
 

 

 

FINITE-ELEMENT MODELLING OF THE NEWBORN  

EAR CANAL AND MIDDLE EAR 

 

 

Brian Gariepy 

 

 

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment 

of the requirements of the degree of Master of Engineering 

 

 

Department of Biomedical Engineering 

McGill University 

Montreal, Quebec 

August 2010 

 

 

© Brian Gariepy, 2010 

 

 

 

 

 

 

 

 

 



 

ABSTRACT 

 

 Hearing loss is a very common birth defect. However, current hearing screening 

does not provide adequate specificity. Tympanometry is a potential hearing-screening 

tool that is specific to conductive hearing loss, but the tympanograms of newborns are 

currently not standardized and not well understood. 

 

 Finite-element models of the newborn ear canal and middle ear are developed and 

their responses to the tympanometric probe tone are studied. Low-frequency and dynamic 

simulations are used to model the ear’s response to sound frequencies up to 2000 Hz. 

Material properties are taken from previous measurements and estimates, and the 

sensitivities of the models to these different parameters are examined. The simulation 

results are validated through comparison with previous experimental measures. Finally, 

the relative admittances of the ear canal and the middle ear at different frequencies are 

examined and implications for the interpretation of newborn tympanometry are 

discussed.  
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SOMMAIRE 

 

La perte d’audition est une anomalie congénitale très courante. Toutefois, le 

dépistage auditif actuel n’est pas spécifique. La tympanométrie est un dépistage auditif 

potentiel qui aide à dépister la surdité de transmission, mais les tympanogrammes des 

nouveau-nés ne sont pas bien compris ou standardisés.  

 

Deux modèles d’éléments finis ont été développés: l’un pour le conduit auditif des 

nouveau-nés, et l’autre pour l’oreille moyenne. Leurs réponses au ton de sonde 

tympanométrique sont étudiées. Les simulations quasi-statiques et dynamiques sont 

utilisés pour modeler la réponse de l’oreille aux fréquences de son jusqu’à 2000 Hz. Les 

propriétés matérielles sont prises des mesures et des estimations précédentes, et les 

sensibilités des modèles à ces différents paramètres sont examinées. Les résultats des 

simulations sont validés par la comparaison avec les mesures expérimentales précédentes. 

Enfin, les impédances relatives du canal externe de l’oreille et de l’oreille moyenne aux 

fréquences différentes sont examinées et les implications pour l’interprétation de la 

tympanométrie du nouveau-né sont discutées. 
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CHAPTER 1: INTRODUCTION 
 

 

1.1 MOTIVATION 

 

It is estimated that approximately 6 out of every 1000 newborns are born with 

some hearing deficiency (Marazita et al., 1993). However, this estimate includes cases 

where the hearing loss is transient and benign, predominantly caused by an accumulation 

of amniotic fluid and mesenchyme in the ear canal and middle-ear cavity. This fluid will 

typically drain from the ear within a few days after birth and the child will have no 

developmental delays. 

 

The first few years of a child’s life are the most important for language 

development. The presence of a slight hearing deficiency may be enough to inhibit a 

child’s learning and may result in speech and behavioural problems (NIDCD, 1993; 

ASHA, 1994). Therefore, an accurate test of a newborn’s hearing capacity is needed, 

demonstrated by the fact that newborn hearing screening is mandated in several provinces 

and states. 

 

Currently, there are two popular newborn hearing tests being used by hospitals in 

North America: auditory brain-stem response (ABR) and otoacoustic emissions (OAE). 

ABR measures the electrical activity of the auditory neurons in response to acoustic 

stimulation of the ear, while OAE measures the amplitude of the evoked sounds emitted 

by the outer hair cells of the cochlea. Although both of these tests are efficient at 

detecting the presence of hearing loss, neither of them can reliably give insight into the 

nature of the problem. For example, neither test is able to reliably determine whether a 

detected hearing loss is conductive or sensorineural. (Conductive hearing loss is defined 

as hearing loss caused by outer and/or middle-ear problems, and sensorineural hearing 

loss is defined as hearing loss caused by inner-ear and/or auditory-nerve problems.) Due 

to the importance of correctly identifying the type of detected hearing loss, particularly in 
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regard to treatment options, these tests are not sufficient and a different category of 

hearing test is required. 

 

Tympanometry is a test that measures the input admittance of the ear canal and 

middle ear. (Admittance is defined in Section 2.8.1.) The measurement is performed by 

introducing a small-amplitude probe tone into the ear canal in the presence of a static 

pressure. This test is sensitive only to conductive hearing problems and could therefore 

add specificity to a diagnosis obtained with ABR or OAE. However, the results of this 

test in newborns are currently not well understood. It is quite common for a 

tympanogram taken from a newborn with perfect hearing to be diagnosed as pathological, 

as well for a tympanogram measured from a newborn with known middle-ear problems 

to be diagnosed as being normal (e.g., Paradise et al. 1976, Meyer et al 1997, Watters et 

al. 1997). Consequently, it is obvious that the ears of newborns and adults react 

differently to the tympanometric input, suggesting that a better understanding of the 

mechanics of the newborn ear canal and middle ear is required before the results of this 

test can be used with confidence. 

 

Directly studying the mechanics of the newborn ear, although desirable, is 

difficult. It would be imperative that these investigations be done on children under the 

age of 1 month due to the major changes to ear structure that occur as the child ages. It 

would therefore be very difficult to acquire data and to determine the underlying causes 

of the measured behaviour. Finite-element modelling (FEM) is a useful way to study 

newborn ear mechanics. With FEM, assuming the use of relatively accurate geometry, 

boundary conditions and material properties, fairly realistic simulations of tympanometric 

tests on the newborn ear can be performed. After validation with whatever experimental 

data are available, FEM simulations can be used to study the effects of anatomical 

differences, pathological conditions, etc. Furthermore, FEM provides access to data that 

would unobtainable through experimental means, such as the sensitivity of the system to 

variations of certain physical parameters as well as precise, simultaneous displacement 

measurements at every point in the geometry. 
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As mentioned above, the tympanometric input signal is composed of two major 

parts: a large-amplitude static pressure and a low-amplitude probe tone. Previous work 

has already been done on the response of a FE model of the newborn ear canal and 

middle ear to large static pressures (Qi et al. 2006, 2008). However, there has been no 

work done on the response of this FE model to the probe tone. In order to obtain a better 

understanding of the differences between adult and newborn tympanometry, this research 

will analyze the behaviour of FE models of the newborn ear canal and middle ear in 

response to the tympanometric probe tone. 

 

1.2 OUTLINE 

 

  The thesis will continue with a brief review of the relevant anatomy and of the 

basic principles of tympanometry in Chapter 2. Then, in Chapter 3, the different methods 

that are used in this research, such as the finite-element method, Rayleigh damping, and 

the Elementary Effects Method will be discussed. A detailed description of the finite-

element models of the newborn ear canal and middle ear will be presented in Chapter 4. 

That chapter will also include the reasoning behind the choices of the material properties 

and boundary conditions in the two types of simulations that are run: low-frequency 

simulations and dynamic simulations. Chapter 5 will present the results that are obtained 

from these simulations, and then Chapter 6 will present the conclusions and the potential 

for future work.  
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CHAPTER 2: ANATOMY AND TYMPANOMETRY 
 

 

2.1 INTRODUCTION 

  

 This chapter will review the anatomy of the human ear. First, a quick overview of 

the ear as a whole and a list of its major components will be given. This will be followed 

by a much more detailed description of these components and their roles in the function 

of the ear. Also, the basic principles of tympanometry in both adults and newborns will 

be discussed. 

 

2.2 OVERVIEW OF EAR ANATOMY 

 

 The human ear is commonly broken down into three major sections: the outer ear, 

the middle ear, and the inner ear, as seen in Figure 2.1. The visible part of the outer ear is 

known as the pinna or auricle. Its main purpose is to funnel sound energy from the 

environment into the ear canal. At the medial end of the ear canal is the tympanic 

membrane (TM), which is considered to be the first structure of the middle ear. It is a 

very thin structure that vibrates when stimulated by incoming sound energy from the 

canal. There are three ossicles that are attached in series to the TM: the malleus, incus 

and stapes. When the TM vibrates, it causes these bones to vibrate, leading to the transfer 

of energy from the footplate of the stapes to the liquid behind the oval window of the 

cochlea (the first structure of the inner ear). The volume of air that lies between the TM 

and the cochlea and houses the three ossicles is known as the middle-ear cavity. The 

cavity is connected directly to the nasal cavity through the Eustachian tube. The cochlea 

is a liquid-filled, spiralling structure that contains four rows of hair cells that extend along 

the length of the spiral. When the fluid in the cochlea is stimulated by the stapes, it causes 

these hairs to bend, leading to the firing of action potentials in the auditory nerve. This 

signal is transmitted through a series of nerves and nuclei to the auditory cortex and is 

perceived as sound. 
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The role of the middle ear in hearing is impedance matching and sound 

transmission. If the middle ear were not present, most of the air-borne sound energy 

would be reflected rather than transmitted into the cochlea due to the much larger 

impedance of the cochlear fluid relative to air. Although the situation is not really so 

simple (Funnell 1996), the middle ear can be thought of as matching these two 

impedances by means of three mechanisms: the relative surface areas of the TM and the 

stapes footplate; the lever ratio of the ossicles; and the curvature of the TM. 

 

 
Figure 2.1 Human ear anatomy (Source: http://www.virtualmedicalcentre.com as of 25 August 2010) 

 
 

2.3 PINNA 

 

 Despite its seemingly simple purpose, the pinna is a complex anatomical structure 

containing several different components, such as the helix, antihelix, tragus, antitragus, 

concha and lobule. Each of these structures is comprised mainly of cartilage. The pinna 

collects sound energy and directs it into the ear canal (e.g., Widmaier et al. 2006). The 

pinna typically grows at the same rate as the head and neck during a child’s development 

until the child is approximately 6 − 9 years of age. At this point the pinna has reached its 

adult size (Anson and Donaldson, 1981).   
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2.4 EAR CANAL 

 

 The ear canal is the second structure of the outer ear. It transmits sound energy 

towards the middle ear. It produces a substance known as cerumen (ear wax) in order to 

protect the canal walls from infection. 

 

 For the purposes of this research, the most interesting aspects of the ear-canal 

anatomy are not its final, adult structure, but rather the changes that take place in the ear 

canal after birth. Unlike most structures of the middle and inner ear, the auditory canal 

has not reached its adult size at birth and will undergo significant changes during a 

child’s first few years of life. A summary of these changes can be seen in Figure 2.2.  

