G.1)

k#i

where k,i=0,1,2 .

2
By expansion and the fact that Z &,=1, Equation 3.1 can be explicitly written as
k=0

t=(1-8,—&,)t,+ & 1,+E,1,

giving t=Ayuytt, (3.2)

In Equation 32, r=(x,y) and u,=(E, )" represent vertex coordinates,
t,=(x,,¥,) is a translation vector, and 4, is a 2-by-2 matrix representing the affine

transformation that is referenced to vertex f, and is written as

A= X)Xy XXy (3.3)
N= Yo V2=

As a triangle has three vertices, there are three such Jacobian matrices 4, for a

triangular element. Similarly, there are four 3-by-3 Jacobian matrices 4, for a tetrahedral

element with £=0,1,2,3 .
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Figure 3.5 Relationships of Jacobian matrices among the
reference, regular and physical triangles

Figure 3.5 illustrates the relationships of the element Jacobian matrices among the

reference, regular and physical triangles. The three triangles are related via three 2-by-2
matrices W,, M, and 4,, where k=0,1,2 is the local vertex index in a triangle and
the W, are the 2-by-2 Jacobian matrices of the regular element. The Jacobian matrix 4,
is invariant under translation, rotation, scaling, and combinations of scaling and rotation,
but it is not invariant to k. As a result, the mesh-quality measures based on 4, will vary
with k. To address the problem, Freitag and Ollivier-Gooch (1996) suggested and proved
that the weighted Jacobian matrices M,=4,W,' are independent of k, where the M,
are the linear transformations between the regular element and the physical element. The
M, are dimensionless because W, and 4, both have units of length. Therefore, the

M, , or simply M, are used to define nodally invariant element-quality measures.

3.4.2 Jacobian-based shape measures for tetrahedral elements

Liu and Joe (1994b) proposed the use of the mean ratio 7, which is based on the weighted
Jacobian matrix M, to characterize the quality of a tetrahedron. The mean ratio n of a
tetrahedron in physical space is defined as the ratio of the geometric mean to the algebraic
mean of the three eigenvalues A,, A,, A, of the 3-by-3 matrix M7 M. As we know, the
geometric mean is less than or equal to the algebraic mean for positive numbers. Liu and

Joe (1994a) proved that n is a shape measure based on the edge lengths of a tetrahedron:
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334,74,

T= (A, +A,+2,)

123972
S 3.5)

0=<i<5

Freitag and Knupp (1999) suggested that c¢=3/K(M) is capable of
characterizing the element quality, where K (M )=||M ”*H M| is the condition number
of the weighted Jacobian matrix M =4 W™ . Similar to n, c is a shape measure for a
tetrahedral element.

Both n and c possess all the attributes of a good shape measure except that they

are not invariant under uniform scaling. As a result, the sizes of elements would be taken

into consideration when assessing the shape qualities of elements in the meshes.

3.5 Comparison among shape measures
The shape measures for tetrahedral elements discussed in the previous sections are
summarized in Table 3.2. To assist in understanding their mathematical interpretation, the
notation is first given in Table 3.1. Most symbols utilized here are the same as those used
by Parthasarathy (1993) and Lewis et al. (1996).

In Table 3.2, “Optimal value” is the shape measure of an equilateral tetrahedron,

and “Bounds” specifies the range normalized by the optimal value.

Table 3.1 Notation used in Table 3.2

CR Circumscribed sphere radius
IR Inscribed sphere radius
L Length of an edge
H Height with one triangle as the base
S Surface area of a triangular facet
vV Volume
o Dihedral angle
0 Solid angle
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Table 3.2 Shape measures for a tetrahedral element

Invariance to

Optimal

Expression Unit . . Bounds
uniform scalin value
IR 1
P=CR © ©s 3.0 [0.1]
IR
o= 2 No Yes 0.204124145 [0,1]
me{
w= CR No Yes 1.632993162 [0,1]
IR
c= % No Yes 4.0 {0,1]
Lmin
T=L No Yes 1.0 {0,1]
B= 4.572473708
[ Szr No Yes [0,1]
i x104
0<i<3
_V
O‘—LT No Yes 0.11785113 [0,1]
avg
V
Y=LT No Yes 0.11785113 [0,1]
o Degree Yes 70.52877937 | [1,2.552149656]
min Degree Yes 70.52877937 [0,1]
0 i Steradian Yes 0.5512856 [0, 1]
_12(3V)8
TS No No 1.0 [0,1]
0<i<5
C=K(M) No No 1.0 [0,1]

Parthasarathy (1993) compared the first seven shape measures listed in Table 3.2

by carrying out four sets of sensitivity tests. The tests were designed to simulate a change

from an equilateral tetrahedron to a badly shaped tetrahedron corresponding to four

possible badly shaped tetrahedra: needle, wedge, cap and sliver. The «, p, o, y and

B were able to characteri_ze distortions in all four cases. The T could not detect badly

shaped tetrahedra without short edges, such as slivers. The w was limited to detecting

slivers. Finally, Parthasarathy (1993) recommended the use of y because of its low

computational cost.
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Liu and Joe (1994b) established a relationship among 0,.., p and n. In short,

for any two different measures y and v (0<p,v<1) among the three measures, the
relationship between p and v can be represented by a form c u“<v<c, u” where ¢,

¢,, € and e; are positive constants. The relationship implies that if one measure
approaches zero for a badly shaped tetrahedron, so do the others. They concluded that all
three measures are equivalent in this sense but that they do not approach 0 or 1 at the
same rates for tetrahedra with different shapes. Any one of the three measures can
approach 0 faster than the others for different badly shaped tetrahedra. They are, however,
in a fixed order thatis 6,,, < p < n when they are close to 1 for a regular tetrahedron.
p is more uniformly distributed in the interval of [0,1] than the others.

Dompierre et al. (1998) compared 0,,,, 6,..,, P, N, T and o using unit

tetrahedron, cube and sphere. They obtained the order 0, < T < 6, < p < n for the
average of the above shape measures in a mesh. This order is consistent with the order
obtained by Liu and Joe (1994b).

Freitag and Knupp (2002) compared ¢ with the two shape measures 6, and y
by doing experiments on a series of badly shaped tetrahedra. They concluded that both y
and c are able to efficiently detect all nine types of badly shaped tetrahedra. They found,
however, that §,, is unable to detect needles, spears or spindles, and that it is also

computationally expensive.

3.6 Conclusions

A mesh-quality measure is used for evaluating geometric properties, in most cases the
shape of an element. It may be derived from the geometry of the element, or from the
element Jacobian matrices.

The mesh-quality measures discussed in this chapter are used for tetrahedral
elements. Many geometrically based shape measures are available to characterize the
shape qualities of tetrahedral elements. The measures «, p, o, y, B, 0,,,, n and ¢
are able to detect some of or all of the nine types of badly shaped tetrahedral elements,
but they do not approach 0 or 1 at the same rates for the different types.
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Jacobian-based mesh-quality measures are based on element Jacobian matrices,
W, M and A in the reference, regular and physical spaces, respectively. The weighted

Jacobian matrix M=A4W™" is used to construct the shape measures n and c. They
satisfy all the requirements of a good mesh-quality measure except that they are not
invariant under uniform scaling.

Apart from the shape of an element, the element Jacobian matrices also contain
the other geometrical information, i.e., the size and orientation of the element. Therefore,
the Jacobian-based mesh-quality measures are able to quantify these geometrical
characteristics, which could provide comprehensive geometrical information about
elements for the purpose of finite-element analysis.

The shape measures usually do a good job in identifying badly shaped tetrahedra
in meshes. However, the appropriateness of the meshes for finite-element analysis may
not be decided by the shape measures alone. Since the sizes of elements play an important
role in characterizing finite-element meshes (Shewchuk 2002), a better geometric
mesh-quality measure should be able to assess both the shape qualities and the sizes of

elements.
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CHAPTER 4
FINITE-ELEMENT MESH-QUALITY
MEASURES

4.1 Introduction

The objective of the finite-element method is to seek a reliable approximate solution. The
reliability of the approximate solution has to be judged by the difference between the
exact solution and the approximate solution. As the exact solution is rarely known in
practical problems, the assessment of the reliability of the approximate solution becomes
one of the most difficult aspects of finite-element analysis (Babuska and Strouboulis
2001). However, it is possible to construct quantitative estimates for the solution error
and to determine the rate of change of the error as the number of degrees of freedom in
the finite-element model increases. A good mesh usually results in a small solution error,
for this reason, error estimates are regarded as finite-element mesh-quality measures in
this chapter.

A considerable amount of research has been devoted in the past two decades to the
development of reliable error estimates and feedback procedures by which the required
accuracy of a finite-element solution can be reached at a reasonable computational cost
(e.g., Babuska and Rheinboldt 1978a,b; Kelly et al. 1983; Oden et al. 1986; Zienkiewicz
and Zhu 1987; Ewing 1990; Verfurth 1994; Ainsworth and Oden 2000; Gratsch and
Bathe 2005). Researchers often refer to two types of error estimates, a priori error
estimates and a posteriori error estimates. It is unclear what is used to explicitly
differentiate between a priori and a posteriori. In this project, a priori error estimates are
computed on the basis of the system stiffness matrices or the global solution, and they
include solution residuals, condition numbers and convergence rate estimates. In contrast,
a posteriori error estimates are calculated on the basis of solutions for individual
elements. Both types of error estimate are able to provide more accurate estimates of
mesh quality than geometric mesh-quality measures do, and to steer mesh refinement.

In this chapter, sources of error in finite-element solutions are summarized in
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Section 4.2. Basic requirements for error estimators are described in Section 4.3. Section
4.4 introduces error norms, a model problem as a basis for explanations in later
discussions, and error measures. A priori error estimators and a posteriori error
estimators are discussed in Sections 4.5 and 4.6, respectively. Mesh refinement strategies
based on error estimates are introduced in Section 4.7. Finally, conclusions are given in

Section 4.8.

4.2 Sources of error
There are a number of sources of error in finite-element solutions. They are generally
classified into five groups (Noor and Babuska 1987; Tarnhuvud et al. 1990):
+ Reliability of the mathematical model that is used for describing a physical
model being analysed
¢ Uncertainties in the parameters (geometry, material properties, boundary
conditions and load conditions) describing the mathematical model
+ Discretization errors caused by the numerical discretization of the continuous
mathematical model, which are greatly influenced by the types, shapes and
sizes of elements in the mesh
+ Interpolation errors that depend on the polynomial order of the shape function,
that is, the orders of elements in the mesh
¢ Round-off errors and truncation errors that occur in numerical computations
on computers with finite precision
In fact, the discretization errors and the interpolation errors are both directly
influenced by the element characteristics in the mesh. Thus, they are closely interrelated
in the finite-element method. In most cases, the term ‘discretization error’ is used to refer
to the difference between the exact solution and the approximate solution. The

interpolation error is then implicitly assumed to be one source of the discretization errors.

4.3 Basic requirements for an error estimator
The purpose of a finite-element error estimator is to provide an estimate for the solution

error. Such an error estimator should possess the following characteristics (Gratsch and

33



Bathe 2005):
o be accurate, that is, the predicted error should be close to the exact error,
which is however generally unknown
+ ensure that the error estimate asymptotically approaches zero at the same rate
as the exact error does when the number of degrees of freedom increases
+ be able to yield guaranteed and sharp lower and upper bounds for the exact
error
+ be computationally inexpensive
+ be robust, that is, it can be applied in a wide range of applications
+ be able to steer mesh refinement so as to optimize the mesh with respect to the
required accuracy
It is difficult to find an error estimator that meets all these requirements. This is
mainly caused by either a very high computational cost or a lack of guaranteed bounds for

the errors in practical problems.

4.4 Error norms and error measures
In this section, a model problem and its application in solid mechanics are described in
Section 4.4.1. The concepts of error norms are introduced in Section 4.4.2. Error

measures are presented in Section 4.4.3.

4.4.1 Model problem

To illustrate the error estimators, let us consider an elliptic problem in a domain 2 with
a boundary condition I', which is partly Dirichlet and partly Neumann (Zienkiewicz and
Taylor 2000). The problem is given by

Lu=f (4.1)

where L is a linear differential operator, u is the exact solution and f is the source
function.

Let # be the approximate solution. The finite-element solution error can then be
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written as

e=u—i 4.2)

In solid mechanics, e, u and # may refer to displacement, stress or strain. To

derive the operator L, we need to use the relation between stress and strain as given by
e=Su 4.3)
and Hooke’s law as given by
o=De¢ (4.4)

where ¢ and o are strain and stress, respectively.

The operator L, derived by Zienkiewicz and Zhu (1987), takes the form

L=S"DS (4.5)

4.4.2 Error norms
Error norms are introduced to quantitatively measure the overall magnitude of errors in

finite-element solutions. There are three measures commonly used in the finite-element
method: the energy norm ||e||; or L, norm, the mean-square norm ”e”o or L, norm, and
the maximum norm |le||, or L., norm.

The energy norm or L, norm of an error is the square root of the energy of the

error over the entire domain:
lellz=(fne" Lea )" (4.6)

The mean-square norm or L, norm of an error measures the root-mean square of

the error over the entire domain:
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lello=(fneTed @) " @“.7)

The maximum norm or L., norm of an error measures the maximum absolute

value of the error over the entire domain:
lell=maxle (x)] (4.8)

The energy norm |le]|; and the mean-square norm ”e“o are more often used in
finite-element analysis than the maximum norm |le|l.. |le/lz involves the derivatives
introduced by the linear differential operator L, and thus contains the physical meaning of

the model. |le||, is a straightforward and easily computed norm without an involvement

of derivatives, but it has little physical meaning.

4.4.3 Error measures
A finite-element solution is more accurate when the error norm is smaller. Hence, the

error norm is a natural and exact error measure in the finite-element method
(Chellamuthu and Ida 1994).

To derive an error in terms of the energy norm for the model problem in Equation

4.1, we substitute Equation 4.5 into Equation 4.6 and obtain

12

lell =L (Se) D(Se)d ]

172

=[f (S(u=2))"D(S(u-2))d Q]

12

=[fﬂ eETDeEd Q]

12

=[[ ele,dQ] (4.9)

where e,=&—£ is the error of strain and e,=0 —& is the error of stress.

Equation 4.9 shows that the energy norm of an error corresponds to the square
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root of the strain energy of the error of the finite-element solution.
The three error norms (L., L, and L.) are defined over the entire domain, and the

square of each of them can be obtained by summation of element contributions, that is

||e||2=k§1 e’ (4.10)

where m represents the total number of elements.

The global relative error norm is defined by

lel]

”=”u” @.1n

The exact solution is approximated by summation of the approximate solution and

the estimated error in order to compute the global relative error norm as

lell
pr—ltell (4.12)
(llall +lely"

Assuming that the energy of the global solution error is equally distributed among
elements, the admissible local element-error norm can be derived from the global relative

error norm and the total number of elements:
1/2
el =n[||ﬂ||2+|le||2] 4.13)
“ m

The admissible local element-error norm is used for adaptive mesh refinement as

will be discussed in Section 4.7.

4.5 A priori error estimators

A priori error estimators provide information about the errors of the global solution rather
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than of the individual solutions for each element. They include the use of solution

residuals, condition number, and convergence rate estimate.

4.5.1 Solution residuals

Solution residuals are a way to assess the finite-element solution error, which in turn
leads to the assessment of the overall mesh quality. Consider the model problem as a
linear static finite-element analysis, where the linear differential operator is the system

stiffness matrix. The problem is then expressed by

Ku=f (4.14)

where K is the system stiffness matrix, u is the displacement vector and f is the load

vector. The global solution residual is defined by

R=f—-Ki (4.15)

where # is the approximate solution obtained by the finite-element method.

By substituting Ku for finto Equation 4.15, the residual becomes
R=K(u—t)=Ke (4.16)
and the solution error e is then expressed by
e=K 'R 4.17
In practice, the purpose of calculating solution residuals is to see how inaccurate
the matrix inversion might have been. An approximate solution that is more accurate

must have a small R, which results in a small solution error as long as K is well

conditioned (Bathe 1996).
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4.5.2 Condition number
The condition number of the system stiffness matrix is another possible way to assess the
solution error (Bathe 1996). If K and u in Equation 4.14 are modified by small amounts,

then the problem in Equation 4.1 is expressed by
(K+8K)u+Su)=f (4.18)

By substituting Equation 4.14 into Equation 4.18 and eliminating the small terms

6 K u , the small displacement change S is given by
Su=—K'6Ku (4.19)
Taking the energy norm on both sides of Equation 4.19 gives

Jau]_2, JoX]
<2 T<]

(4.20)

where A, is the largest eigenvalue of the system stiffness matrix K, A, is the smallest

eigenvalue, and A,/A; is defined as the condition number (Bathe 1996).

A large condition number indicates that large solution errors are more likely to
appear. The formulation of the system stiffness matrix K requires the availability of the
boundary conditions and material properties.

The condition number could be used to assess mesh quality and mesh uniformity.
If the mesh has no badly shaped tetrahedra, the largest eigenvalue, A, , is related to the
longest length in the entire mesh. The smallest eigenvalue, A, is related to the smallest
element volume. Non-uniform meshes and meshes with badly shaped tetrahedra will have

larger condition numbers (Shewchuk 2002). Condition numbers are also affected by

boundary conditions and material properties.
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4.5.3 Convergence error estimate
A finite-element approximation is known to converge in terms of the energy norm (Bathe

1996). Equation 4.21 expresses the nature of the convergence of the error norm:
llellz<ch” (4.21)

where ||e[|; represents the energy norm of the solution error, p is a positive integer
representing the polynomial order of the shape function, 4 denotes the maximum
normalized element size (h < 1), and ¢ is a constant independent of /# but dependent on
material properties.

As the element size A tends to zero or the polynomial order p of the shape function
goes to infinity, the approximate solution will asymptotically approach the exact solution
as long as no singularities exist (Noor and Babuska 1987).

The convergence curve can be drawn on the basis of the approximate solutions
and the corresponding total numbers of nodes, or elements, or degrees of freedom. With
the curve, it is possible to estimate the qualities of the meshes generated by 3-D mesh
generators for the same problem by looking at how close the solution based on a mesh is

to the exact solution as estimated by the convergence curve.

4.6 A posteriori error estimators
This section is mainly based on Zienkiewicz and Taylor (2000) and Gratsch and Bathe
(2005).

A posteriori error estimators use information obtained in the solution process to
compute individual element-error estimates for the solution. These error estimates
accomplish two goals. Firstly, they provide a quantitative idea of the exact error.
Secondly, they are often used to steer adaptive mesh refinement. In this section, three a

posteriori error estimators will be briefly discussed: explicit, implicit and Z-Z.

4.6.1 Explicit error estimators

Explicit error estimators are directly based on the approximate finite-element solution.
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Babuska and Rheinboldt (1978a,b) established the fundamental of the explicit error
estimators, and derived, for the model problem described in Equation 4.1, a bound for the

explicit error estimates as

”enzskz: [cl A% Rk”2+cz hk”Jak“Z] (4.22)

where m is the total number of elements, £ is the global element index, ¢, and ¢, are
constants, A, is the size of the element k, AR, is the interior element residual of the
element k and J, is the jump of the gradient across the boundary &, of the element £ .

The residual A R, of element k is given by
AR,=f,—Lu, (4.23)

where f, is the load vector for the element k, and #, is the approximate solution of

element k. The jump J;, is given by

nVut+tn-Vu, ifyerl

J, =& -nVu ifyel, 4.24)
0 ifyerl,

where 7 is the outward unit vector normalto I', &; is the Neumann boundary value, V
is the gradient operator, y are the element edges that separate the element £ and its
neighbouring element £ when they are inter-element edges.
The expression in Equation 4.22 directly leads to the local element-error norm
given by
leslf =c, | A R} +e, 1|5 (4.25)

The constants ¢; and ¢, are in general unknown and depend on the specific
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problem. However, the element-error norm defined in Equation 4.25 is often used, with

approximate constants, to steer adaptive mesh refinement.

4.6.2 Implicit error estimators

Implicit error estimators require the solution of auxiliary local boundary-value problems
whose solutions may yield accurate approximations to the solution error. The boundary
value problems are to be locally solved on individual elements or sub-domains. Hence
there are two methods for implicit error estimators, the element residual method and the
sub-domain residual method.

The element residual method requires the approximation of the prescribed
Neumann boundary conditions on each individual element. The upper error bound
derived from this method is guaranteed only when the local problems are computed
exactly. On the other hand, the sub-domain residual method implicitly takes the
inter-element jumps of stress into consideration because the local problems on each
sub-domain have already considered the inter-element edges. However, this method is

computationally very expensive since each element is considered several times (Gratsch

and Bathe 2005).

4.6.3 Z-Z error estimators

Z-7Z error estimators were named after Zienkiewicz and Zhu (1987), who suggested
post-processing the discontinuous gradient to obtain a more accurate strain ¢~ that is

interpolated using the same shape function as for the displacement # .

In a finite-element formulation, the displacement is approximated by
u~u=Niu (4.30)
where N is the shape function, # is the exact displacement, # is the approximate

displacement, and # is the vector of unknown coefficients that need to be determined.

For the Z-Z method, the stress is approximated by
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6 = N& (4.31)

where N is the shape function which is the same as for the displacement, g~ is the

approximate displacement, and 7 is the vector of unknown coefficients that need to be

determined.

A

The approximate stress solution & ensures (Zienkiewicz and Zhu 1987) that
jg N'@ -d)d = 0 (4.32)
where 6=DSu=(DSN)u
Substitution of Equation 4.31 into Equation 4.32 yields an approximate ¢ given

7= 4 'u| N DSN (4.33)

where A:anTNd_Q

The difference between the exact stress and the approximate stress is the error for

the stress, that is written as

e,~0 -0 4.34)

The approximate stress ¢ ~ is then obtained by using Equation 4.31. Zienkiewicz

and Zhu (1987) proved that the ¢ * in Equation 4.34 is a better approximation to the exact
stress than & is. Therefore, it is convenient to use e, to evaluate various error norms.

The Z-Z error estimators are effective in problems where the order of the shape
functions is one. However, they still have two drawbacks. One drawback is that they
cannot handle the case when material discontinuities exist. The other drawback is the

implicit assumption that smooth stresses mean accurate stresses, an assumption that may
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not be true in practice (Gratsch and Bathe 2005).