 

 
Figure 2.2 Comparison of newborn and adult ear canals. Modified from Bluestone (1983) 

 
 

Two major differences between the ear canal of the newborn and that of the adult 

are the shape and size. The newborn canal is relatively straight and is considerably 

shorter and narrower than its adult counterpart. The length of the newborn canal ranges 

from 13 to 22.5 mm and the average diameter of the canal is approximately 4.44 mm 

(McLellan and Webb 1957; Keefe et al. 1993). By contrast, in the adult the ear canal is 

not straight; it typically contains two major turns (not shown in Figure 2.2) and is 

therefore normally described as having an “S shape”. The canal grows considerably with 

age. Adult canals have a length of approximately 30 mm and a diameter of approximately 

10 mm (Saunders et al. 1983; Stinson and Lawton 1989). 
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 Another functionally important change that occurs in the development of the 

canal is in its composition. In the newborn, the canal wall is surrounded along most of its 

length by elastic cartilage (McLellan and Webb 1957), the most flexible type of cartilage 

in the human body (Fung et al. 1993). This causes the newborn canal to be very 

compliant. Once the child reaches approximately four months of age, bone has grown 

around much of the canal. In the adult, only the most lateral third of the canal wall is 

composed of elastic cartilage, while the medial two-thirds of the canal are encompassed 

by temporal bone (Keefe and Levi 1996).  

 

2.5 TYMPANIC MEMBRANE 

 

 The tympanic membrane (TM), or eardrum, is a thin, multi-layered structure that 

is considered to be the boundary between the outer and middle ear. It is functionally 

broken down into two different sections: the pars flaccida and the pars tensa. In humans, 

the pars flaccida is the smaller of the two components and is located superior to the 

manubrium (the part of the malleus that connects directly to the TM). Though its role is 

not really known, it has been suggested that it may have a role in detecting the presence 

of small, static middle-ear pressures due to its outstanding pressure sensitivity (Didyk et 

al. 2007).  

 

 The pars tensa, the larger of the two TM components as seen in Figure 2.3, 

consists of three different layers. The outer layer is an epidermal layer resembling the 

skin found elsewhere on the body; the intermediate layer contains mainly fibrous 

elements; and the innermost layer is a mucosal layer. In humans, the pars tensa 

constitutes the vast majority of the TM’s surface area and is primarily responsible for the 

transfer of energy from the canal to the ossicles. The TM is described as having a conical 

shape with the umbo (at the tip of the manubrium) as the deepest point. It is encompassed 

by the fibrocartilaginous ring which firmly connects the edge of the TM to the tympanic 

ring of the temporal bone.  
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Figure 2.3 Anatomy of the human TM. From Ladak (1993), after Kojo (1954) 
  

 
  

Despite the fact that the human TM remains the same size throughout life (Anson 

and Donaldson 1981), there are distinct morphological differences between the TM of a 

newborn and that of an adult. These changes include cellularity, vascularity, and 

orientation within the skull. The TM of the adult is positioned much more vertically than 

is that of the newborn. However, the difference that may be of greatest significance for 

the purpose of this research is the thickness of the membrane. Confocal microscopy 

measurements of adult TMs show that the majority of its surface has a relatively constant 

thickness in the range of 0.04 to 0.12 mm (Kuypers et al. 2006). The TM of the newborn, 

however, has been shown to be generally thicker with a much higher degree of non-

uniformity (Ruah et al. 1991). A more detailed description of this distinction and its 

impact on the modelling process will be given in Chapter 4. 
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2.6 OSSICLES 

 

 The three ossicles of the middle ear are the malleus, incus and stapes, which can 

be seen in Figure 2.4.  

 

The malleus is connected to the tip of the TM’s conical form through a long 

region known as the manubrium. The head of the malleus is attached to the body of the 

incus via the incudomallear joint, and the incus in turn is connected to the stapes through 

the incudostapedial joint (between the lenticular process of the incus and the head of the 

stapes). Between the long process of the incus and the lenticular process is an extremely 

thin and flexible region of bone known as the pedicle which is thought to have a large 

role in the mechanics of the middle ear (Funnell et al. 2005). The malleus is attached to 

the temporal bone by superior, lateral and anterior ligaments while the incus is attached 

to the bone by posterior and superior ligaments. However, the only two ligaments that are 

modelled in this research are the anterior mallear ligament (AML) and the posterior 

incudal ligament (PIL). The ossicular chain also contains a pair of antagonist muscles 

known as the tensor tympani muscle and the stapedius muscle.  

 

 
Figure 2.4 Anatomy of the human ossicles. From Donaldson et al (1992). 
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2.7 MIDDLE-EAR CAVITY AND EUSTACHIAN TUBE 

 

 The middle-ear cavity is an air-filled space located on the medial side of the TM; 

it is bounded by the temporal bone and contains the ossicles. It is connected to the nasal 

cavity through the Eustachian tube. However, this tube is usually in a closed state. The 

size of the middle-ear cavity in the human adult is highly variable among individuals, 

ranging between 2 and 22 cc (Molvaer et al. 1978). It is said that the volume of the 

middle-ear cavity changes quite dramatically as a newborn ages, though there have been 

no detailed measurements made of the dimensions of the newborn’s cavity. 

 

 The Eustachian tube has a couple of very important functions in hearing. First, 

any secretions produced inside the middle ear will collect at the bottom of the cavity and 

will be transferred to the nasal cavity via the Eustachian tube. This prevents an 

ions and that 

ould potentially lead to infection. Its second function is to maintain a balance in static 

accumulation of fluid behind the TM that would interfere with TM vibrat

c

pressure between the two sides of the TM. Since the TM is securely attached to the 

tympanic ring, there is a seal formed between the middle-ear cavity and the external air. 

In order to avoid a large accumulation of static pressure on the TM, the Eustachian tube 

can open temporarily (usually during yawning or swallowing) to allow for this pressure 

to be periodically rebalanced. This is crucial since a build-up of pressure in the cavity 

will lead to altered hearing as well as discomfort. 
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2.8 TYMPANOMETRY 

 

2.8.1 GENERAL DESCRIPTION  

 

 Tympanometry is a clinical test that measures the immitance at the TM under a 

ariety of different static pressures. Immitance is discussed in detail below. The 

mpanometer itself is a relatively simple device that is mildly invasive in the sense that 

 requires a small probe to be inserted partway into the ear canal. It is extremely 

portant for the precision and validity of the results that the probe tip forms a hermetic 

al with the walls of the ear canal. 

The tympanometer contains four major components: a microphone, an air pump, a 

anometer and a loudspeaker. This configuration can be seen in Figure 2.5. The air 

tatic pressure inside the ear canal so that the immitance can be 

easured over a range of static pressures. In one approach, once the static pressure has 

 to e is generated by the loudspeaker and is kept at a 

redetermined sound pressure level using feedback generated by the microphone. The 

ount

v

ty

it

im

se

  

 

m

pump is used to adjust the s

m

been set, a single-frequency probe n

p

am  of feedback necessary to maintain a constant probe-tone sound pressure can be 

converted to an equivalent immitance value. 

 

 
Figure 2.5 Diagram including the primary components of a tympanometer. From Qi (2008) 
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  Immitance describes the relationship between an input sound pressure and the 

resulting volume velocity of a mechanical body. The volume velocity of a surface is 

efined as the integral over that surface of the component of particle velocity normal to 

the surface. (In the case of a simple piston, for example, the volume velocity of its face is 

the piston velocity multiplied by its surface area.) Immitance itself is a generic term that 

includes two reciprocal quantities: admittance (Y) and impedance (Z). The respective 

equations for these quantities are: 

 

      

d

Y =
U
P                                                         (2.1) 

and 

                  Z= P
U                                                         (2.2) 

 

R) and the reactance (X) respectively.  

 For any mechanical or acoustical system, there are three different classes of 

parameters that control the dynamic force-displac

stiffness. These three parameters are d ly related to the complex immitance. 

Conductance and resistance are measurements of friction and energy dissipation and 

would therefore be determined by the damping

energy can only be dissipated and not created, the real part of the immitance cannot take 

where 

representations of the immitance are used in the current literature, and the remainder of 

this report will utilize both terms. Immitance is a complex quantity since it involves both 

the magnitude and the phase of the pressure/velocity relationship. In the case of 

admittance, the real component is known as the conductance (G) while the imaginary 

component is known as the susceptance (B). For the impedance, the real and imaginary 

terms are known as the resistance (

P is the input sound pressure and U is the volume velocity. Both of these 

 

ement relationship: damping, mass, and 

irect

 parameters. Since in a passive system 

a negative value and the phase angle is subsequently bound between −90 and 

+90 degrees. Conversely, the susceptance and reactance are measures of the energy 

storage of the system and would therefore be determined by the net effect of the mass and 
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stiffness terms. These imaginary components will generally be positive at low 

frequencies (indicative of a stiffness-dominated system), negative at high frequencies 

(indicative of a mass-dominated system), and zero at a resonance where the mass and 

stiffness terms are balanced. 

 

 Although the immitance measured by tympanometry corresponds to the signal 

generated by the canal walls, the air in the canal, and the middle ear, it is almost always 

only the latter measurement that is of interest. Therefore, a method is needed to isolate 

the middle-ear immitance from the immitance generated by the other two sources. As 

mentioned in the anatomy description, the majority of the adult canal is encased by 

temporal bone. This greatly limits the movement of the walls, and for this reason the 

immitance of the canal wall is considered to be negligible when compared with that of 

the middle ear and is therefore ignored. The immitance of the enclosed air, however, is of 

larger magnitude and cannot be ignored. Therefore, during clinical tympanometry, an 

immitance reading in the presence of a large static pressure (either positive or negative) is 

performed. This large pressure will push the TM and the middle ear to their limits and 

cause the structures to become essentially rigid. Therefore, in this situation, the 

immitance measurement will isolate the effect of the air in the canal, and this admittance 

an be subtracted from the unpressurized admittance measurement to give the admittance c

of the middle ear alone. 

 

 Although any acoustic frequency could be used for the probe tone, the most 

common choice for clinical purposes is 226 Hz. This frequency is chosen for two major 

reasons. The first is that it is far enough below the resonance frequency of the middle ear 

(usually situated at approximately 1000 Hz) that the mass and damping terms are 

negligible, allowing for the measured results to be interpreted as pure stiffness. The 

second reason is that by using this frequency when calculating the canal-air admittance, 

1 mmho of admittance (‘mho’ is the inverse of ‘ohm’, and 1 mmho = 10 mm3/s/Pa) 

corresponds to exactly 1 cc of air (Katz et al. 2002), allowing for an easy determination 

of total ear-canal volume. However, it has been shown that pathologies such as middle-
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ear effusion can be detected more efficiently when using higher probe-tone frequencies 

(e.g. Shurin et al. 1977, Marchant et al. 1984, Hunter and Margolis, 1992). 

 

 During a clinical tympanogram, the static pressure is typically varied between 

00 a−4 nd +200 daPa (1 daPa = 10 Pa) and the admittance is measured in both the right 

and left ear. A healthy ear will display a relatively large peak in admittance near 0 dB of 

static pressure, implying that the TM vibration amplitude is large. However, 

abnormalities can present themselves in the form of a shifted peak, an unusually large or 

small peak, an unusually large or small ear-canal volume, etc. A list and some visual 

examples of different types of tympanogram abnormalities and the pathologies behind 

them can be seen in Table 2.1 and Figure 2.6. 
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Table 2.1 A description of the different low-frequency adult tympanometric diagnoses. From Jerger (1970), 

after Linden (1969) 
 
 

 
Figure 2.6 A visual representation of some of the different types of tympanograms discussed in Table 2.1. 

X and Y axes are pressure and admittance respectively. (Source: http://www.ivertigo.net) 
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2.8.2 NEWBORN TYMPANOMETRY 

 

 As mentioned in Section 1.1, newborn tympanometry results are currently not 

well understood, and the results obtained when using a 226 Hz probe tone do not relate 

well to the state of the child’s middle ear. For example, even though the infant 

tympanograms in Figure 2.7 correspond to normal hearing in the right ear and middle-ear 

effusion in the left ear, the 226-Hz tympanograms give very similar results in both ears. 

Recent research has suggested that more informative and reliable results can be obtained 

using higher-frequency probe tones when testing newborns, more specifically, probe 

tones of approximately 1000 Hz (e.g., Margolis and Popelka, 1975; Margolis et al. 2003; 

Alaerts et al. 2007). Although the exact reason for these improved results are not known, 

it is thought that they are due to developmental changes in the size of the ear structures, 

the orientation of the TM, the fusing of the tympanic ring to the temporal bone, a 

decrease in the mass of the middle ear, the ossification of the canal wall, etc. (Holte et al. 

1991). It is likely that multi-frequency tympanograms would provide the most 

m  

xamination, it is thought to be im

eaningful results. However, due to the amount of time currently required for this type of

practical for hearing screening. e

 

 
Figure 2.7 Clinical infant tympanogram. Dark lines are susceptance, light lines are conductance. Units for 

X and Y axes are daPa and mmho respectively. R and L signify the right and left ears. 
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CHAPTER 3: METHODS 
 

 

3.1 INTRODUCTION 

  

 This chapter will include brief descriptions of the methods that are used in this 

research, including the finite-element method, Rayleigh damping, and the elementary-

effects method. It will also include details regarding the construction of the model 

geometries and their meshes. 

 

3.2 FINITE-ELEMENT METHOD 

 

 The finite-element method (FEM) will be used to calculate the response of a 3D 

model of the newborn ear canal and middle ear to sound pressures. The basic approach of 

FEM is to segment a large, complicated geometry into a finite number of simple 

elements. For solid models, triangular and tetrahedral elements are often chosen due to 

their computational simplicity and their ability to represent the geometry of any solid 

s  

elements in the structure.  

 

 The advantage of performing this segmentation is that an individual element has a 

much more simple and well-defined force lacement relationship than the overall 

rms part. For a structural mechanics problem, the differential 

ingle-degree-of-freedom system is  

tructure. All of these elements will share at least 2 corners (or nodes) with other

-disp

structure of which it fo

equation for a s

 

                                                  )(
2

2

tfku
dt

du
c

dt

ud
m                                        (3.1)                               

 

here m is mass, c is damping, k is stiffness, u is displacement, and f is external force. 

ally in the case of a single degree of freedom, but 

r a large, irregularly shaped geometry, it would be difficult or impossible to derive an 

w

This equation could be solved analytic

fo
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analytic solution. It is for this reason that the geometry is instead broken down into small 

elements so that an approximate numerical solution can be determined. Each element will 

have multiple degrees of freedom (3 or 6 per node) and so Equation 3.1 must be 

converted to matrix form: 

 

    teee fuKuCuM                                             (3.2) 

 

here Me, Ce, and Ke are the mass, damping, and stiffness matrices of the element e. A 

stem

w

sy  matrix equation can then be generated to numerically solve for the overall system 

force-displacement relationship: 

 

       tfKuuCuM                                                (3.3) 

 

ess m

basic principle is that if two of these elements share a common edge or face, then their 

individual force-displacement matrices can be combined to give the total relationship for 

g additional triangles to the mesh, and the stiffness matrix will 

e updated in each iteration via simple linear superposition. This same logic can be 

applied to the mass and damping matrices as well 

simulations. Further details on the finite- ethod and the derivation of the 

where M, C, and K are the mass, damping, and stiffn atrices of the full system. The 

the joined shape. An example of this can be seen in Figure 3.1 where triangles 1-2-3 and 

2-3-4 share the common edge 2-3. Assuming a static simulation where only the stiffness 

term is present, the force (f, g) and displacement (w) vectors for each of these triangles 

when isolated are related by their respective 3×3 stiffness matrices (A, B). When these 

triangles are joined, the 4×4 stiffness matrix for the newly formed quadrilateral is just a 

linear superposition of matrices A and B. By continuing this logic, any 3D surface can be 

created iteratively by addin

b

when dealing with dynamic 

element m

stiffness, damping, and mass matrices can be found elsewhere (e.g., Hartley et al. 1986). 
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Figure 3.1 Basic example of system matrix construction in FEM. (Source: http://audilab.bme.mcgill.ca) 

 

 

3.3 RAYLEIGH DAMPING 

 

 The damping of a mechanical system is more difficult to understand than its mass 

or stiffness since it deals with its internal friction and energy dissipation, processes that 

are difficult to isolate and measure. Therefore, several different models have been 

proposed for describing damping in a mechanical system. One of the more common 

models for damping, and the one that is used throughout this research, is Rayleigh 

damping. In this model, it is assumed that the damping matrix of Equation 3.3 is simply a 

linear combination of the mass and stiffness matrices: 

 

          KMC                                                      (3.4)                               
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where α and β are the mass and stiffness damping parameters. Although this formulation 

allows for the damping to be parameterized in a model, these two damping parameters 

don’t have any physical significance and cannot be measured through experiments. In 

order to estimate the value of these parameters for a specific system, these parameters 

they are linked to a much more well-known and physically relevant parameter;, the 

damping ratio (ξ), which is defined as the ratio between an oscillator’s actual damping 

and critical damping (e.g., Alciatore et al, 2007). The relationship between the Rayleigh 

damping parameters and the damping ratio is 

  

                                                          







βω+
ω

α
=ξ

2

1
                                                  (3.5) 

 

where ω is the angular input frequency (radians/sec). In order to solve for the two 

Rayleigh damping parameters, the damping ratio must be specified at two different 

angular frequencies: 
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sing this model of damping, it is impossible to obtain a system where the damping ratio 

2 
                                            (3.6)

U

is constant for all frequencies. As can be seen in Figure 3.2, if the damping ratio is chosen 

to be equal at two frequencies, then its value will be larger outside of this range and 

smaller in between. 
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Figure 3.2 The dependence of the damping ratio on frequency in Rayleigh damping. The total damping is 

the sum of the mass and stiffness damping. 
 

 

3.4 ELEMENTARY-EFFECTS METHOD 

 

 When running simulations on a large finite-element model with an abundance of 

arameters can affect the output. This second benefit is particularly 

portant in this work on the newborn ear due to the lack of knowledge about the 

agnitudes of parameters such as the Young’s modulus of the TM. Sensitivity analysis 

will characterize the importance of the parameter estimates.  

 

 There are two major categories of sensitivity analysis: global and local. In global 

sensitivity analysis, the behaviour of the model is studied throughout a very large 

parameter space. This examination will result in an extremely thorough quantitative 

parameters, it is useful to perform a sensitivity analysis on the system to determine the 

relative importance of the various parameters to the model output. This type of analysis 

can lead to an improved understanding of the system and help establish how much the 

uncertainty in the p

im

m
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description of how a model behaves for any combination of input parameters. However, 

for the purposes of this research, global sensitivity analysis is not necessary. Obtaining 

quantitative results is usually only necessary when the model will be repeatedly verified 

and updated, a procedure which will not be carried out in this study. Also, utilizing a very 

large parameter space is not effective when using a model that must contain 

physiologically meaningful values. Therefore, local sensitivity analysis will instead be 

used in this research. Local sensitivity analysis begins with the model situated at a certain 

base point in the parameter space and then describes the model’s response to relatively 

small perturbations in the parameter set. These methods are most often carried out by 

changing one parameter at a time. 

 

Perhaps the most commonly used local sensitivity analysis method for mechanical 

and acoustical models is the elementary-effects method (EEM) (Saltelli et al. 2004). The 

primary reasons for its popularity are its ability to describe nonlinear effects and 

interactions alongside overall parameter importance, and the fact that it does not rely on 

r  

 the form  

 

estrictive assumptions and is hence model independent. In EEM, the model is expressed

in

                                                     )X,,X,f(X=Y k2 1                                               (3.7) 

 

where Y is the output of interest and X1 through Xk are normalized versions of the k input 

parameters. The range of each parameter is normalized to the range [0, 1] and divided 

into p levels, resulting in a region of experimentation that is a k-dimension p-level grid 

with the following possible parameter values: 

 

      110, Δ,,Δ,=X i                                                  (3.8) 

 

where Δ is 1/ (p−1). In this research, p is chosen to be 5 in order to have enough steps to 

provide a complete sensitivity description without requiring excessive computations. 

Within this region of experimentation, the elementary effect of input parameter i is 

simply the partial differential of the output with respect to that parameter: 
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Δ

)X,,X,Y(X)X,Δ,+X,,X,Y(X
=d k2ki2

i

 11
                  (3.9) 

 

With this formula in mind, the parameter set is progressively moved through the region 

of experimentation by changing only one parameter at a time by the step size Δ, allowing 

for di to be calculated at every step. Once multiple (r) elementary effects have been 

calculated for every parameter (the effect of one parameter may change depending on the 

sampled point in the parameter space), then the sensitivity of parameter i can be 

described using the following two values: 
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                                            (3.10) 
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where X(j) is the j-th set of input parameters (X1, …, Xk). In this research, r is chosen to be 

3 as this allows for the effect of each parameter to be measured as it moves between the 

pper limit, lower limit and centre of its range. The measure μi is a general measure of the 

odel outp

partial differential of the output with resp rameter over several different 

 highly dependent on the value of the other 

arameters in the model. The exact procedures used for calculating the elementary effects 

of the model parameters are presented in Table A.1 and

 

u

importance of a certain parameter to the m ut. Essentially, it is the average 

ect to that pa

points in the region of experimentation. The measure σi describes the non-linear 

behaviour of that parameter and how it interacts with the other parameters of the system; 

it is calculated as the standard deviation of the parameter’s partial differential. If a certain 

parameter has a large σi, then its importance is

p

 A.2.  
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3.5 GEOMETRY AND MESH GENERATION 

 Mesh generation is a crucial step in t ent modelling process since the 

e regions of interest. For example, in the ear, 

ese different regions would include the soft tissue, temporal bone, TM, ossicles etc. An 

example of a segmentation done using Fie is shown in Figure 3.3. Once this segmentation 

p or all slices, the lines are passed into a program

of the two-dimensional outlines of a subset together with triangles, allowing for a three-

dimensional object to be formed from this series of two-d

triangular surface meshes are converted e meshes using Gmsh 

 

he finite-elem

accuracy and precision of the model solution is highly dependent on the quality of the 

mesh. In this research, several different programs are used to generate an accurate 

newborn ear geometry and the appropriate corresponding mesh. Fie is a program that is 

used to create the outline of the structure of interest. As an input, Fie takes a sequence of 

cross-sectional images at different slices depths. In each of these images, the program is 

used to draw lines along the borders of th

th

in com lete f  named Tr3 that connects all 

imensional images. These 

to tetrahedral volum

(http://www.geuz.org/gmsh/), and the results of this conversion can be displayed in Fad. 