4.7 Mesh refinement
A mesh can be refined (or coarsened) to achieve an desired accuracy of the finite-element
solution. Error estimates are essential to steer either global mesh refinement or local
adaptive mesh refinement.

A priori error estimates are usually used to drive global mesh refinement in which
the element size A is reduced or the polynomial order p of the shape function is increased
over the entire domain so as to reach a desired accuracy of the solution (Janicke and Kost
1996) .

A posteriori error estimates are often intended to steer local adaptive mesh
refinement. By the end of the refinement, the contribution of each element to the total
error should be about the same. This can be translated into checking whether the
element-error norm is less than or equal to the admissible element-error norm. An

effectivity index is introduced to determine where refinement is necessary:

§=“e“a (4.35)

where “ek“ is element-error norm of the k" element and |||, is the admissible
element-error norm.
Local adaptive mesh refinement is an iterative process, which can generally be
summarized in the following steps (Verfurth 1994):
1. Construct a coarse mesh approximating the geometric domain of a
finite-element model.
2. Obtain the finite-element solution on the initial coarse mesh.
3. Compute a posteriori error estimates and then the effectivity index of each
element in the mesh.
4. Check the effectivity index on each element to decide whether or not the

element has to be refined or coarsened. The ideal effectivity index for each
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element should be one.
&>1+c Refine mesh
£,<l-c Coarsen mesh
l-c<§,<1+c  Nochange
where ¢ is a small positive number. Noor and Babuska (1987) suggested
c=02,
5. Replace the previous mesh by the new refined mesh and repeat steps 2 to 4

until each element’s effectivity index is close to one.

There are four versions of local adaptive mesh refinement (Ewing 1990).

e hversion

The local elements are subdivided into elements with smaller sizes or combined
into elements with larger sizes. The type of the new elements is the same as that
originally used and the same polynomial order p (typically p =1 or 2) of the shape
function is maintained.

e pversion

The local elements are not subdivided, but the polynomial order p of the shape
function is allowed to increase to a higher value. As a result, new nodes are
introduced on the edges of and/or inside existing elements.

e hp version

A mixed version that combines the A version and the p version.

e rversion

A version that is based on node relocation in a mesh by moving nodes to regions

where large errors are identified.

The A version requires more computer storage than the other versions do. The p

version results in more dense matrices than the 4 version and is more convenient to

implement (Noor and Babuska 1987). Both the & version and the p version have a

polynomial rate of convergence in terms of the number of degrees of freedom (Verfurth

1994). The hp version is based on a sequence of refinement steps. Only the A version or
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the p version is allowed in each step, with the typical refinement sequence being first the
h version and then the p version. Unlike the A version and the p version, the hp version
achieves an exponential rate of convergence with respect to the number of degrees of
freedom.

The 4 version and the p version are more commonly used in practical problems
than the hAp version and the r version are. This is mainly due to the fact that the
mathematical foundations for the Ap version and the » version are less developed than for

the other versions (Noor and Babuska 1987).

4.8 Conclusions
In the finite-element method, any error estimators involve questions of reliability,
accuracy and computational cost.

As a priori error estimates, solution residuals, condition numbers and
convergence rate estimates may be used for evaluating the overall mesh quality and to
steer global mesh refinement so that the approximate solution asymptotically approaches
the exact solution. However, the drawback of global mesh refinement is that it also
subdivides regions of low error, thus causing unnecessary high computational cost.

A posteriori error estimates obtained during the finite-element solution process
not only provide quantitative estimates of the element errors but also can be used to steer
adaptive mesh refinement in which only the particular elements introducing large errors
are refined. Among a posteriori error estimators, the Z-Z error estimators have gained
more attention than others because of their high efficiency and reasonable accuracy. It is
in general difficult for error estimators to provide guaranteed error bounds because error
bounds for complex problems are either guaranteed but hardly computable or computable
but not guaranteed.

Compared with the geometric mesh-quality measures discussed in Chapter 3, a
priori error estimates and a posteriori error estimates are able to provide more accurate
information about the solution error. The finite-element mesh-quality measures are able
to assess not only the geometric characteristics (shape, size and orientation) but also the
physical characteristics (material properties, boundary conditions and load conditions) of

elements in a mesh. Therefore, it is reasonable to use the finite-element mesh-quality
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measures to compare mesh qualitiecs when the same finite-element definitions are
maintained for a model with its volume meshes generated by different 3-D

mesh-generation programmes.
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CHAPTER 5
EVALUATION OF
3-D MESH-GENERATION SOFTWARE

5.1 Introduction

In this chapter, Section 5.2 outlines our guidelines for the selection of candidate 3-D
mesh-generation software and describes the basic features of the candidate software
selected. The evaluation criteria for our project are presented in Section 5.3. The models
used for the evaluation are introduced in Section 5.4. The mesh processing is discussed in
Section 5.5. The methods used for the evaluation of mesh quality are discussed in Section
5.6. The hardware and software environment for the evaluation is described in Section

5.7. Finally, conclusions are given in Section 5.8.

5.2 Selection of candidate software
Our guidelines for the selection of candidate software for further evaluation can be
briefly summarized as follows:
+ Candidate permits a surface mesh as its input for 3-D mesh generation
o Candidate generates unstructured volume meshes that include tetrahedral
meshes

+ Candidate is available for Linux and/or Windows operating systems

The 3-D mesh-generation software was chosen from two Web sites, Mesh
Generation & Grid Generation on the Web (Schneiders 2005), and Mesh Research
Corner (Owen 2005). The first Web site lists 158 software products, among which 64
products generate tetrahedral elements. The second Web site lists 94 software products,
among which 42 products generate tetrahedral elements. There is some overlap in the lists
on the two Web sites, which list most of the 3-D mesh-generation software currently

available, both free and commercial.
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Table 5.1 lists seven free and four commercial 3-D unstructured mesh-generation
programmes selected based on the guidelines given above. Of the free programmes, COG
no longer provides any support; SolidMesh has no version available for either Windows
or Linux; DistMesh requires that MATLAB be installed, which introduces an extra cost
for the MATLAB licence; and the mesh-generation code of NETGEN is included in
Gmsh. Therefore, COG, SolidMesh, DistMesh and NETGEN are excluded from
evaluation. Among the commercial programmes, the one-year licenses for ADINA,
ANSYS and HyperMesh cost a few thousand dollars, which is very expensive. GiD is
much less expensive, and we already have a permanent licence for version 6.1.2 that was
initially used by Siah (2002) for his thesis project. In this project, version 7.2 of GiD is

evaluated (as a trial version).

Table 5.1 Unstructured mesh-generation software

Free software
Software Developers Platform Algorithm |Optimization
COG Schmelzer I Linux Delaunay Yes
DistMesh Perrson P-O Linux & Windows| Delaunay No
using MATLAB
Gmsh Geuzaine C Linux, Mac & Delaunay Yes
Windows
GRUMMP | Ollivier-Gooch C Linux Delaunay Yes
NETGEN Schoberl J Linux, Unix & Delaunay Yes
Windows
TetGen Hang S Linux & Windows Delaunay Yes
SolidMesh MSU-ERC Unix advancing-front N/A
Commercial software
Software Developers Platform Algorithm | Optimization
ADINA ADINA Inc. Linux, Mac & Delaunay or Yes
Windows advancing-front
ANSYS ANSYS Inc. Linux, Mac & Delaunay or Yes
Windows advancing-front
HyperMesh Altair Inc. Linux, Mac & | advancing-front Yes
Windows
GiD CIMNE Linux & Windows | advancing-front Yes

49




Finally, GiD, Gmsh, GRUMMP and TetGen were chosen for the evaluation. GiD
utilizes the advancing-front method and the remaining three programmes utilize the
Delaunay-based method. Their important features are summarized in Table 5.2, which
lists the element types that the candidate programmes can generate; the file formats,
including the formats peculiar to themselves and the formats used by other software; and

the mesh-density and mesh-gradation control mechanisms used. Every programme but

GRUMMP has a GUI.

Table 5.2 Major features of candidate sofiware

Features GiD Gmsh GRUMMP TetGen
quadrilateral,
Element types triangle, triangle and | triangle and | triangle and
hexahedron and tetrahedron tetrahedron tetrahedron
tetrahedron
.bdry,
native | .msh and .gid .geo and .msh | .smesh and node, cle, .face,
.smesh and .poly
.vmesh
File NASTRAN
formats (-nas), AutoCAD Medit (.mesh),
.dxf) Stereolithography Geoviw (.off) and
handled (.dxD), .
andled | other Stereolithography (-sth) No Stereolithography
(.stl) and IGES (.stl)
(.iges or .igs)
st e i
Mesh-density . characteristic tetrahedron-
element size or
control length volume
coarsen .
. constraint
routine
Mesh-gradation | size-transition characteristic | length scale No
control coefficient length (grading)
Yes with
GUI Yes Yes No TetView (Hang
2005b)
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5.3 Evaluation criteria
The goal of our evaluation is to pick the programme that is most suitable for our overall
purposes, which leads to specific criteria for the present evaluation. There are five criteria

that are discussed in the following sub-sections.

5.3.1 Preservation of boundary-surface mesh

As discussed in Chapter 1, the goal of our project is to streamline our software pipeline so
as to generate finite-element volume meshes for complex structures with multiple parts.
Each individual part with its surface mesh definition is imported for 3-D mesh generation
separately, then the resulting volume meshes are joined together to form the complex
structure. The join operation requires that those parts of the surfaces touching each other
should be identical or almost identical. Moreover, it is necessary that the boundary
conditions and the load conditions defined in the Fie programme for the surface mesh can
be assigned to the same nodes on the resulting volume mesh. It is therefore necessary that
the initial triangulated boundary surface mesh be preserved unchanged by the

volume-mesh generation process.

5.3.2 Mesh quality

The candidate programme should be able to generate meshes with high quality as
assessed by a number of methods, i.e., visual inspection, histograms of the shape quality
and of the size of elements, solution residuals and condition numbers, and closeness to

the exact solution approximated by the convergence curve.

5.3.3 Robustness
The candidate programme should be robust in that it can always succeed in generating

volume meshes for all models used for the evaluation.

5.3.4 Time efficiency
Based on the current hardware and software environment, the time required for 3-D mesh

generation by the candidate programme should be reasonably short.
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5.3.5 Cost of programme

The candidate programme should be low-cost or free of charge.

5.4 Models

To evaluate the 3-D mesh-generation software, four models with different complexities of
shape were selected.

One model is a simple thin block created in GiD. The model has a length of 10, a
width of 6 and a height of 1. An element size of 0.5 was selected to generate the surface
triangular mesh.

The remaining three models consist of one ligament that is the lateral bundle of
the posterior incudal ligament, referred to simply as pillat, and two ossicles, the incus and
malleus. These models were based on high-resolution magnetic-resonance images of the
human middle ear, provided by Henson and Henson (2005). The segmentation was done
by various members of our lab and the surface triangular meshes were generated using
our Tr3 programme.

Information about the surface meshes for all four models is listed in Table 5.3.