This final program can be used to check the integrity of the volume meshes and ensure 

that there are no overlaps or gaps present, and then it is used to join several different 

subset meshes together to get the overall mesh for the system to be studied. (Fie, Tr3, and 

Fad are all locally developed programs that can be found at 

http://audilab.bme.mcgill.ca/sw/.) The finalized mesh is imported into COMSOLTM
 

version 3.2 (http://www.comsol.com) for finite-element analysis. Once the mesh is in 

COMSOL, the material properties and boundary conditions of the subsets must be 

specified before simulations can be run. 
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Figure 3.3 Examples of the CT scan slices and outlines used for model construction. a) Slice including 

utline of temporal bone. b) Slice including outlines of bone, ear canal, TM, malleus, probe tip and middle-
ear cavity. 

o
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As the resolution of a finite-element mesh is increased and the model is divided 

into a larger number of smaller elements, the solved displacements should increase, 

monotonically or not, and should asymptotically approach the true values as shown in 

Figure 3.4. As the number of elements increases, the computational expense can increase 

dramatically. An important step in any finite-element analysis is the testing of different 

mesh resolutions to determine a resolution that is sufficiently fine but not too 

computationally expensive. 

 

 
Figure 3.4 The difference between non-monotonic and monotonic convergence. D is the theoretical exact 

solution. From Siah (2002). 
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CHAPTER 4: FINITE-ELEMENT MODELS 
 

 

4.1 INTRODUCTION 

 

In this chapter, the process of building the geometry of the ear-canal and middle-

ear models is described. This is followed by a description of the two different types of 

mulations that will be used in this research: low-frequency simulations and dynamic 

simulations. The boundary conditions and material properties for both of these simulation 

types are also presented. 

 

4.2 MODEL GEOMETRY 

 

The finite-element representation of the newborn ear was based on a series of 

cross-sectional images that were imported into Fie for segmentation. For this research, a 

clinical X-ray CT scan (GE LightSpeed16, Montreal Children’s Hospital) of a 22-day-old 

newborn’s right ear was used. Although this child was born with a unilateral congenital 

defect of the ear canal on the left side, the right ear was found to have no anatomical 

abnormalities and to exhibit normal hearing (Qi et al. 2006). The scan contains 47 

different horizontal slices in the superior-inferior direction with a slice thickness of 0.625 

m  

contain just soft tissue and cranial bones. (After this thesis had been written, examined 

and passed, and while minor modifications were being made, it was discovered that 

lthough the slice thickness of the CT scan is 0.625 mm, the slice spacing is actually 

.5 mm. Therefore, the model geometries in this thesis are elongated by 25% in the 

ferior-superior direction. Some implications of this error are discussed in Section 

.2.2.) 

This same CT scan was segmented previously by Qi, a past graduate student in 

is lab, when he was studying the non-linear response of the newborn ear canal and 

middle ear to large static pressures (Qi et al. 2006, 2008). In order for the results of this 

si

m. A large number of the slices do not show the ear canal or middle ear, but rather

a

0

in

6

 

 

th
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work ntation will 

be used in this study with only a few minor hen he did the segmentation, he 

separately outlined the structures of the canal and middle ear and studied them 

ther. In this work, the simultaneous admittance of the canal and 

iddle ear will be compared and therefore it is beneficial to have both of these systems 

combin

the original CT scan, it is represented in the model by a small 

lock located 5 mm inside of the ear canal (Keefe et al. 1993) and tightly connected with 

r to simulate a hermetic seal. 

 

 to be consistent and possibly later combined with his, the same segme

 changes. W

independently of one ano

m

ed into one model. In order to make these two systems compatible in the same 

model, the segmentation data were combined into one file and slight changes were made 

to some of the lines and their properties in order to achieve a fully compatible mesh (see 

Section 3.5). The resulting full model can be seen in Figure 4.1. Although the probe tip is 

obviously not present in 

b

the surrounding tissue in orde
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Fi
th

gure 4.1 Complete model geometries. a) Medial view of the ear canal and middle ear. b) Lateral View of 
e ear canal, temporal bone and (partially transparent) soft tissue. S is superior, I is inferior, L is lateral, M 

is medial, A is anterior, P is posterior 
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4.3 BOUNDARY CONDITIONS 

 

One of the major assumptions that will be made in this study is that the border of 

the TM is clamped in place around its periphery. In models of adult ears, human or 

otherwise, this assumption is often used (e.g., Funnell 1996, Ghosh et al. 1996, Siah 

2002) since the TM is attached to the relatively very thick fibrocartilaginous ring, which 

in turn is securely attached to the tympanic ring of the temporal bone; in adults the 

tympanic ring is bone and it is immobile with respect to the head. In newborns, however, 

this assumption may not be as well-founded due to the fact that the tympanic ring is not 

fully developed and ossified until the child is two years old (Saunders et al. 1983). For 

this reason, the boundary of the newborn TM may not be completely clamped, but the 

extent of this possible movement has not yet been measured. The primary reason for 

including this assumption in the model is that it allows for the middle-ear simulations to 

be performed independently of the ear-canal simulations. The only interface between the 

ear canal and the middle ear in the model ear is the tympanic ring. If the ring is clamped, 

then any displacement of the ear canal will have no effect on the middle ear and vice 

versa, and the simulations of these two systems can be run separately, greatly reducing 

computation time and increasing efficiency. 

 

 Along with the tympanic ring and the ends of the AML and the PIL, the other 

structures that will be clamped during these simulations are the temporal bone, due to it 

being the primary reference point for all displacements in the model, and the probe tip 

since it is assumed to be securely fixed in place inside the ear canal. For the ear-canal 

simulations, the TM will be entirely clamped as it is only the wall displacements that are 

included in this case; the TM displacements will be analyzed in the middle-ear model. 

For low-frequency sound input, the wavelength of the sound pressure will be 

significantly longer than the ear canal itself, implying that the pressure will be of very 

similar magnitude throughout the canal. Therefore, the pressure in the simulations will be 

This assumption will be discu 5.3. 

uniform everywhere inside the ear canal, and also across the TM in the middle-ear model. 

ssed in more detail in Section 4.
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4.4 LOW-FREQUENCY SIMULATIONS 

4.4.1 IN

anges in the pressure. This eliminates all of 

e transient behaviour that would normally be seen in a dynamic simulation, and the 

aterials were linear and 

stead used a hyperelastic non-linear model. That material model assumes that a material 

 

TRODUCTION 

 

 As a first step in studying the response of the newborn middle ear and ear canal to 

the tympanometric probe tone, it is assumed that the probe-tone frequency is very low, or 

more specifically that it is far below the resonance frequency of both systems involved. 

This allows for simplifications to be made in the simulation process and for preliminary 

results to be obtained regarding the nature of the newborn ear. The overall goal of this 

section of the research is to use FEM to analyze the relative magnitudes of the admittance 

produced by the newborn’s ear-canal wall and by the middle ear during tympanometry, 

and to compare the ratio to that seen in adults. 

 

Normally when studying probe-tone stimulation, a harmonic input would be 

needed to imitate the sound wave pressure. However, the primary advantage of assuming 

a low-frequency probe tone is that the same results can be obtained using static inputs. 

The basic logic behind this simplification is that if the input frequency is low enough, the 

system has plenty of time to adjust to the ch

th

model displacements at any point in time would be dependent only on the input pressure 

at that time and not on what happened in the past. Therefore, static simulations at a 

constant input pressure level will be used for this initial work. 

 

4.4.2 MATERIAL PROPERTIES 

 

4.4.2.1 OVERVIEW 

 

When looking at material properties, the first distinction that must be made is 

whether or not the materials are linear. In studying the response of these models to large 

static pressures, Qi et al. (2006, 2008) could not assume that the m

in
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behaves linearly up to a certain strain, such as approximately 5%, before becoming stiffer 

.g., Holzapfel et al. 2000), as seen in Figure 4.2. Due to the fact that static pressures in 

up to 4000 Pa, there will certainly be large deformations in the 

ar and this change in stiffness will play a large role. In fact, Qi’s results indicate that the 

(e

tympanometry can reach 

e

onset of the stiffness non-linearity seems to occur at approximately 1000 Pa in both the 

ear canal and the middle ear (2008). The probe tone, however, is of much smaller 

amplitude than the static pressures (usually less than 1 Pa) and will certainly not cause a 

large enough deformation of the tissues to push the system into its non-linear range. 

Therefore, in all of the simulations of this research, all of the materials are assumed to be 

linear in order to increase the computational efficiency. 

 

 
Figure 4.2 Stress-strain curve for hyperelastic materials. 

 

Typically, the three major categories of material properties that need to be defined 

for a m

irrelevant. Therefore, the only parameters that will play a role in these simulations are the 

 

odel are mass, damping and stiffness. However, as stated above, this initial work 

will only be using static simulations and thereby ignoring any time-dependent effects. 

Subsequently, as evidenced by Equation 3.3, all of the velocity and acceleration terms 

will be ignored, causing the mass and damping parameters of the materials to become 
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stiffnesses and Poisson’s ratios of the tissues. In Qi’s work, the Poisson’s ratio was set at 

a value of 0.475 as this is a widely used value in the literature for modelling biological 

tissues (e.g. Cheung et al. 2004, Chui et al. 2004). Having the Poisson’s ratio set at this 

value assumes that the tissue is nearly incompressible. (An incompressible material has a 

value of 0.5.) Qi et al. (2006) found that these types of ear models are largely insensitive 

to this parameter, and it is therefore assumed that setting the Poisson’s ratio of the tissues 

to 0.475 will produce accurate behaviour. 

 

4.4.2.2 SOFT TISSUE AND TYMPANIC MEMBRANE 

 

 Due to the linear nature of the materials in this work, the stiffness can be defined 

by a simple constant known as the Young’s modulus: the ratio between the stress and the 

strain of a material. However, to this date, the Young’s moduli of the newborn TM and 

ear-canal soft tissue have not been measured and are not known. The soft tissue that 

surrounds the ear canal in humans is elastic cartilage (McLellan and Webb, 1957), a 

tissue that has a Young’s modulus in the range of 100kPa to 1MPa in adults (Zhang et al. 

1997, Liu et al. 2004). However, the mechanical properties of this tissue change 

drastically in the early stages of life. It has been shown that the modulus of bovine 

cartilage increases by approximately 100% from foetus to newborn (Klein et al. 2007) 

and by another 275% from newborn to adult (Williamson et al. 2001). 

  

For the TM, adult Young’s modulus values have been measured in several 

different studies, and the resulting magnitudes lie in the range of 20-40 MPa (Békésy et 

al. 1960, Kirkae et a 007). Similar to the 

case for the canal wall, there is likely to be a drastic change that occurs during 

ent, and it has been estimated that the Young’s modulus of a newborn’s TM is 

approxim

l. 1960, Decraemer et al. 1980, Cheng et al. 2

developm

ately 7-8 times smaller than that of the adult (Qi et al. 2008). Since precise 

values for the Young’s moduli of a newborn’s elastic cartilage and TM are not available, 

a range of plausible values must be used instead.  
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 For both of these modulus values, the ranges to be used will be based on those 

used by Qi et al. (2006, 2008). For the elastic cartilage surrounding the ear canal, he used 

a range of 30 kPa to 90 kPa. The lower boundary of this range coincides with the stiffness 

of some of the least stiff tissues of the human body, such as fat (Wellman et al. 1999), 

whereas the upper boundary coincides with the stiffness of the most compliant cartilage 

seen in adults. Although this range is wide, it almost certainly includes the true value of 

this parameter. Likewise for the modulus of the TM, the chosen range of values lies 

etween 0.6 MPa and 2.4 MPa and is based on the information presented in the previous 

actor for the precision of these 

odels. 