Table 5.3 Information about surface meshes of models

Model No. of nodes No. of elements (triangles)
thin block 362 720
pillat 241 478
incus 1870 3736
malleus 2118 4232

The thin block is shown in Figure 5.1 and the remaining three models are

illustrated in Figure 5.2. All of them are rendered with flat lighting in GiD.
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Figure 5.1 Thin-block model

pillat incus malleus

Figure 5.2 Three structures of middle ear

5.5 Mesh processing

This section discusses the processing of mesh files and meshes. Section 5.5.1 discusses
the conversion from a surface mesh definition generated by the Tr3 programme to the
native files of the candidate programmes for 3-D mesh generation. Section 5.5.2
discusses how the mechanical parameters are added to the volume mesh for the purpose
of finite-element analysis. The pre-processing of the surface mesh and the post-processing
of the volume mesh are discussed in Sections 5.5.3 and 5.5.4, respectively. A programme

called Fcf was developed to realize all of these functions.
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3.5.1 Mesh file format conversion

The Tr3 programme can produce three different file formats: the native file format for
GRUMMP, the file format with an extension of .wrl for visualization in Virtual Reality
Modelling Language (VRML) viewers, and the file format with an extension of .sap for
finite-element analysis using the Sap programme. These formats cannot be directly
imported into GiD, Gmsh or TetGen. The Fcf programme was used here to convert the
surface mesh file with an extension of either .wrl or .sap to the native file formats for

GiD, Gmsh and TetGen.

5.5.2 Assignment of the mechanical parameters to the volume mesh

For the purpose of finite-element simulation with the Sap programme, the Fcf programme
reads the boundary conditions and the load conditions defined at nodes in the surface
mesh file with an extension of .sap that is created by our Tr3 programme, and assigns
these conditions to the corresponding nodes on the surface of the resulting volume mesh.
In addition, the material properties of the shell elements of the surface mesh are assigned
to the tetrahedral elements of the volume mesh. These properties include the Young’s

modulus and the Poisson’s ratio.

5.5.3 Pre-processing the surface mesh
A surface mesh generated by the Tr3 programme needs to be verified to ensure that it has
consistent triangle orientations and that it is simple and closed. Once the surface mesh

passes the pre-processing test, it can proceed to 3-D mesh generation.

5.5.3.1 Surface closure check

The surface mesh represents a simple closed surface if every one of its edges is shared by
exactly two neighbouring triangles, neither more nor fewer. The Fcf programme reads the
surface mesh produced by the Tr3 programme, with its definition containing all vertex
coordinates followed by lists of vertices defining elements. The Fcf programme then
checks for closure of the surface mesh. The programme starts from an initially selected

triangle and scans all other triangles to check whether the three edges are shared by

54



neighbouring triangles. For each edge, a flag is initially set to 1 before checks start and
the flag is incremented by 1 only if the edge is shared by a neighbouring triangle. The
process is repeated until all triangles on the surface mesh have been checked. Upon
completion of the process, if all edges on the surface mesh have flag values of 2, the
surface mesh is confirmed to be closed. In contrast, those edges with flag values of 1 are
boundary edges, and those edges with flag values larger than 2 correspond to locations
where two or more surfaces touch each other. In any case, the global vertex indices and
coordinates of these edges are exported to a text file. Based on this file, a corrective
modification can be performed manually in the Fie programme so that a simple closed

surface mesh can be generated.

5.5.3.2 Surface triangle orientation detection and correction
The surface triangle orientations are consistent if the vertices of any triangle on the
surface mesh are numbered counter-clockwise (CCW) when viewed from outside the
boundary surface. Incorrect orientations would cause new nodes to be inserted outside
rather than inside the boundary-surface mesh during the generation of the volume mesh.
For example, the advancing-front method inserts points with respect to the orientations of
the active fronts to make sure that the points are inserted inside rather than outside the
model domain. The same is true for the Delaunay-based method. Inconsistent orientations
may be caused by software error when the surface mesh is created or by a user’s mistake
while doing segmentation manually. In addition to flagging those triangles that have
incorrect orientations, the Fcf programme can also automatically correct them. The steps
for detecting and correcting the incorrect orientations are summarized in the following:
1. Finding a starting triangle
«  Select a point outside the model domain: determine a box enclosing the
model, and then select a point along the x axis at a distance from the
geometrical centre of the box that is equal to the x length of the box
+ Define a ray: the ray has its origin at the point selected in step 1 and its
direction pointing to the geometrical centre of the box.
- Find the intersection points where the ray passes through the surface mesh

of the model: the number of intersection points should be even if the
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surface mesh is closed (O’Rourke 1998). It is possible that there are no
intersection points. In such a case, the ray can be slightly rotated around an
axis that passes through the geometrical centre of the box and is parallel to
the x, y or z axis until an intersection occurs.

Find the starting triangle: the intersection point nearest to the origin of the
ray is determined by comparing the distances between the intersection
points and the origin of the ray. The triangle on which the nearest
intersection point is located is defined as the starting triangle for the

purpose of mesh-orientation detection and correction.

2. Detecting and correcting the orientation of the starting triangle

Whether or not the triangle is correctly oriented is determined by the sign
of the volume of the tetrahedron with its four vertices (x,,¥,,z,)

(i=0,1,2,3), of which three vertices (i=0,1,2) correspond to the starting
triangle and the fourth vertex (i=3) is the origin of the ray. The volume is

given by:

Xy Yo 2y
V=l X N g
6lx, y, z,

X3 V3 Z3

R

O T S

If the sign of the volume is positive, then the orientation of the starting
triangle is correct; otherwise, the orientation incorrect.

The correction is performed on the basis of the sign of the tetrahedron
volume. If the sign of the volume is negative, swapping any two vertices in

the starting triangle results in the correct orientation.

3. Detecting and correcting orientations of the remaining triangles

An edge shared by two neighbouring triangles should have opposite
orientations in the two triangles if they are numbered consistently. The
orientations of neighbouring triangles are detected on the basis of the

correct orientation of the current triangle. A neighbouring triangle which
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has an incorrect orientation is corrected by swapping any two of its
vertices.
« The process of detection and correction is iterated. The overall process

terminates when all triangles in the mesh have been processed.

5.5.4 Post-processing the volume mesh

A volume mesh may be topologically incorrect because of failure of the mesh-generation
algorithms. For example, some nodes may be inserted outside the model domain during
3-D mesh generation, or some elements may have negative volumes, or there may be
overlapping elements, or gaps between elements.

To detect such problems, the Fcf programme was used to confirm the correctness
of a volume mesh by checking whether each element in the mesh has a positive volume,
and whether the volume enclosed by the surface mesh equals the volume obtained by
summing together the volumes of all tetrahedral elements. The tolerance for checking for

volume equality of the two floating-point numbers is set to 107,

5.6 Mesh evaluation

The overall mesh quality of a volume mesh is assessed by a number of methods as
described in the following subsections. Visual inspection is discussed in Section 5.6.1.
Histograms of the shapes and sizes of elements are discussed in Section 5.6.2.
Finite-element solution residuals and condition numbers are discussed in Section 5.6.3.
Closeness of the finite-element solution to the exact solution approximated by a

convergence curve is discussed in Section 5.6.4.

5.6.1 Visualization of the volume mesh

Few methods are available to effectively visualize the interior elements of a volume
mesh. The mesh quality of an element can be roughly evaluated by visual inspection.
However, the visual inspection becomes more difficult for a volume mesh with a lot of
elements. Nevertheless, several methods have been attempted for this purpose.

Figure 5.3(a) shows an example of the wire-frame viewing method, which
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provides an overview of mesh density at different locations but does not give a clear
impression of the shapes of the interior elements.

Figure 5.3(b) gives an example of the cutting-plane viewing method, which
provides the shapes of elements intersecting with a user-specified plane. The plane is
selected to be parallel to the x-y plane in this example. By moving the plane along the z
axis, the user is able to inspect the entire mesh. In the figure, aqua is used for the
elements intersecting the user-specified plane and fuchsia indicates the remaining
elements beneath the cutting plane.

Figure 5.3(c) provides an illustration of the point-cloud viewing method that
display the boundary-surface mesh and the nodes inside the boundary surface. This
method is better for visualizing point spacing for 2-D meshes than for 3-D meshes
(Remotigue et al. 1994).

Figure 5.3(d) shows a representation of the shrinking-element viewing method. It
allows the user to inspect the shapes of the interior elements, but it gives only a limited
idea of mesh quality through gaps between the shrunk elements.

In addition, Haimes et al. (1993) proposed a visualization method in which
elements can be opaque or transparent depending on their shape qualities. The
implementation of this method also appears in a commercial software package called
PASTEK (NECS Inc. 2005). This method is good for determining the locations of badly
shaped or well-shaped elements by modifying the threshold value. It is difficult, however,
to determine the number of opaque elements, and also difficult to determine the overall
mesh quality.

Interactivity is generally a great help in visualization via rotation, translation and
zooming. It is commonly used in combination with the above methods in practical

applications.
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(a) Wire-frame view (b) Cutting-plane view

(¢)Point-cloud view (d) Shrinking-elements view

Figure 5.3 Four visualization methods

5.6.2 Histograms of the shape qualities or sizes of elements

As discussed in Chapter 3, most mesh-quality measures are dependent on the shapes of
elements. Three tetrahedral shape measures (0,,,, p and n) are chosen here for the
evaluation. The first measure, 8,,, , is the minimum solid angle of a tetrahedron. This
measure is able to detect most types of badly shaped tetrahedra. The second measure, p,

is the ratio of the radii of the circumscribed sphere to the inscribed sphere of a

tetrahedron. This ratio is used in the Delaunay-based mesh-generation method. The third
measure, 1, is the ratio between the volume and the sum of the squares of the edge

lengths of a tetrahedron, which is used in the advancing-front method.
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Apart from the shape qualities of elements, the sizes of elements in a mesh also
influence the finite-element solution accuracy. As a result, the sizes of elements are also
taken into consideration in the evaluation. The size of an element is characterized by the
volume v or by the average of the edge lengths of the element, /,,, .

The histogram is used here for addressing overall mesh-quality assessment. It
gives the user a sense of mesh quality throughout the entire domain. In a shape-quality
histogram, the horizontal axis represents the shape quality, that is normalized within a
range between 0 and 1, where 0 represents a flat tetrahedron and 1 represents an
equilateral tetrahedron; the vertical axis represents the percentage of elements for each
bin. The number of bins is chosen here to be 50. Using shape-quality histograms, it is
easy to make comparisons among the four 3-D mesh-generation programmes by looking
at the distributions of badly shaped tetrahedra and their normalized shape qualities.
Similarly, in the size histograms, the horizontal axis represents the volumes or the
averages of the edge lengths of the elements, and the vertical axis represents the
percentage of elements for each bin. The number of bins is again chosen to be 50. In both
the shape-quality and size histograms, the linear scale will be replaced by a logarithmic
scale when the region of interest in the histograms is concentrated at very small values.

To quantitatively describe the histograms for models, statistical information about
the three shape measures and the two size measures are computed. The information
includes:

¢ Maximum, minimum, mean, standard deviation and skewness of normalized

values of the three shape measures.

+ The number and the percentage of tetrahedra having normalized values less

than 0.1. Such tetrahedra are taken to be badly shaped.

o The number and the percentage of tetrahedra having normalized values larger

than 0.9. Such tetrahedra are taken to be well shaped.

¢ Maximum, minimum, mean, standard deviation and skewness of the two size

mecasurcs.

The standard deviation and skewness are two measures for assessing the

variability of a data set. The standard deviation is a measure for characterizing how the
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data values spread out in the data set, and it is defined by

std=\/z (x,—%)/(N—-1) (5:2)

where N is the number of samples in the data set and X is the mean value. The mean
value and standard deviation become less meaningful when the histogram is
asymmetrical. The skewness is a measure of the degree of asymmetry of a distribution,

and it is defined by

skewness=-""——— (5-3)
N-1)std’

Any symmetric distribution will have a skewness of zero. Negative skewness
values indicate data that are skewed to the left and positive skewness values indicate data
that are skewed to the right. ‘Skewed to the left’ means that the left tail is long relative to
the right tail. Similarly, ‘skewed to the right’ means that the right tail is long relative to
the left tail.

It is better to use the percentage of badly shaped or well-shaped tetrahedra, rather
than the number, when comparing volume meshes. A higher percentage of tetrahedra
with normalized values less than 0.1 indicates that the overall mesh quality is likely to be
worse. In contrast, a higher percentage of tetrahedra with normalized values larger than
0.9 means that the overall mesh quality is probably better.

The Fcf programme is used to compute the three shape measures and the two size
measures. MATLAB (The MathWorks, 2006) is used to compute the maximum,

minimum, standard deviation and skewness of the above measures, and to draw the

histogram figures.

5.6.3 Solution residuals and condition number

As discussed in Sections 4.6.1 and 4.6.2, solution residuals and the condition number of
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the system stiffness matrix may be used to evaluate the overall mesh quality. The same
mechanical parameters (boundary conditions, load conditions and material properties)
were defined for the volume meshes produced by all of the programmes, and then
simulations were run using the Sap programme. The root mean squares of residuals were
computed and compared. The condition number was calculated using Luk, a programme
developed by Funnell (2006). The Luk programme reads the system stiffness matrix
produced by the Sap programme, uses Eispack (NetLib 2005) routines to compute

eigenvalues, and computes the condition number.

5.6.4 Closeness to the exact solution
The convergence curve discussed in Section 4.5.3 shows that the approximate solution
approaches the exact solution as the mesh density increases. A convergence curve for the
thin-block model was obtained by running COMSOL (COMSOL Inc. 2006), a
commercial finite-element package for which we already have a licence. Using
COMSOL, it is easy to generate the regular geometric shape of the thin-block model, to
assign mechanical parameters, and to do the finite-element simulations. Moreover, the
user does not have to use the Fcf programme twice, once for the file format conversion of
the surface mesh and once for the assignment of mechanical parameters to the resulting
volume, for each different mesh density.

The quality of the volume meshes can be evaluated by looking at how close the
solutions based on those volume meshes are to the exact solution that is estimated by the

convergence curve.

5.7 Evaluation environment

The same computing environment was maintained throughout the evaluation. GiD, Gmsh
and TetGen provide both a Windows version and a Linux version, while GRUMMP
provides a Linux version only. As a result, Linux was chosen as the operating system.
Moreover, to accurately calculate the time required for the 3-D mesh-generation process,
no other processes were permitted to run during 3-D mesh generation.

The operating system used was Debian GNU/Linux version 3.1 (‘Sarge’) with
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kernel version 2.6.8. The computer hardware specifications are listed below:
- CPU: Intel Pentium 3.0 GHz
+  Hard drive: WDC 80G 7200 RPM
+  Memory: 1 Gbyte
» Video card: Nvidia 5200FX

5.8 Conclusions

Four models (a thin block, and one ligament and two ossicles of the human middle ear)
with different complexities of shape were chosen as the input surface triangular meshes
for the evaluation.

A programme called Fcf was developed to verify the closure and consistency of
the input boundary-surface meshes before 3-D mesh generation, and to verify the
topological correctness of the resulting volume meshes. The Fcf programme was also
used for file format conversion, and for retrieving the mechanical parameters from the
input boundary-surface mesh and then assigning them to the resulting volume mesh.

To evaluate the candidate software, five criteria have been proposed. The first
criterion is that the candidate software is able to preserve the boundary-surface mesh.
With the boundary-surface mesh preserved, the mechanical parameters for the input
surface mesh can be accurately assigned to the resulting volume mesh, and furthermore
two or more models can be accurately joined at their interfaces. The second criterion is
that the volume mesh generated by the candidate software should possess a high quality.
The mesh quality was evaluated in four ways. Firstly, visual inspection using the wire-
frame viewing method and the cutting-plane method provided the first impressions.
Secondly, the overall mesh quality was evaluated based on shape-quality histograms and
size histograms. Three shape measures and two size measures were selected for
evaluating mesh quality. Thirdly, solution residuals and condition numbers were used to
evaluate mesh quality in terms of finite-element solution accuracy. Lastly, closeness to
the exact solution estimated by the convergence curve was also used to evaluate mesh
quality.

According to the remaining criteria, the candidate software should be robust,
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should be low cost or free of charge, and should require a short time for 3-D mesh
generation.

During the evaluation, the two methods for visual inspection will be compared,
and the same is true for the three shape measures as well as the two size measures. The

methods that are able to effectively evaluate mesh quality will be summarized.
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CHAPTER 6
RESULTS

6.1 Introduction
In this chapter, the results of the evaluation of four 3-D mesh-generation programmes
(GiD-7.2, Gmsh-1.60, GRUMMP-0.3.0 and TetGen-1.3.4) are presented and discussed.
Section 6.2 presents an initial evaluation using a thin-block model to determine how the
candidate software controls mesh density. Section 6.3 presents the results of evaluating
mesh quality based on visualization methods and on histograms of the shape qualities and
sizes of elements in the meshes of three structures of the human middle ear. Sections 6.4
to 6.6 presents the results of the evaluation of the residuals of the finite-element solution,
the condition numbers of the system stiffness matrix, and the closeness to the exact
solution as estimated by a convergence curve, respectively. Finally, conclusions are
presented in Section 6.7.

For ease of explanation in what follows, ‘surface mesh’ is used to refer to

triangular meshes while ‘volume mesh’ is used to refer to tetrahedral meshes.

6.2 Initial evaluation
As discussed in Chapter 5, the first requirement of the evaluation is the ability to preserve
the boundary-surface mesh unchanged during 3-D mesh generation. An initial evaluation
is done by using a simple thin-block model to determine what mesh-density parameters
are appropriate for preserving the boundary-surface mesh. The results of the initial
evaluation will lead to choosing the proper mesh-density parameters for the remaining
models. The boundary-surface mesh is preserved when the candidate programmes do not
produce extra nodes on the boundary-surface mesh in the resulting volume mesh.

GiD (CIMNE Inc. 2005) utilizes a parameter called element size to control mesh
density. The element size is set either automatically, by averaging edge lengths of the
active-front triangles, or manually by the user. The relationship between the number of

extra surface nodes and the element size is illustrated in Figure 6.1, in which the number
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of extra surface nodes decreases as the element size increases to 0.86, which is the
average edge length within the mesh. There are no extra surface nodes when the element

size is larger than 0.86.
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Figure 6.1 Number of extra surface nodes vs. element size in GiD

Similar to GiD, Gmsh (Geuzain and Remacle 2005) uses a parameter called
characteristic length to modify mesh density. The relationship between the number of
extra surface nodes and the characteristic length is illustrated in Figure 6.2, in which the
number of extra surface nodes decreases as the characteristic length increases to 0.5 and

remains zero when the characteristic length is larger than 0.5.
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Figure 6.2 Number of extra surface nodes vs. characteristic length in Gmsh
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GRUMMP (Ollivier-Gooch 2005) utilizes a parameter called length scale to
modify mesh density. The relationship between the number of extra surface nodes and the
length scale is illustrated in Figure 6.3, in which the number of extra surface nodes
decreases as the length scale decreases and remains at 47 when the characteristic length is
Jess than 0.1. As a result, the boundary-surface mesh is not preserved. GRUMMP also
offers a coarsen routine which does help to remove some of the extra surface nodes, but
the coarsen routine greatly modifies the topological relations among nodes of the
boundary-surface mesh of the resulting volume mesh, as shown in Figure 6.4, which
illustrates the same region of the resulting volume mesh before and after use of the

coarsen routine.
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Figure 6.3 Number of extra surface nodes vs. length scale in GRUMMP

Figure 6.4 Calling coarsen routine in GRUMMP
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(a) Initial mesh (b) Mesh after calling coarsen routine

To preserve the boundary-surface mesh, the original version of GRUMMP was
modified (in the ‘tetra’ function of its source code) so as to generate an initial

tetrahedralization only, without the further mesh improvement that is normally done by
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default. The initial tetrahedralization does preserve the boundary-surface mesh for the
thin-block model. It should be mentioned that this modification violates the design
philosophy of GRUMMP. The modified version of GRUMMP is referred to below as
GRUMMP-m.

TetGen (Hang 2005a) uses a parameter called maximum-tetrahedron-volume
constraint to modify mesh density. The actual initial maximum tetrahedron volume is
available once the initial mesh, a mesh that has not been optimized yet by calling
optimization routine, has been generated. The relationship between the number of extra
surface nodes and the maximume-tetrahedron-volume constraint is illustrated in Figure
6.5, in which the number of extra surface nodes increases as the
maximum-tetrahedron-volume constraint decreases. The number of extra surface nodes
remains at 4 when the constraint is larger than 0.13, which is the actual initial maximum
tetrahedron volume for the thin-block model. Thus, the boundary-surface mesh is not

preserved for any value of the constraint.
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Figure 6.5 Number of extra surface nodes vs. maximum-tetrahedron-
volume constraint in TetGen

In summary, GiD uses the average edge length, Gmsh uses the characteristic
length that is equal to the average edge length, and GRUMMP-m uses the default length
scale, to preserve the boundary-surface mesh. GRUMMP and TetGen are unable to
preserve the boundary-surface mesh for the thin-block model, which may not be true for

the remaining models. As the evaluation focuses on the assessment of mesh quality,
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GRUMMP and TetGen are evaluated along with GiD, Gmsh, GRUMMP-m.

6.3 Evaluation of mesh quality
The remaining three models described in Section 5.4 are evaluated. The mesh-density
parameters used here for all three models are based on the results of the evaluation in the
previous section. The element-size parameter for GiD was set to 0.8, and the
characteristic-length parameter for Gmsh was set to 0.01. TetGen, GRUMMP and
GRUMMP-m utilize the default parameters for their initial meshes.

Information about the volume meshes generated for the models are listed in
Tables 6.1 to 6.3. The information includes the numbers of nodes and elements; the
numbers of nodes inserted on and inside the boundary-surface mesh; and the times spent

for 3-D mesh generation.