3): 

b

paragraph. The size of these ranges is likely the limiting f

m

 

4.4.2.3 EFFECT OF FREQUENCY  

 

 The modulus values in the previous paragraph were used by Qi et al. to model a 

static input pressure. However, these values may need modification when attempting to 

model the response to a dynamic probe tone. Due to the viscoelastic nature of soft tissue, 

the elastic modulus will not be constant across all frequencies as demonstrated in Figure 

4.3. At low frequencies, the modulus remains constant at its static value, but at a certain 

critical frequency, the modulus rises sharply before settling at a new high-frequency 

value. The critical frequency (ωc) is defined as follows (Fung et al. 199

 

            
εσ

c
ττ

=ω
1

                                                      (4.1) 

 

where τσ and τε are the creep time and stress-relaxation time respectively. Assuming that 

these two processes can each be defined by the same individual time constant, the critical 

frequency simply becomes the reciprocal of the creep time. Therefore, an estimation of 

the creep time of these tissues is needed in order to calculate the value of this critical 

frequency and to determine if any adjustments are needed for the modulus ranges. 
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Figure 4.3 The relationship between modulus and frequency for viscoelastic materials. See text for 

explanation. Modified from Fung (1993) 
 

 

The creep time is the time constant of the strain response of a tissue after a sudden 

change in the applied stress. A reasonable estimate of this time can be obtained from the 

llowing equation when the strains are assumed to be small (Fung, 1993): 

 

      

fo

 εκYπ

φd
τ

M

2

σ 


12                                                  (4.2) 

ssed is 

e hydraulic permeability; previous studies have shown that typical values of this 

arameter for soft tissues is on the order of 10-15 m4/s/N (Heneghan et al. 2008). Inserting 

 

where φ is the fluid volume fraction (assumed to be 0.7, see Section 4.5.2.2), d is the 

thickness of the tissue (ranges from approximately 0.1 mm to 5 mm), YM is the elastic 

modulus (see Section 4.4.2.2), κ is the hydraulic permeability, and ε is the initial strain 

(assumed to be 0). The only parameter in this equation that has not yet been discu

th

p
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this value into the above equation results in a creep time on the order of 100 seconds, and 

consequently a critical frequency on the order of 0.01 Hz. Clearly, even though the 

simulations in this section of the research assume that the probe tone is of low frequency, 

it is much higher than 0.01 Hz and it is not justifiable to neglect the effect that a dynamic 

input will have on the modulus of the tissues. 

 

 Looking again at Figure 4.3, it is clear now that these simulations take place at 

frequencies much higher than the critical frequency and therefore the Young’s modulus 

values must be increased. However, the exact amount of this increase is dependent on the 

tissue and is not explicitly stated by Fung. Research done by Decraemer on human TMs 

showed that the modulus is approximately twice as large at higher frequencies (~100 Hz) 

as at lower frequencies (~0.01 Hz) (Decraemer et al. 1980). Therefore, for the remainder 

of this work, the moduli of the canal walls and TM will be doubled, so the final ranges to 

be tested are 60 – 180 kPa and 1.2 – 4.8 MPa respectively. 

 

4.4.

 For the Young’s moduli of the ossicles and their ligaments, once again there are 

no exp

 important for 

dmittance results in these models than are the moduli of the ear canal and TM (Qi et al. 

2008). Therefore, as long as the moduli of the ossicles and ligaments are reasonable 

estimates, the accuracy of the results should be maintained. T

ossicles will be taken as 3 GPa, as this is slightly below the value used for adult middle-

2.4 OSSICLES AND LIGAMENTS 

 

erimental measurements done on newborns in the literature. However, a single 

modulus will be estimated for each of these structures rather than a range of potential 

values. This distinction can be made since these parameters are much less

a

he Young’s modulus of the 

ear models (Koike et al. 2002). The Young’s modulus of the ligaments will be set to 

3 MPa, which assumes that the ligaments have a stiffness similar to that of the TM itself. 

The logic behind these choices for the modulus values is the same as that of Qi et al. 

(2008).  
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4.4.2.5 TYMPANIC-MEMBRANE THICKNESS 

 

 Unlike the rest of the structures in the models, the TM is built from shell elements 

rather than solid elements. In other words, it is built as a 3D surface of triangles rather 

than as a solid volume of tetrahedra. The reason for this distinction is the very small 

ickness of the TM relative to the remainder of the model. If the TM was in fact meshed 

adrant is significantly thicker 

an the other three. Therefore, this model attempts to recreate this measured TM 

e posterior-superior quadrant set to 0.5 mm and 

e thickness of the remainder of the TM set to 0.15 mm. (After this thesis had been 

e ear-canal model in order to determine 

hich one was the most suitable. They found that an increase from 15 to 18 elements per 

iameter resulted in a 5% increase in displacement magnitudes, whereas an increase from 

th

as a volume instead of as a sheet, then the aspect ratio of its elements would be extremely 

skewed and numerical problems would likely occur in the simulations. Shell elements in 

FEM utilize a different formulation than do the solid elements, allowing the user to 

specify the desired thickness of the surface as a parameter.  

 

To this date, only a single study has been done on the thickness distribution of the 

newborn TM. Ruah et al. (1991) found that the TM is significantly thicker in the 

newborn than in the adult, and that the posterior-superior qu

th

morphology by having the thickness of th

th

written, examined and passed, it was discovered that the middle-ear model had the 

anterior-superior quadrant of the TM as the thickest rather than the posterior-superior 

quadrant. Some implications of this error are discussed in Section 6.2.2.)  

 

4.4.2.6 MESH RESOLUTION 

 

 The mesh resolution of the model is an important parameter that plays a large role 

in the validity of the results. As mentioned previously, increasing the mesh resolution 

should result in a monotonic and asymptotic increase in the model displacements and in 

their accuracy, but also an increase in the computation time. Therefore, it is important to 

find a resolution that provides a good trade-off between these two factors. In their work, 

Qi et al. used several different resolutions in th

w

d
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18 to 22 elements per diameter resulted in less than a 1% increase and a significantly 

nger computation time. Hence, they decided to use 18 elements per diameter for the 

main

 

lo

re der of their simulations. In similar fashion, they found that for the middle-ear 

model, the optimal resolution was 160 elements per diameter for the TM and 40 elements 

per diameter for the ossicles and ligaments. Since this work utilizes the same models and 

in this section also involves static simulations, the same resolution is used. Table 4.1 

contains a summary of the final material properties to be used for low-frequency 

simulations. 

 

Simulated Material Properties (Low-Frequency) 

 Soft Tissue TM (3/4) TM (1/4) Ossicles Ligaments

Young’s Modulus 60-180 kPa 1.2-4.8 MPa 1.2-4.8 MPa 3 GPa 3 MPa 

Poisson’s Ratio 0.475 0.475 0.475 0.475 0.475 

Thickness — 0.15 mm 0.5 mm — — 

Resolution 

(elements/diameter) 
18 160 160 40 40 

Table 4.1. Summary of material properties for low-frequency simulations. 

 

 

4.5 DYNAMIC SIMULATIONS 

 

4.5.1 INTRODUCTION 

 

 Using static simulations, the behaviour of the newborn ear canal and middle ear 

can be simulated for low-frequency stimulation. Studying the behaviour at higher 

frequencies requires a dynamic model that includes inertia and damping. With a dynamic 

model that is valid at higher frequencies, a much greater understanding of the newborn’s 

ear mechanics can be obtained and the results could potentially suggest a more efficient 

method of performing tympanometry in newborns. The overall goal of this part of the 

research is to transform the static model from the previous section into a dynamic model 

that can describe the system behaviour at higher frequencies. 
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4.5.2 MATERIAL PROPERTIES 

 

4.5.2.1 OVERVIEW 

 

 In addition to the Young’s modulus values that are taken from the previous 

section, density and damping parameters must also be included for all of the materials in 

the models. For the ear-canal model, the only type of material that is present and free to 

move is the soft tissue and elastic cartilage that surrounds the canal wall. In the middle 

r, there are three different material types: the TM, the ossicles, and the ossicular 

ligaments.

 

4.5.2.2 DENSITY 

 

s of th l materials can be estim  anal e anat  

structures of the various ti s. The o pos the ca soft tissu e 

elas e TM and the ossicular ligaments are very similar. Each of these 

f 60-80% water while the remaining solid structure largely consists 

of a collagen .0 g/cm3 and 

the density of collagen has been measured to be approximately 1.2 g/cm3 (Harkness et al. 

e that the density of all these tissues lies somewhere 

 1982). Therefore, for these simulations, 

ity of these materials will be set to 1.1 g/cm3.  

The ossicles are comprised of bone and therefore will have a different density 

ea

  

The densitie e mode ated by ysing th omical

ssue verall com itions of nal e, th

tic cartilage, th

tissues is composed o

matrix (Widmaier et al. 2006). Since water has a density of 1

1961), then it is logical to assum

between these two values (Funnell and Laszlo

the dens

 

than the rest of the tissues. Skeletal bone can be anatomically broken down into two 

distinct types: cortical bone and trabecular bone. Cortical bone is the solid white 

substance on the exterior of a bone; it has a density of approximately 2 g/cm3 and 

accounts for approximately 80% of the bone’s total weight. Trabecular bone, meanwhile, 

is a soft and spongy substance located in the interior portion of the bone; it has a density 

of approximately 1.7 g/cm3 and accounts for the remaining 20% of the bone’s mass 

(Steele et al. 1988). Although these fractions will vary according to the type of bone and 
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the maturity of the bone, the density of a newborn’s ossicles will likely lie in this range 

etween 1.7 and 2.0 g/cm3.  Therefore, the density of the ossicles in these simulations 
3. 

nd a mass damping parameter. However, these values cannot be measured 

irectly, but must rather be extrapolated from the damping ratio of the material at 

s. Unfortunately, much like for the Young’s modulus, there is very 

ttle known about the damping ratio of the relevant structures of the newborn ear. 

Althou

he first type of simulation uses single-frequency sine-wave input pressures. The 

frequen

b

will be set at 1.9 g/cm

 

4.5.2.3 DAMPING RATIO 

 

 The second additional material parameter that needs to be added for dynamic 

simulations is the damping. As explained previously in Section 3.3, this research will use 

a Rayleigh damping formulation where the required parameters are a stiffness damping 

parameter a

d

different frequencie

li

gh not specifically performed on newborn tissues, several papers on structures 

such as soft tissue and temporal bone have suggested that typical human body damping 

ratios lie in the range from 0.15 to 0.4 (Keefe et al. 1993, Dhar et al. 2007, McGarry et 

al. 2008). Due to the uncertainty in this parameter and how it depends on the input 

pressure frequency, two different types of simulations are run with two different 

damping-ratio distributions, as described in the following section. 