Table 6.1 Information about volume mesh for the pillat model

No. of |No. of elements Inserted nodes Time
Software Inside
nodes (tetrahedra) |On surface d . (Seconds)
omain
GiD 257 694 0 16 2.0
Gmsh 298 909 0 57 1.8
GRUMMP 1400 4717 838 321 2.2
GRUMMP-m 241 654 0 0 0.6
TetGen 1348 4607 863 244 04

Table 6.2 Information about volume mesh for the incus model

No. of | No. of elements Inserted nodes Time
Software nodes (tetrahedra) su?f:ce ;:;i::n (Seconds)
GiD 2424 8308 0 554 61.8
Gmsh 2348 7630 0 478 121.2
GRUMMP 26227 109557 12927 11430 18.6
GRUMMP-m 1872 6060 2 0 3.8
TetGen 12808 47983 7698 5110 4.9
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Table 6.3 Information about volume mesh for the malleus model

No. of No. of elements Inserted nodes Time
Software Inside
nodes (tetrahedra) |On surface d . (Seconds)
omain
GiD fail
Gmsh 2635 8559 0 526 154.5
GRUMMP 13535 50662 7154 6381 24.8
GRUMMP-m 2122 6812 4 0 4.0
TetGen 15735 59229 9554 6181 6.4

The time spent on 3-D mesh generation by either Gmsh or GRUMMP is the total
time including the initial mesh generation and the use of an optimisation routine a
number of times. The number of uses of the optimisation routine was determined by
calling it repeatedly until there was no noticeable further change in the resulting mesh.
The number of optimisations for Gmsh is three, and for GRUMMP it is one. In contrast,
the times for both GiD and TetGen include only the time spent on the initial mesh

generation since there is no optimisation routine available for them.

6.3.1 Visualizations

The wire-frame viewing method and the cutting-plane viewing method were used to
visualize the volume meshes. The wire-frame views of models are generated in GiD. The
cutting-plane views of models are generated using TetView (Hang 2005b), a visualization

programme for TetGen.

6.3.1.1 Wire-frame views

The wire-frame viewing method provides a better overview of mesh density than of mesh
quality. Figures 6.6 to 6.8 illustrate that GiD, Gmsh and GRUMMP-m generate similar
mesh densities, and that both GRUMMP and TetGen generate higher mesh densities than
the others do. It can be seen in these figures that GRUMMP-m generates many badly
shaped tetrahedra in the volume meshes. Most badly shaped tetrahedra are long and thin.
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GRUMMP-m

Figure 6.6 Wire-frame views of the pillat model
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GRUMMP GRUMMP-m

Figure 6.7 Wire-frame views of the incus model
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Figure 6.8 Wire-frame views of the malleus model (GiD fails in this case)

6.3.1.2 Cutting-plane views

The cutting-plane viewing method is able to provide a local visual assessment of both
mesh density and mesh quality in a volume mesh. The overall mesh was visualized by
moving the cutting-plane along the x, y and z axes. In Figures 6.9 to 6.11, the cutting-
plane is selected at a plane that is parallel to the x-y plane and passes through the centre of
the z length of the box enclosing the model. Aqua is used for the elements intersecting the
user-specified plane, and fuchsia is used for the remaining elements beneath the cutting
plane. Similar to the results of the wire-frame viewing method, these figures illustrate that
GiD, Gmsh and GRUMMP-m produce lower mesh densities than GRUMMP and TetGen
do. Furthermore, it is easy to identify that GRUMMP-m generates a number of badly
shaped tetrahedra that are long and thin.
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| GiD | Gmsh
| GRUMMP | GRUMMP-m

TetGen

Figure 6.9 Cutting-plane views of the pillat model
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GiD ! Gmsh .
GRUMMP ! GRUMMP-m l

N

Figure 6.10 Cutting-plane views of the incus model
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GRUMMP

TetGen

GRUMMP-m

Figure 6.11 Cutting-plane views of the malleus model
(GiD fails in this case)

6.3.1.3 Discussion
The two visualization methods are able to provide limited visual assessments of mesh
density. They may be used to visually evaluate mesh quality by identifying the presence

of badly shaped elements in a volume mesh.

6.3.2 Histograms of shape and size measures
Histograms of the three shape measures and two size measures and the statistical

information about these measures, discussed in Section 5.6.2, are presented in this
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section. The three shape measures in the evaluation include the minimum solid angle,
0, ; the ratio of radii between circumscribed sphere and inscribed sphere, p ; and the
ratio between volume and sum of squares of edge lengths, n. The two size measures

include the volume v and the average of edge lengths, /., . The statistical information
about these measures includes the maximum, minimum, mean, standard deviation and

skewness.

6.3.2.1 Pillat model

The histograms of the three shape measures are skewed distributions, as shown in Figures
6.12 to 6.14. The histograms of 0,,, are all skewed to the right. The histograms of p

and n for all programmes except GRUMMP-m are skewed to the left, and they are
similar to each other for each programme.

The order GRUMMP>Gmsh>TetGen>GiD>GRUMMP-m is obtained from
Tables 6.4 to 6.6 for the mean values of all three shape measures. TetGen is the
programme that generates both the best and worst values of all three measures, which
may explain why it is in the third position in the above order. Different orders are
obtained when considering the standard deviations across the three measures. Different
orders are also obtained when comparing the skewness values across the three measures.
GRUMMP-m is an exception because it generates positive skewness values for all three
measures. Considering the percentage of tetrahedra with values less than 0.1 for the three
measures, one obtains the result that GRUMMP generates the smallest percentages and
GRUMMP-m generates the largest percentages, while GiD, Gmsh and TetGen present
themselves in different orders. Considering the percentage of tetrahedra with values larger
than 0.9 for the three measures, one obtains the result that GRUMMP generates the
largest percentages and GRUMMP-m generates the smallest percentages, while GiD,
Gmsh and TetGen present themselves in different orders.

The mean values of the two size measures decrease as the mesh density increases.
For the volume histograms in this section and the next two sections, the horizontal axis
uses a logarithmic scale, and v is scaled by 10 and /,, is scaled by 10*. One obtains

the result for both size measures that GRUMMP and TetGen generate smaller mean
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values than the others because of their high mesh densities.

It can be seen in Tables 6.7 and 6.8 that TetGen generates the smallest minimum
sizes and GRUMMP-m generates the largest maximum sizes for the two size measures.
The order GRUMMP<TetGen<Gmsh<GiD<GRUMMP-m is obtained for the standard
deviations of v with Gmsh and GiD having very similar values. A different order,
GRUMMP<TetGen<GiD<Gmsh<GRUMMP-m, which is different from the above order
only in swapping Gmsh and GiD, is obtained for the standard deviations of /. The
results based on the standard deviation for both size measures imply that GRUMMP
generates the most uniform meshes and GRUMMP-m generates the least uniform
meshes. Considering the skewness values, Gmsh generates the largest positive values for
the two size measures, which implies that its histograms have the longest right tails.

Overall, GRUMMRP is the best and GRUMMP-m is the worst programme in terms
of the mean values for the three shape measures and the standard deviations of the two
size measures. TetGen is the third best programme in terms of the three shape measures
and the second best in terms of the two size measures. Since neither GRUMMP nor

TetGen can preserve the boundary-surface mesh, Gmsh becomes the best programme.
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Table 6.4 Statistical information about 0,,, for the pillat model

GiD

Gmsh

GRUMMP

GRUMMP-m

TetGen

max 0.771 0.897 0.940 0.771 0.947
min 0.121 0.026 0.035 0.121 0.008
mean 0.313 0.352 0.406 0.238 0.338

std

0.147

0.161

0.168

0.152

0.159

skewness

0.536

0.437

0.323

0.932

0.562

<0.1

24 (3.46%)

30 (3.26%)

47 (0.10%)

129 (19.72%)

139 (3.02%)

>0.9

0 (0%)

0 (0%)

1 (0.02%)

0 (0%)

1 (0.02%)
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Figure 6.13 Histograms of p for the pillat model
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Table 6.5 Statistical information about p for the pillat model

GiD

Gmsh

GRUMMP

GRUMMP-m

TetGen

max

0.965

0.9958

0.996

0.965

0.998

min

0.035

0.068

0.119

0.020

0.005

mean

0.576

0.618

0.677

0.460

0.607

std

0.188

0.181

0.160

0.190

0.174

skewness

-0.306

-0.540

-0.328

0.371

-0.252

<0.1

8 (1.16%)

1 (0.11%)

0 (0%)

18 (2.75%)

6 (0.13%)

>0.9

14 (2.02%)

21 (2.28%)

325 (6.90%)

10 (1.53%)

164 (3.56%)
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Figure 6.14 Histograms of n for the pillat model

Table 6.6 Statistical information about n for the pillat model

n GiD Gmsh GRUMMP | GRUMMP-m TetGen

max 0.972 0.997 0.997 0.972 0.999

min 0.130 0.199 0.213 0.074 0.061

mean 0.654 0.686 0.738 0.526 0.669

std 0.150 0.145 0.185 0.127 0.150

skewness -0.313 -0.456 -0.350 0.184 -0.393

<0.1 0 (0%) 0 (0%) 0 (0%) 2 (0.31%) 1 (0.02%)

>0.9 26 (3.75%) | 32 (3.48%) | 470 (9.96%) | 16 (2.45%) | 251 (5.45%)
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Figure 6.15 Histograms of v scaled by 10" for the pillat model

Table 6.7 Statistical information about v scaled by 10" for the pillat model

Tetrahedron

GiD

Gmsh

GRUMMP

GRUMMP-m

TetGen

max

4.866

5.049

1.322

6.546

1.572

min

0.048

0.057

6.42¢-6

0.008

4.27e-8

mean

0.689

0.520

0.101

0.731

0.104

std

0.590

0.583

0.127

0.784

0.152

skewness

2.637

3.839

3.553

3.237

3.288
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Figure 6.16 Histograms of 1, scaled by 10* for the pillat model
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Table 6.8 Statistical information about 1, scaled by 10* for the pillat model

Tetrahedron GiD Gmsh GRUMMP | GRUMMP-m TetGen
max 3.694 4.348 2.482 4.450 2.553
g min 1.236 0.970 0.050 1.236 0.028
mean 2.061 1.795 0.921 2.319 0.946
std 0.494 0.571 0.394 0.781 0.424
skewness 0.668 1.161 0.021 0.899 0.512
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6.3.2.2 Incus model
Similar to the characteristics of the histograms of the shape measures for the pillat model,
the histograms of the three shape measures are again skewed, as illustrated in Figures
6.17 to 6.19. The histograms of 0, are again all skewed to the right. The histograms of
p and n for all programmes except GRUMMP-m are again skewed to the left, and they
are similar to each other for each programme.

From Tables 6.9 to 6.11, GRUMMP generates the largest maximum values for all

three shape measures. GRUMMP-m generates the smallest minimum p and TetGen

generates the smallest minimum 0. and n. The order

min

GRUMMP>Gmsh>GiD>TetGen>GRUMMP-m is obtained for the mean values of 0,,,
as shown in Table 6.9. The order, Gmsh>GRUMMP>GiD>TetGen>GRUMMP-m, which
is different from the above order in the first two places, is obtained for both p and n
from Tables 6.10 and 6.11. The values for Gmsh and GRUMMP are similar in all three
cases. Different orders are obtained when considering the standard deviations across all
three measures. One obtains the order GiD<Gmsh<GRUMMMP<TetGen<GRUMMP-m
when considering the skewness values for both p and n . Considering the percentage of
tetrahedra with values less than 0.1 for the three shape measures, one obtains the order
GRUMMP<Gmsh<TetGen<GiD<GRUMMP-m with GRUMMP and Gmsh being very
similar. Considering the percentage of tetrahedra with values larger than 0.9, one obtains
the order Gmsh>GRUMMP>GiD>TetGen>GRUMMP-m for both p and n, but a
different order GRUMMP>Gmsh>TetGen>GiD>GRUMMP-m for 6,,, .