 

4.5.3 TYPES OF INPUT PRESSURE SIGNALS 

 

T

cy of the input given a value in the range from 50 to 2000 Hz, and the admittance 

of the model is calculated at the end of each simulation. The upper limit of input 

frequencies is set in order to maintain the validity of the assumption that the ear canal can 

be modelled as a lumped acoustical element (Shanks and Lilly, 1981). If the input sound 

frequency is too high, then the wavelength of the pressure will be comparable to the 

dimensions of the canal itself and the pressure will not be uniform inside the canal. For 

example, at input frequencies of approximately 5000 Hz, the wavelength of sound in air 

is approximately 70 mm, which is only 3 times the longest dimension of the canal. 
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Therefore, our simulations will not use input frequencies in excess of 2000 Hz, to allow 

for the use of a uniform canal pressure.   

 

 Due to the nature of Rayleigh damping, the mass and stiffness damping 

hen the frequency of the input changes in order to maintain 

 constant damping ratio. Therefore, using single-frequency inputs, the damping ratio is 

hat has a value of 0.25 

t 50 and 2000 Hz. An example of the shape of such a damping ratio distribution can be 

aterial properties can be seen in Table 

.2. 

parameters must be altered w

a

held constant at 0.25 across all frequencies. This value is chosen because it is near the 

geometrical mean of 0.15 and 0.4.  

 

The second type of simulation tests all of the frequencies in the appropriate range 

at once through the use of a step input pressure function. The derivative of the system’s 

step response is its impulse response, and the Fourier transform of the impulse response 

results in the frequency response. Therefore, the step function allows for the admittance 

to be calculated at each of the frequencies of interest using the result of a single 

simulation. This is the major advantage of this technique since it greatly reduces the total 

number of required simulations. However, this implies that the same mass and stiffness 

damping parameters will be applied at all frequencies, and therefore the damping ratio 

will vary with frequency. The mass and stiffness parameters are chosen to be α  = 150 and 

β = 4×10−5 respectively, resulting in a damping-ratio distribution t

a

seen in Figure 3.2 and a summary of these new m

4

 

 Typically, before calculating admittance, the simulations must be run until the 

transient behaviour becomes negligible. However, for the ear-canal model, likely due to 

the complex geometry of the structure and the large number of degrees of freedom that 

are present, the transient behaviour can last for a very long time. For example, as shown 

in Figure 4.4, if 25 cycles of a 1000 Hz sine wave is used as an input for the ear-canal 

model, the output has not yet reached a steady state by the end of the stimulation. Many 

additional cycles would be required to reach the steady-state of the ear-canal model, and 

this would require much more computation time. Within the last 5 cycles shown in Figure 
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4.4, the largest difference between any two of the peak amplitudes is 6%. Since the model 

error due to the uncertainty of the material parameters is much larger than 6%, it is 

concluded that running the ear-canal model for 25 cycles is enough to provide adequate 

accurac

 

 

 

y despite the fact that the transients have not completely died out.     
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Additional Material Properties (Dynamic) 

 Soft Tissues Ossicles 

Density (g/cm3) 1.1 1.8 

Damping Ratio (Sine) 0.25 0.25 

Mass Damping (Step) 150 150 

Stiffness Damping (Step) 4e-5 4e-5 

Table 4.2. Summary of additional material properties for dynamic simulations. Sine and Step signify the 
two different types of signal input. 

 

 

 
Figure 4.4 Response of the ear canal to 25 cycles of a 1000 Hz sine wave. The response has not reached a 

steady-state after 25 oscillations. 
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CHAPTER 5: RESULTS 
 

 

5.1

 

 mulation results for both the low-frequency and dynamic 

sim  

shown, the results will be co ittances 

 the canal walls and the middle ear will be discussed. 

 

5.2 LOW-FREQUENCY RESULTS 

 

5.2.1 DISPLACEMENT MAPS 

 

 Once the proper boundary conditions and material properties have been put in 

place, COMSOL is used to perform the simulations on the ear-canal and middle-ear 

models. Sample displacement results can be seen in Figures 5.1 − 5.4. For the ear canal, 

as expected, the majority of the displacement is focused around the boundary of the 

canal, with the maximum displacement located slightly inferior and lateral to the clamped 

TM. In the lateral portion of the canal, the displacements seem to be focused on the 

anterior and posterior walls before shifting more towards the inferior wall in the medial 

portion. This might be explained by the fact that the ear canal’s opening is elongated in 

the superior-inferior direction in the lateral portion of the canal.  

 

 

quadrant of the TM, perhaps because of the fact that out of the three thinner quadrants, 

is region is the largest. Consequently, its centre will be the least affected by the 

lamped tympanic ring and the mass of the malleus. Displacements are also seen on the 

anubrium, the head of the malleus, and the long process of the incus. 

 

 INTRODUCTION 

In this chapter, the si

ulations of the ear canal and middle ear will be presented. Displacement maps will be

mpared to experimental data, and the relative adm

produced by

For the middle ear, the displacements are maximal in the inferior-posterior

th

c

m
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Figure 5.1 View of ear-canal model before simulation. The coloured area represents the walls of the canal 

where the pressure is applied. 
 

 
Figure 5.2 Displacement results of ear-canal model. Larger displacements are focused on the canal 

boundary. 
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Figure 5.3 Cross-section view of ear-canal model after simulation. Area in white is the canal opening. The 

displacement pattern of the canal wall changes as the canal is traversed medially towards the TM.  
 

 
Figu

 

re 5.4 Middle-ear simulation results. The displacements are focused primarily in the inferior-posteri
quadrant of the TM. 

or 
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5.2.2 COMPLIANCE CALCULATION 

 

The purpose of these simulations is to study the relative magnitude of the 

admittances that would be attributed to the ear canal and middle ear in response to a 

tympanometric probe tone. However, admittance is a dynamic measurement that involves 

the volume velocity of the structures while these static simulations reveal no dynamic 

results whatsoever. Therefore, in order to estimate admittance from these results, the 

following equation will be used to describe admittance at very low frequencies (Keefe et 

al. 1993): 

 

    )C+C+Cjω=Y wmv(                                              (5.1) 

 

where Cv, Cm, and Cw are the compliances of the ear-canal air volume, the middle ear and 

induced by 1 Pa of pressure. This low-frequency admittance is purely imaginary and 

always positive, implying that the admittance response is at a phase angle of 90 degrees. 

This coincides with what is expected in a static simulation where the system will be 

affected only by stiffness. More importantly, the equation also implies that the relative 

magnitudes of the admittances of the three components are the same as the relative 

magnitudes of their compliances. Therefore, even when using static simulations, the 

admittance of the ear in response to a low-frequency probe tone can be determined. 

 

 Cv is not a quantity that can be extracted directly from the simulation, but it can be 

derived explicitly from the following equation (Keefe et al. 1993): 

 

                

the canal walls respectively. In this case, the compliance is defined as the volume change 

2v ρc

V
=C                                                        (5.2) 

 

where V is the volume of air in the ear canal, ρ is the density of air (1.2 kg/m3), and c is 

the speed of sound in air (343 m/s). Qi et al. (2006) calculated the volume of this ear 
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canal to be 150 mm3. Using this value, the compliance of the canal air is calculated to be 

.1 mm3/Pa.  

 

           

1

 Unlike Cv, both Cm and Cw can be measured directly from the simulation results 

by calculating the volume displacement corresponding to the displacements generated by 

the input pressure. The volume displacement (ΔV) of each structure is calculated with the 

following equation: 

 

i

N

=i
i nd=ΔV 

1
                                                   (5.3) 

 

where di and ni text are the displacement and normal vectors of the triangular boundary 

to the 

near nature of the materials, these curves are all linear and the compliances (slopes of 

n a linear system, the 

put pressure levels are kept around 0.4 Pa (~85 dB) since this is the normal amplitude 

of the probe tone. The canal-wall and TM compliances seen here are similar to those 

calculated by Qi et al. (2006, 2008) for the same

their input pressures, where their hyperelastic materials were behaving linearly. The Cw 

model. The FEM simulations of the middle ear do not take the effect of the middle-ear 

elements i = 1…N that outline the structure of interest, in this case the canal wall and the 

TM. The dot product must be taken between the displacement and the normal of each 

boundary element to ensure that shear displacements are not included in the overall 

integration, since surface displacements that are parallel to the original surface do not 

produce a volume change. 

 

 Using this equation, the total volume displacements of the canal and TM in 

response to several different input pressures are calculated and plotted in Figure 5.5 and 

the resulting compliance results are seen in Table 5.1. Clearly, and as expected due 

li

the lines) are inversely proportional to the Young’s moduli of the tissues. Although the 

magnitude of the pressure in calculating stiffness does not matter i

in

 Young’s moduli at the lower limit of 

values of 0.0073, 0.0037, and 0.0024 mm3/Pa are the true canal-wall compliance values 

that would be used in Equation 5.1. However, this is not the case for the middle-ear 
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cavity into account, and many studies have shown the large impact that this cavity can 

have on the admittance of the middle ear (e.g., Zwislocki et al. 1962, Funnell and Laszlo 

982, Stepp and Voss 2005). Therefore, the calculated middle-ear compliance values 1

must be adjusted in order to compensate for this effect. 

 

 

 
Figure 5.5 Volume displacement versus pressure curves for ear canal and TM for different Young’s moduli 
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Ear-Canal Compliance (mm3/Pa) 

60 kPa 120 kPa 180 kPa 

0.0073 0.0037 0.0024 

 

TM Compliance (mm3/Pa)   

1.2 MPa 3.0 MPa 4.8 MPa 

0.014 0.0068 0.0046 

Table 5.1 Compliance results for ear canal and TM for different Young’s moduli  
 

 

5.2.3 ACCOUNTING FOR MIDDLE-EAR CAVITY 

 

The alteration in the compliance of the middle ear due to the cavity is caused by 

the air that is trapped in this space. As the TM gets displaced inward, for example, the air 

on the medial side of the TM is compressed and exerts a force back on the TM. This 

effect can be modelled as an impedance element (ZCAV) in series with the impedance of 

the TM itself (ZTM) (Stepp and Voss, 2005): 

 

          CAVTMME Z+Z=Z                                               (5.4) 

 

where ZME is the total impedance of the middle ear that would be detected in 

tympanometry. Conversion of the above equation from impedance to compliance results 

in 

 

        
CAVTMME C

+
C

=
C

111
                                              (5.5) 

 

form as Equation 5.2 for the ear-canal volume. Consequently, an estimate is needed for 

the volume of the cavity itself. However, before this estimation is performed, it is 

important to realize that the middle-ear cavit

 

The equation for the compliance of the air in the middle-ear cavity (CCAV) takes the same 

y can be in one of two different states. 
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As described in Section 2.7, the Eustachian tube connects the middle-ear cavity to 

the nasal cavity and can te. When it is open, the 

middle-ear cavity, for the se of ng co , would essentially extend 

into the nasal cavity and o the ounding dy. In this case, it is very 

reasonable to assume that the cavity is infinite in volume. This leads to the air compliance 

being infinite as well, resulting fect on the admittance. 

Simply put, if the Eustachian tube is open, th  the air is free to move in and out of the 

middle-ear ressed or 

decompressed when the TM displaces. This situation, however, when the Eustachian tube 

is open and the middle-ear cavity is directly connected to the external air, is rare. The 

 etc., and so it is 

uch more likely that the tube will be closed when tympanometric data are being 

recorded. T

ate of the newborn’s middle ear 

lume is needed to determine its effect on the middle-ear admittance. Qi et al. 

(2008) estimated this volum eing between 70

segmentation data. Subsequently, in this research, it will be assumed that the cavity has a 

ng these compliance values in Equation 5.5 leads to a drastic change in the total 

iddle-ear compliance values as seen in Table 5.2. Not only does the closed cavity 

decrease the compliance of the middle ear by almost

eliminates the inversely proportional relationship between the middle-ear compliance and 

the Young’s modulus of the TM. In fact, the addition of the middle-ear cavity reduces the 

be in either an open or a closed sta

 purpo calculati mpliance

 out int air surr  the bo

 in the cavity having a negligible ef

en

 space. Therefore, the air exerts no force since it does not get comp

tube generally only opens for brief intervals during yawning, swallowing,

m

he open-cavity situation tends to arise more often during post mortem 

experiments when a hole has been drilled in the temporal bone. 

 

For the purpose of this model, it is assumed that the simulations are run when the 

Eustachian tube is closed. Therefore, an accurate estim

cavity vo

e as b 0 and 1000 mm3 using the CT 

volume of either 700 or 1000 mm3 in order to provide limits on this cavity’s effect. These 

cavity volumes result in an air compliance of 0.0050 and 0.0071 mm3/Pa respectively. 

Usi

m

 75% in some cases, but it also 

ratio between the middle-ear compliance at the minimum and maximum modulus from 3 

to 1.6. Therefore, the cavity causes the results of the simulation to be much less sensitive 

to the Young’s modulus of the TM, a convenient outcome due to the uncertainty in this 

parameter’s value. 
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Middle-Ear Compliance (mm3/Pa) 

 1.2 MPa 3.0 MPa 4.8 MPa 

Open Cavity 0.014  0.0068  0.0046  

Closed Cavity (700 mm3) 0.0037  0.0029  0.0024  

Closed Cavity (1000 mm3) 0.0047  0.0035  0.0028  

Table 5.2. Middle-ear compliance results for different Young’s moduli including the effects of the middle-
ear cavity 

 

 

5.2.4 COMPARISON WITH EXPERIMENTAL DATA 

 

 With the compliance values calculated and external effects accounted for, the 

simulation results are validated via comparison to experimental results. Due to the 

uncertainty of the Young’s moduli of the system, the total simulated compliance of the 

ear is expressed as a range. The upper boundary of the range corresponds to moduli of the 

canal wall and TM of 60 kPa and 1.2 MPa respectively at a middle-ear cavity volume of 

1000 mm3, while the lower boundary of the range corresponds to moduli of 180 kPa and 

4.8 MPa respectively at a middle-ear cavity volume of 700 mm3. The compliance of the 

canal air is independent of these parameters and is therefore held constant at a value of 

0.0011 mm3/Pa. Using these criteria, it is concluded that the simulated total ear 

compliance is 0.0059-0.0131 mm3/Pa. The data that will be used for comparison will be 

from Keefe et al. (1993) where they measured the impedance of the ear for normal 

subjects in a variety of different age groups. They used phase information to separate the 

impedance into resistance and reactance and then used the following formula to convert 

input reactance (Xin) to input compliance (Cin): 

 

             
in

in ωX
=C

1
                                                       (5.6) 

 

Their averaged reactance measurements and the derived compliances for the group of 

fifteen 1-month-old newborns can be seen in Figure 5.6. For this subject group, the 

compliance plot suggests that the average total low-frequency ear compliance is 
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approximately 0.007 mm3/Pa. However, the lowest frequency represented on this plot is 

250 Hz, and it is possible that this is not an accurate representation of the true low-

frequency behaviour. Loo e minimum frequency in 

this data set is 125 Hz. Reading the data off the graph, the average reactance of the 

newborn ear at 250 Hz is approximatel  CGS hile th e reactance at 

125 Hz is a S oh ing these two values in Equation 5.6 gives 

compliance values that differ by only 5%. Ther ue to arly identical 

 

xperimental low-frequency ear compliance. Th e simulated range 

nd thus indicates that the model is consistent with the measured data 

 

 

 

 

 

king at the reactance plot instead, th

y -900 ohms w e averag

pproximately -1900 CG ms. Us

efore, d  the ne

compliances seen at 125 and 250 Hz, it is assumed that 0.007 mm3/Pa is indeed the

is value lies within the

a
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Newborn Ear Reactance 

 

 

 Newborn Ea Compliance r 

 
Figure 5.6 Experimental newborn ear measurements used for model validation. Modified from Keefe 

(19  

 

93)
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5.2.5 RELATIVE COMPLIANCE 

 

With the model producing overall compliance results similar to those seen in the 

measurements of Keefe et al. alues that comprise the total 

value are now analyzed separately. This is an analysis that cannot be done 

experimentally; the tympanometer cannot distinguish between the admittance of the canal 

and that of the middle ear. The simulated compliance of the newborn ear-canal air 

volume, ear-canal wall, and middle ear for the open middle-ear cavity state as well as 

both closed-cavity volumes are seen in Figure 5.7. The two different graphs use the lower 

and upper limit of the Young’s moduli respectively. As can be clearly seen, in the closed-

cavity state the compliance of the newborn’s canal wall is very similar to the compliance 

of the middle ear. Even for the open-cavity state of the middle ear, even though the 

middle-ear compliance value has been increased significantly, it is still unreasonable to 

deem the canal-wall displacements negligible in this situation. 

 

 

 

 

 

 

 

 

 

, the individual compliance v
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Figure 5.7 Comparison of simulated compliances for different Young’s moduli. 
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     his observation is drastically different from what is seen in the adult where the 

compliance of the bony canal wall is typically considered unimportant when compared 

with that of the middle ear. In the adult, the normal tympanometric procedure is to first 

isolate the compliance of the air volume by introducing a large static pressure into the 

ear. After this is done, the second step is to subtract this extrapolated air compliance from 

the normal results to isolate the response of the middle ear. Both of these steps, however, 

require he assumption that the canal-wall compliance and admittance are negligible, 

which is obviously not the case in these simulations for the newborn. If the canal wall is 

compliant, then the ear-canal volume will change under a large static pressure, skewing 

the compliance value of the canal air. Also, subtracting this air compliance from the total 

would result in the combination of the canal-wall and middle-ear signals and not simply 

the isolated middle-ear value. Apparently, the fact that the newborn’s canal wall is not yet 

fully ossified and has a much lower stiffness than that of the adult plays a large role in the 

admittance measurement. 

 

5.3 DYNAMIC RESULTS 

 

5.3.1 OVERVIEW 

 

Unlike the static simulations where the velocity-based admittance is estimated 

from the displacement-based compliance, dynamic simulations allow for the direct 

alculation of the admittance from the simulation due to the inclusion of the time 

parameter in the results. The output of interest is the overall volume velocity of the ear 

canal or TM. During the single-frequency simulations, the resulting volume velocity after 

transients will be a scaled and shifted version of the input sine wave. The magnitude of 

the admittance is simply the amplitude of the output wave, while the phase of the 

admittance can be deduced from the time lag separating the peak of the output and the 

peak of the input. Conductance and susceptance can then be easily calculated from these 

measures. The calculation of admittance for the step-input simulations is performed using 

the Fourier transform of the volume velocity as explained in Section 4.5.3. 

 

T

 t

c

57 



 

5.3.2 CONVERGENCE TESTS 

 

For the static simulations, convergence tests were not performed since Qi et al. 

(2006, 2008) confirmed that the resolution and number of slices in the model were both 

satisfactory for static tests. However, this may no longer be the case when the model is 

dynamic, and therefore the effect of resolution needs to be tested. In the middle ear, the 

number of elements per diameter for the TM is increased from 160 to 200, and the 

number of elements per diameter for the ossicles and ligaments are increased from 40 to 

60. The increase in the resulting displacements varies across the range of input 

frequencies, but the average increase in amplitude is approximately 4.5%, the maximum 

increase is less than 7%, and there is no discernible effect on phase at any frequency. Due 

to the fact there is a large amount of uncertainty in the Young’s moduli and damping 

ratios in this model, it is deemed that the level of accuracy provided by the lower-

resolution model is satisfactory. Likewise, the same conclusion is made for the ear-canal 

model, sinc to 22, the 

average increase in the displacements is approximately 3%, the maximum increase is less 

ever, there are definite qualitative differences between the 

hase responses of the two systems. The phase of the model without the additional slices 

e when the number of elements per diameter is raised from 18 

than 6%, and there are no detectable phase differences. 

 

 The next convergence test involves the number of slices that need to be included 

on the inferior side of the ear canal. The model used by Qi included only approximately 

3 mm of tissue on the inferior side of the canal since this is the extent of the slices that are 

included in the CT scan. Through his own convergence testing, he concluded that this is 

an appropriate number of slices for a static simulation. In order to test this conclusion for 

dynamic simulations, an additional 6 mm of tissue was added artificially by extrapolating 

the geometry of the structures on the last slice of the CT scan. The differences between 

the admittances and phases of the two models, with parameter values at the centres of 

their ranges, can be seen in Figure 5.8 When comparing the results of the original model 

to the one with the additional slices, although there are differences of up to 35% between 

the admittance magnitudes of the two models at some frequencies, the two curves are 

qualitatively similar. How

p
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is negative between the frequencies of 600 and 1000 Hz while the model with additional 

ices has a positive phase throughout. Hence, the model does not behave appropriately 

issue on the inferior side of the canal for dynamic simulations. This 

ay be because a dynamic pressure on the ear-canal walls produces strains that extend 

deeper

 

sl

without the added t

m

 into the surrounding tissues than the strains produced by a static pressure. The 

geometry with the additional slices will be used for the remainder of this study. To ensure 

that even more slices are not required, a simulation was run with the inferior face of the 

model clamped in place and there are only very small differences in the results obtained. 

This demonstrates that any further additions to the inferior side of the structure will have 

very little effect on the results. 
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Figure 5.8 The effect of additional inferior slices on the response of the ear canal. 
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5.3.3 SENSITIVITY ANALYSIS 

Due to the large number of parameters present in the dynamic system, a 

ensitivity analysis is performed to analyze the relative importance of the various 

arameters. The Elementary Effects Method (EEM), described in Section 3.4, will be 

sed for this analysis since a full global and quantitative analysis is not needed in this 

ase. This is because the results of this sensitivity test will not be used for model 

updating, but rather for supplying a qualitative description of the importance of the 

parameters. 

 

Two different outputs will be used to describe the effects of each parameter: the 

maximum admittance, and the frequency at which this maximum occurs. These two 

outputs are used because it is very common that a certain parameter change can have a 

large effect on one and a minimal effect on the other. Single-frequency simulations are 

used to obtain the values of μ and σ since they allow for the same damping ratio to be 

simulated at all frequencies. However, the example frequency-response curves are 

generated with a step-function input since it is more practical to use this method for 

generating smooth curves. 