GRUMMP and TetGen generate smaller mean values for the two size measures
than the programmes because of their high mesh densities. It can be seen in Tables 6.12
and 6.13 that GRUMMP-m generates the largest maximum size for the two size measures
while GRUMMP and TetGen generate the smallest minimum sizes. The order
GRUMMP<TetGen<GiD<Gmsh<GRUMMP-m is obtained for the standard deviations of
the two size measures. The results based on the standard deviation for both size measures
imply that GRUMMP generates the most uniform meshes and GRUMMP-m generates
the least umiform meshes. Considering the skewness values, the order

TetGen>GRUMMP>GiD>GRUMMP-m>Gmsh is obtained for the two size measures,
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which indicate that the histograms for Gmsh are least skewed to the right and the
histograms for TetGen are most skewed to the right.

GRUMMP and TetGen are excluded since they are unable to preserve the
boundary-surface mesh. Gmsh is again the best programme when evaluating the three
shape measures for the incus model. Although Gmsh is after GiD in the rankings for the
standard deviations of the two size measures, the values generated by Gmsh and GiD are
very close for /,, (0.885 and 0.918, respectively) and practically identical for v (2.942
and 2.943, respectively). As was found for the pillat model, GRUMMP-m is the worst
candidate programme. Finally, Gmsh is the best programme in terms of both shape and

size measures.
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Figure 6.17 Histograms of 0., for the incus model
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Table 6.9 Statistical information about 0,,, for the incus model

0

mn

GiD

Gmsh

GRUMMP

GRUMMP-m

TetGen

0.774

0.957

max 0.919 0.922 0.990
min 0.001 0.041 0.002 0.002 9.870¢e-4
mean 0.344 0.415 0.420 0.111 0.324

std

0.149

0.164

0.152

0.088

0.153

skewness

0.518

0.403

0.407

1.582

0.749

<0.1

255 (2.84%)

21 (0.28%)

270 (0.25%)

3278 (54.09%)

1344 (2.80%)

>0.9

2 (0.02%)

5 (0.06%)

91 (0.08%)

0 (0%)

14 (0.03%)
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Table 6.10 Statistical information about p for the incus model

GiD

Gmsh

GRUMMP

GRUMMP-m

p TetGen
max 0.997 0.994 1.000 0.942 0.999
min 8.516e-4 0.076 0.025 1.509¢e-4 0.006

mean 0.624 0.713 0.698 0.236 0.595

std

0.185

0.140

0.143

0.135

0.172

skewness

-0.582

-0.422

-0.370

1.060

-0.163

<0.1

71 (0.79%)

1 (0.01%)

11 (0.01%)

892 (14.72%)

45 (0.09%)

>0.9

324 (3.60%)

654 (8.57%)

7655 (6.99%)

2 (0.03%)

1672 (3.48%)
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Table 6.11 Statistical information about n for Incus model

n

GiD Gmsh

GRUMMP

GRUMMP-m

TetGen

max

0.997 0.994

1.000

0.955

0.999

min

0.032 0.248

0.036

0.030

0.026

mean

0.696 0.765

0.756

0.307

0.662

std

0.147 0.113

0.110

0.143

0.147

skewness

-0.658 -0.404

-0.304

0.842

-0.300

<0.1

8 (0.09%) 0(0%)

11 (0.01%)

181 (2.30%)

6 (0.01%)

>09

527 (5.86%) | 938 (12.30%)

10786(9.85%)

3 (0.05%)

2332(4.86%)
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Figure 6.20 Histograms of v scaled by 10" for the incus model
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Table 6.12 Statistical information about v scaled by 10" for the incus model

Tetrahedron GiD Gmsh GRUMMP | GRUMMP-m | TetGen
max 37.782 21.385 19.390 132.190 45.863

v min 0.001 0.108 3.194e-7 0.004 3.142¢-7
mean 2.338 2.755 0.192 3.469 0.438
std 2.942 2.943 0.614 6.008 1.444
skewness | 3.930 1.963 10.257 6.493 11.149
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Figure 6.21 Histograms of 1,,, scaled by 10" for the incus model

Table 6.13 Statistical information about 1, scaled by 10* for the incus model

Tetrahedron GiD Gmsh GRUMMP |GRUMMP-m| TetGen
max 7.627 6.068 5.766 13.918 7.734
g min 0.403 1.044 0.026 1.233 0.039
mean 2.838 2.875 0.941 4.537 1.351
std 0.885 0.918 0.609 2.561 0.801
skewness 1.254 0.648 1.799 0.9233 1.948
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6.3.2.3 Malleus model

GiD fails to generate a volume mesh for the malleus model. Figures 6.22 to 6.24 show
that the histograms of the three shape measures are still skewed and have the same
characteristics as those for the pillat model and the incus model.

The order Gmsh>GRUMMP>TetGen>GRUMMP-m is obtained from Tables 6.14
to 6.16 for the three shape measures in terms of the mean values and the percentages of
tetrahedra with values larger than 0.9. The orders are not the same when considering the
percentages of tetrahedra with values smaller than 0.1, the standard deviations, or the
skewness values. GRUMMP-m has the largest percentage of tetrahedra with values
smaller than 0.1 and the largest skewness for all the shape measures, which indicates that
there are more element qualities close to 0 than for the other candidates.

Similar to the results of the two size measures for the pillat model, TetGen
generates the smallest minimum sizes and GRUMMP-m generates the largest maximum
sizes for the two size measures, as shown in Tables 6.17 and 6.18. One obtains the order
GRUMMP<TetGen<Gmsh<GRUMMP-m in terms of the standard deviations for the two
size measures.

TetGen and GRUMMP again are excluded because they cannot preserve the
boundary-surface mesh. The results of the three shape measures show that Gmsh
generates the best meshes and GRUMMP-m generates the worst meshes. Gmsh still
generates more uniform meshes than GRUMMP-m does. Overall, Gmsh is the best

programme when evaluating the malleus model.
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Figure 6.22 Histograms of 0,,, for the malleus model
(GiD fails in this case)
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Table 6.14 Statistical information about 8, for the malleus model

min

Gmsh

GRUMMP

GRUMMP-m

TetGen

0.960

0.827

0.978

max 0.937
min 0.0077 0.002 4.374¢-4 0.001
mean 0.4027 0.393 0.125 0.325
std 0.160 0.163 0.096 0.153
skewness 0.371 0.426 1.726 0.725

<0.1

93 (1.08%)

483 (0.95%)

3254 (47.77%)

1810 (3.05%)

>0.9

7 (0.08%)

28 (0.06%)

0 (0%)

21 (0.04%)
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Figure 6.23 Histograms of p for the malleus model
(GiD fails in this case)

Table 6.15 Statistical information about p for the malleus model

0, Gmsh GRUMMP GRUMMP-m TetGen
max 0.993 0.998 0.951 0.998
min 0.003 0.032 1.018e-5 0.002
mean 0.700 0.672 0.250 0.594

std 0.150 0.156 0.145 0.123

skewness -0.868 -0.286 0.974 -0.197

<0.1 47 (0.55%) 63 (0.03%) 999 (14.67%) 56 (0.09%)
>0.9 577 (6.71%) 3275 (6.46%) 9 (0.13%) 2000 (3.37%)
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Histogram of normalized ratios between volume and sum of squares of edge lengths
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Figure 6.24 Histograms of n for the malleus model
(GiD fails in this case)

Table 6.16 Statistical information about n for the malleus model

Gmsh GRUMMP GRUMMP-m

TetGen

max 0.994 0.999 0.960 0.999
min 0.069 0.035 0.009 0.034
mean 0.754 0.732 0.338 0.661
std 0.123 0.126 0.147 0.149
skewness -0.943 -0.331 0.695 -0.352

<0.1

5 (0.06%) 6 (0.12%) 162 (2.38%)

16 (0.03%)

>0.9

851 (9.90%) | 4607 (9.09%) 10 (0.15%)

2796 (4.72%)




Histogram of tetrahedral volumes
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Figure 6.25 Histograms of v scaled by 10" for the malleus model
(GiD fails in this case)

Table 6.17 Statistical information about v scaled by 10" for the malleus model

Tetrahedron Gmsh GRUMMP GRUMMP-m TetGen
max 20.269 28.021 169.768 45.877

v min 0.036 4.765e-7 6.010e-4 3.270e-11
mean 2.077 0.353 2.622 0.301
std 2.364 0.935 6.586 1.099
skewness 2.350 10.928 10.404 14.303
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Histogram of average of tetrahedral edge lenglhs
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Figure 6.26 Histograms of 1, scaled by 10* for the malleus model
(GiD fails in this case)

Table 6.18 Statistical information about 1,,, scaled by 10 for the malleus model

Tetrahedron Gmsh GRUMMP GRUMMP-m TetGen
max 7.260 6.761 12.805 7.607

! e min 1.085 0.043 1.213 0.001
mean 2.640 1.300 3.835 1.195

std 0.827 0.645 2.105 0.704
skewness 0.882 1.622 1.381 1.954

6.4 Solution residuals

Solution residuals, discussed in Chapter 5.6.3, offer a way to evaluate the overall mesh

quality that is based on the finite-element solution. The model for this evaluation is the

pillat model. The mechanical parameters are defined as follows:

+ Boundary conditions: All nodes connecting to the cavity wall are fully

clamped, as shown in Figure 6.27(a) where the red tetrahedra represent those
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nodes.

¢ Load conditions: A pressure load of 1.0 Pa is applied on the interface between
the pillat model and the incus model, as shown in Figure 6.27(b) where the red
circles represent those nodes on the interface.

+ Material properties: Young’s modulus is 20 MPa and Poisson’s ratio is 0.3

(b)
Figure 6.27 Boundary conditions (a) and load conditions (b) for the pillat model

The results of the evaluation in the previous section indicate that GiD, Gmsh and
GRUMMP-m are able to preserve the boundary-surface mesh for some or all models. In
contrast, GRUMMP and TetGen are unable to meet this criterion for any model.
Therefore, only GiD, Gmsh and GRUMMP-m are evaluated for the finite-element
mesh-quality measures in this section and the following two sections.

As shown in Figure 6.28, most residuals are small. The larger residuals occur on
those degrees of freedom that correspond to where the load conditions are applied.

From the root mean squares of residuals in Table 6.19, one obtains the order
Gmsh<GiD<GRUMMP-m. The finite-element solution using the volume mesh generated
by Gmsh results in the smallest root mean square of residuals. In contrast, the
finite-element solution using the volume mesh generated by GRUMMP-m results in the

largest root mean square of residuals. Therefore, Gmsh is able to generate the best mesh
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and GRUMMP-m generates the worst mesh. It should be mentioned that the three root

mean squares of residuals differ by a factor of less than 2.
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Figure 6.28 Residuals vs. degrees of freedom

Table 6.19 Root mean squares of residuals for the pillat model

Software Degrees of freedom RMS(residuals)
GiD 570 0.031
Gmsh 537 0.026
GRUMMP-m 693 0.043

6.5 Condition number
The condition number, discussed in Chapter 5.6.3, is another way to evaluate the overall
mesh quality. Its computation requires material properties and boundary conditions in
order to formulate the system stiffness matrix.

The condition numbers listed in Table 6.20 for the three programmes are very
close to each other. As discussed in Section 6.3, Gmsh and GiD are able to generate good
volume meshes, and GRUMMP-m generates the worst mesh, composed of many long

and thin tetrahedra. It is not surprising that the finite-element solutions using the volume
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meshes generated by Gmsh and GiD have small condition numbers. The finite-element
solution using the volume mesh generated by GRUMMP-m, however, would have been

expected to have a larger condition number, which is actually not true.

Table 6.20 Condition numbers for the pillat model

Software Condition number
GiD 9792
Gmsh 7553
GRUMMP-m 8646

The condition number could not be used to evaluate the overall mesh quality

because the finite-element solution using a bad mesh also had a small condition number.

6.6 Closeness to the exact solution
As discussed in Section 4.5.3, the exact solution is generally more accurately
approximated as mesh density increases, so the exact solution can be estimated by doing a
convergence test. If an approximate solution produced by a particular mesh is closer to
that estimated exact solution than are the solutions produced by the other meshes, then
that mesh is better than the others.

As shown in Figure 6.29, for this test, the mechanical parameters for the
thin-block model are defined as follows:

+ Boundary conditions: One face is fully clamped

+ Load conditions: A compression load of 1 N/m? is applied on opposite face

o Material properties: Young’s modulus is 20 MPa and Poisson’s ratio is 0.3

P B Boundary Condiion
.«'3\, ] Load Condition

Figure 6.29 Mechanical parameters for the thin-block model
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Using COMSOL (COMSOL Inc. 2006) as discussed in Section 5.6.4, the
approximate solution monotonically converges to the exact solution as the number of
elements increases, as can be seen in Figure 6.30. The simulation results based on the
volume meshes generated by the candidate programmes suggest the order
Gmsh>GiD>GRUMMP-m. The solution by Gmsh is closer to the exact solution than the
others are. The order is actually the same as the order obtained from the three shape

measures discussed in Section 6.3.
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Figure 6.30 Comparing closeness to convergence curve

for the thin-block model

6.7 Conclusions

The evaluation involved comparisons in a number of key respects: visual inspections,
mesh quality, ability to preserve boundary-surface mesh, robustness, time required for the
generation of volume mesh, and cost of software. The overall results of the evaluation are
summarized in Table 6.21.

Visual inspections suggest that GRUMMP-m generates bad meshes and the other
programmes produce good meshes. According to the histograms of shape measures,
Gmsh and GRUMMRP are able to generate the best meshes, followed by TetGen, GiD and
GRUMMP-m. GiD is the only one that was found not to be robust because it failed for
the malleus model, and it is also the only commercial software among the candidate

software. Only Gmsh is capable of preserving the boundary-surface mesh for all models.
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Table 6.21 Overall results of evaluation

Software GiD Gmsh GRUMMP | GRUMMP-m TetGen
Visualization Good Good Good Bad Good
Mesh quality Good Best Best Bad Better

Preserving '
boundary- | Sometimes Yes No Sometimes No
surface mesh
Robustness No Yes Yes Yes Yes
Time Medium Slow Fast Fast Fast
Cost Non-free Free Free Free Free

TetGen and GRUMMP are similar in that they generate volume meshes with high
density, in which the boundary-surface mesh is not preserved. Because of this, TetGen
and GRUMMP are excluded as final choices for our project although they may generate
good meshes.

Considering the finite-element mesh-quality measures, the analysis of solution
residuals could be a useful method to evaluate the overall mesh quality, although the root
mean squares of the residuals of GiD, Gmsh and GRUMMP-m varied by less than a
factor of 2. The closeness to the convergence curve is also an effective method to
evaluate the overall mesh quality, but it is computationally expensive as the convergence
curve must be obtained for the comparison. The above two methods reach the same
result, that Gmsh generates the best mesh and GRUMMP-m generates the worst mesh.
The analysis of the condition number indicates that the condition number is not a good
mesh-quality indicator because GRUMMP-m produced an unexpectedly small value of
condition number.

Comparing every aspect of the evaluation, GRUMMP-m generates the worst
mesh. This conclusion can easily be drawn just on the basis of visual inspections. As
mentioned previously, GRUMMP-m is a modification of GRUMMP for the purpose of
preserving the boundary-surface mesh, a specific requirement for our project, and the
modification violates the design philosophy of GRUMMP. GRUMMP itself produces as
high a mesh quality as Gmsh does.

Gmsh is the only candidate that satisfies all of our evaluation criteria as discussed
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in Chapter 3. The time required for volume mesh generation is the highest among the
candidate software, but it falls within a reasonable range. It should be mentioned that the
time spent by Gmsh for 3-D mesh generation includes calling the optimization routine
three times, which certainly takes more time than the other candidate programmes.

The results for the three shape measures ( 6,,,,, p and n) indicate that the mean
value of a shape measure is a trustworthy indicator to assess the overall mesh quality. The
histograms of the shape measures are skewed, and they present different orders in terms
of skewness values for the three measures. The same is true for the standard deviations
for the three measures. Meanwhile the percentages of tetrahedra with the normalized
measures less than 0.1 or larger than 0.9 offer limited information about the quality of the
overall mesh.

The two size measures (v and [, ) are equivalent for characterizing the size of a
tetrahedron because the same order was always obtained from their standard deviations
for the three models. Since the histograms of the two size measures are also skewed, their
standard deviations may not provide reasonable estimates of the extent of mesh

uniformity, and they do not predict mesh quality well.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This project is an attempt to establish a number of criteria for evaluating 3-D
mesh-generation software, and to select the 3-D mesh generator that is most suitable for
use in our software pipeline for finite-element modelling and simulation of complex
natural structures.

The evaluation criteria for our project include the following characteristics: ability
to preserve the boundary-surface mesh, volume mesh quality, robustness, time efficiency
and cost. Four models are chosen for the evaluation. One model is a simple thin block.
The others represent three structures of the human middle ear. One structure is the lateral
bundle of the posterior incudal ligament, here referred to simply as pillat. The remaining
structures are two ossicles, the incus and malleus.

To import surface triangular meshes generated by our Tr3 programme into the
candidate software for 3-D mesh generation, a programme called Fcf was developed to
convert the surface definitions describing the models to the native file formats of the
mesh-generation programmes, to pre-process the surface triangular meshes to verify that
the meshes are closed and consistently oriented, and to post-process the volume
tetrahedral meshes to verify that the meshes are topologically correct.

The results of an initial evaluation using a thin-block model provide the guiding
information for proper selection of parameters in deciding volume mesh density for the
three structures of the middle ear. The boundary-surface meshes were most likely to be
preserved in the coarsest volume meshes that were generated by the candidate software.

The results of the evaluation of the preservation of the boundary-surface meshes
show that Gmsh is the only programme that is able to preserve the boundary-surface
meshes for all models. GiD is able to preserve the boundary-surface meshes for the pillat
model and the incus model, but fails to generate a volume mesh at all for the malleus
model. GRUMMP and TetGen are unable to preserve the boundary-surface meshes for
any of the models. A modified version of GRUMMP, referred to here as GRUMMP-m, is
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able to preserve the boundary-surface mesh for the pillat only.

The visual inspection of mesh quality by either the wire-frame viewing method or
the cutting-plane viewing method is useful for assessing mesh density. The two methods
are not so useful for evaluating mesh quality but may provide qualitative information
about mesh quality when the volume mesh has many badly shaped elements.

Three shape-quality measures are investigated in the evaluation. They are 0,,, , p
and #, where 0, is the minimum solid angle, p is the ratio of the circumscribed sphere
radius to the inscribed sphere radius, and 7 is the ratio between the volume and the sum of
squares of the edge lengths, for a tetrahedron. The results from the histograms of the three
measures indicate that the three measures are equivalent. The average of any one of these
element shape qualities for a volume mesh would be a good indicator for comparing the
overall mesh quality.

The results of the histograms of element sizes indicate that the volume and the
average edge length of an element are equivalent in characterizing the sizes of elements.
The quality order derived from the size histograms is not, however, the same as the order
derived from the shape histograms for all models.

The analysis of solution residuals indicates that the root mean square of solution
residuals may be a good indicator of mesh quality because it gives the same order as that
obtained from the evaluation of the element shape qualities. The condition number of the
system stiffness matrix is a very generous indicator of mesh quality and it is
computationally very expensive. The analysis of closeness to the exact solution seems to
be a good indicator of mesh quality, but it is also computationally very expensive since it
requires a convergence test to estimate the exact solution.

The overall result is that Gmsh is the best 3-D mesh generator for use in our

finite-element modelling and simulation pipeline.
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Figure 7.1 Finite-element modeling and simulation pipeline
in Auditory Mechanics Laboratory

As shown in Figure 7.1, each simple closed surface mesh of a complex model
generated by Tr3 is converted to the native file format of Gmsh using Fcf, and then they
are separately imported into Gmsh for 3-D mesh generation. The mechanical parameters
(boundary conditions, load conditions and material properties) that were defined on the
surface meshes are assigned to the resulting volume meshes by using Fcf again. These
models are combined together using Fad to form the complex model. There are two types
of output from Fad. One output, with extension .sap, can be imported into Sap for
finite-element simulation. For the other output, with extension .nastran, only geometric
information about the complex model is preserved and can be imported into COMSOL.
Thus, the mechanical parameters must be manually assigned to the resulting volume mesh

before finite-element simulation in COMSOL.

7.2 Future work

The current pipeline can be improved in at least four respects. First, an improvement
would be to modify Tr3 so that it outputs multiple simple parts at once. With the help of a
scripting language, the multiple simple parts could be processed automatically. Second,
an improvement would be to integrate the file-format conversion function (Tr3 to Gmsh)
of Fcf into Tr3. Third, the pre-processing function of Fcf could be integrated into Tr3.
Last, the post-processing function of Fcf could be integrated into Fad. These
improvements would simplify the pipeline structure and increase the overall efficiency.

Only three shape measures and two size measures were used and compared in our
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evaluation. Since the Jacobian-based mesh-quality measures, as discussed in Section 3.4,
can contain not only the shape and size but also the orientation of an element, such
measures might be better in evaluating the comprehensive quality of an element than
either a shape measure or a size measure alone.

As discussed in Chapter 4, a priori finite-element mesh-quality measures, such as
solution residuals and the closeness to the exact solution as approximated by a
convergence curve, are able to provide only qualitative information about the overall
mesh quality. In contrast, a posteriori finite-element mesh-quality measures are able to
quantitatively characterize the error contribution of each element, which in turn reflects
the element quality. In this case, the element quality contains not only the geometrical
information but also the information that is closely related to the finite-element
formulation. Hence, a posteriori measures are very promising measures for estimating
the element quality as well as the overall mesh quality.

Material-property discontinuities may result in large errors in finite-element
solutions (Muller and Korvink 2003). Most discussions of mesh-quality measures do not
consider material properties as possible factors. Further experiments on a complex model
with multiple material properties could help in understanding how material properties

affect the finite-element solution accuracy.
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