 

 The primary decision that needs to be made before performing EEM is the range 

of each of the parameter values. These ranges must be chosen carefully since the 

sensitivity results are normalized by these range values. For this work, the ranges are 

based on the uncertainty that may be present in their values due to lack of experimental 

data or inter-subject variability. For the ear-canal simulations, the three examined 

parameters are the Young’s modulus, density, and damping ratio of the soft tissue. The 

range of moduli used is the same as in the static simulations (60 − 180 kPa), the range of 

densities used is 900 − 1300 kg/m3, and the range of damping ratios used is 0 − 0.5. This 

range of damping ratios is larger than the one given in Section 4.5.2.3 since those 

experimental measurements were not specific to the newborn ear canal. 
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Middle Ear Ear Canal 

Maximum 
Admittance 
(mm3/s/Pa) 

Resonance 
 Frequency 

(Hz) 

Maximum 
Admittance 
(mm3/s/Pa) 

Resonance 
Frequency 

(Hz) 
 

μ σ μ σ μ σ μ σ 

Young’s 
Modulus 

−16 6.4 (40%) 290 30 (10%) 0.40 0.13 (33%) 380 185 (49%) 

Density -2 0.2 (10%) −165 5 (3%) -0.66 0.13 (20%) -80 10 (13%) 

Damping 
Ratio 

(100%) −50 14.2 (28%) 15 15 (100 %) −0.80 0.09 (7%) −10 10 

TM 
Thickness 

(3/4) 
−32 14.8 (46%) −50 40 (80%) 

 

TM 
Thickness 

−4 0.8 (20%) −
(1/4) 

 

70 50 (71%) 

 

ME Cavity 
Size 

4 5.0 (125%) −110 130 (118%)

 

Table 5.3 EEM results for ear-canal and middle-ear models. The percentage in brackets indicates the 
relative size of σi compared to μi (σ/μ). 

 

 

 

 

62 



 

 
Figure 5.9 Effect of positive and negative density perturbations on the admittance of the ear canal 

 

 

 
Figure 5.10 Effect of positive and negative density perturbations on the admittance of the middle ear 
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d negative thickness perturbations (just tFigure 5.11 Effect of positive an he 3 thinner quadrants) on the 

admittance of the middle ear 

 

With these specifications in place, the EEM procedure from Section 3.4 is carried 

out on the canal model and the values of μ and σ are presented in Table 5.3. For a simple 

mechanical problem with one degree of freedom, the damping ratio affects the size of the 

resonance peak while the stiffness and density affect the location of this peak. However, 

for this complicated model of the newborn ear with many degrees of freedom, these 

relationships are not as cut and dried. The exact effect of a density perturbation on the 

ear-canal frequency response can be seen in Figure 5.9  For example, the density and the 

Young’s modulus have a significant effect on the maximum admittance of the ear canal 

(μ = −0.66 and 0.40 mm3/s/Pa respectively). In fact, the density has almost as large an 

effect as the damping ratio (μ = −0.8 mm3/s/Pa). Looking instead at the resonance 

frequency of the ear canal, its value is most sensitive to the value of the Young’s modulus 

(μ = 380 Hz), it is moderately sensitive to the value of the density (μ = − 80 Hz), and it is 

almost completely insensitive to the value of the damping ratio (μ = −10 Hz). These 

effects are similar to what one sees with a simple system. The effect of the Young’s 

mod oth 

the maximum admittance and the resonance frequency of the canal. However, it 

 

ulus acts in a direction opposite to that of the density and the damping ratio for b
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consistently has a fairly large σ/μ value (33% and 49%), implying that its effect will vary 

considerably depending on where the model sits in parameter space. 

 

 The middle-ear model has several additional parameters that are not present in the 

ear-canal model, due mainly to the presence of several different types of materials. These 

new parameters include the Young’s moduli, densities and damping ratios of the TM, 

ossicles and ligaments; the thickness distribution of the TM; and the size of the middle-

ear cavity. Preliminary tests showed that reasonably sized changes of the ossicle and 

ligament material properties had very little effect on the system output and they will 

therefore be left out of the sensitivity analysis. This finding is consistent with previous 

findings (e.g. Lilly et al. 1984) that tympanometry is relatively insensitive in detecting 

abnormalities of the ossicles or ligaments. For the middle ear, the ranges of densities and 

damping ratios are the same as those used in the ear canal; the range of Young’s moduli 

is 1.2 − 4.8 MPa the range of thicknesses in the three thinner quadrants is 0.075 − 

0.2 e 

range of middle-ear cavity volumes is 700 − 3.  

 

The results of the EEM analysis for the middle ear are in Table 5.3. Overall, the 

maximum admittance of the middle ear is sensitive mainly to changes in the damping 

ratio (μ = −50 mm3/s/Pa), the thickness of the 3 thinner TM quadrants (−32 mm3/s/Pa) 

and the Young’s modulus (−16 mm3/s/Pa), while it is insensitive to changes in the density 

(−1.6 mm3/s/Pa), the thickness of the thicker TM quadrant (−3.6 mm3/s/Pa) and the 

middle-ear cavity size (3.8 mm3/s/Pa). The middle-ear resonance frequency is most 

sensitive to changes in the Young’s modulus (μ = 290 Hz) and the density (−165 Hz), 

while it is quite insensitive to changes in the damping ratio (15 Hz) and thicknesses of the 

TM (−50 and −70 Hz).  

 

 There are a few observations that stand out from these results. The first is that the 

di s 

modulus is much more pronoun del than in the ear-canal model. 

This m  due to the smaller number of nodes (and therefore degrees of freedom) in the 

25 mm; the range of thicknesses in the thicker quadrant is 0.35 − 0.65 mm; and th

 1000 mm

stinction between the damping ratio’s effect and that of the density and Young’

ced in the m ddle-ear moi

ay be
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middle

.3.4 MODEL VALIDATION 

 

 ear. The full effect of a density perturbation on the middle-ear model can be seen 

in Figure 5.10. Also, most of the μ values for the resonance frequency of the middle ear 

are quite small, implying that this resonance frequency is likely quite consistent and 

relatively insusceptible to changes in these parameters. In fact, the only parameters that 

have a significant effect on the middle-ear resonance frequency are the Young’s modulus 

and density of the TM and the size of the middle-ear cavity. Increasing the thickness of 

the TM will increase both the stiffness and the mass; since stiffness and mass have 

opposite effects on a resonance frequency, their effects will tend to cancel and the effects 

of thickness variations will therefore tend to be small. The thickness of the TM, 

especially of the three thinner quadrants, plays a significant role in the maximum 

admittance of the middle ear, as can be seen in Figure 5.11, and also partakes in large 

non-linear interactions with the other parameters. Finally, the effect of the middle-ear-

cavity size is extremely unpredictable as evidenced by the fact that its standard deviation 

is larger than its mean for both outputs. For example, for one point in parameter space, 

decreasing the volume of the middle-ear cavity from 950 mm3 to 800 mm3 caused the 

resonance frequency to rise by 60 Hz, whereas at a different point in parameter space, 

this volume decrease caused the resonance frequency to drop by 10 Hz. 

 

5

 

In order to validate the results of these models, they are compared with the 

experimental data measured by Keefe et al. (1993). Their data were plotted as average 

total ear impedance magnitude (in dB) and phase for several different age groups 

including a group of 1-month old newborns. Although their data were recorded at input 

frequencies as large as 10 kHz, only the measurements below 2 kHz will be used for 

validation because our simulations are limited to this frequency (see Section 4.5.3). In 

order for the model results to be appropriately compared with Keefe’s experiment, 

Keefe’s data must first be converted from impedance to admittance. Once this is done, 

the admittance of the ear-canal walls, the middle ear, and the canal air volume must be 

combined to form the simulated total ear admittance.  
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For this comparison, all of the parameter values were at the centres of their ranges 

except for the Young’s modulus and the damping ratio of the TM. These two values were 

t at 4.8 MPa and 0.4 respectively; these values are at or near the upper limits of their 

respect

se

ive ranges, and were chosen to give a better match between the simulated and 

experimental admittances. The results can be seen in Figures 5.12 and 5.13.  

 

 
Figure 5.12 Admittance magnitude comparison. 

 

 

 
Figure 5.13 Admittance phase comparison. 
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When comparing the simulated and experimental admittance magnitudes, 

qualitatively similar features are seen in both curves. The simulated admittance 

magnitude has an inflection at ~500 Hz and a resonance peak at approximately 1200 Hz. 

n the other hand, the experimental admittance magnitude of Keefe et al. has a broader 

f an inflection in the 200–800 -Hz range, and is consistent 

ith a resonance peak somewhere above 1500 Hz. The experimental and simulated 

magnit

 

 

pes. For the 

iddle ear, the peak is at the same frequency for both input types but the amplitude is 

much higher for the step-function input. This is presumably because the step-function 

simulation provides much less damping in the mid-frequencies. However, as mentioned 

in Section 4.5.3, the damping ratios of these two simulation types are equal when the 

frequency is either 50 Hz or 2000 Hz; as can be seen in Figure 5.14, the corresponding 

admittance magnitudes match very well at those frequencies.   

 

O

and more exaggerated version o

w

udes match closely at the lowest frequency but at higher frequencies (except the 

highest) the simulated admittance is higher by a factor of up to ~2.5. A similar degree of 

qualitative similarity is seen for the admittance phase curves of Figure 5.13. With the 

large amount of inter-subject variability present in the admittance data of newborns, the 

simulated results here may not be entirely unrealistic. Moreover, given the large amount 

of uncertainty in the model parameter values, it may be possible with further adjustments 

to obtain a much better match with the experimental data with a reasonable set of 

parameter values.  

 

5.3.5 RELATIVE ADMITTANCE  

The primary purpose for performing these simulations is to compare the 

admittance of the newborn ear-canal wall with that of the middle ear. The comparison of 

these two values for all frequencies for both the single-frequency and step-function inputs 

can be seen in Figure 5.14. It is clear that the two different types of input do not produce 

identical results. The ear-canal curves are very similar for both input ty

m

68 



 

 
Figure 5.14 Comparison of ear-canal and middle-ear admittances for both sine-wave and step inputs 

 
 

Despite the differences that are present, these two pairs of curves share some 

important similarities. At frequencies up to approximately 250 Hz, the admittances of 

both the middle ear and the canal wall increase linearly with input frequency. This 

behaviour suggests that for these frequencies the mass and damping of the systems are 

negligible, and the only parameter of importance is the stiffness of the tissues (see 

Equation 5.1), which is consistent with the experimental data presented in Section 5.2.4.  

 

The results in this region should match the results seen in the static simulations. In 

Section 5.2.5, the primary conclusion was that at low frequencies, the admittance of the 

canal walls and middle ear are comparable in the newborn. Both pairs of curves here are 

in accordance with this observation. Also, these pairs of curves each give a canal-wall 

admittance of approximately 5 mm3/s/Pa at 200 Hz, and if the canal-wall compliance 

with a Young’s modulus of 120 kPa from Table 5.1 is converted to admittance through 

Equation 5.1, the result is a canal-wall admittance of 4.65 mm3/s/Pa at 200 Hz. These 
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results confirm that the dynamic simulations at low frequencies are able to reproduce the 

behaviour of the static simulations. 

 

 Once the input frequency surpasses 250 Hz, the behaviours of both the canal walls 

and the middle ear begin to incorporate the effects of damping and inertia and the 

admittance no longer increases linearly with frequency. The admittance of the canal wall 

plateaus rather quickly in both sets of curves; there is a broad peak from approximately 

00 to 800 Hz followed by a more or less constant level up to the maximum simulated 

l, there is a clearly defined resonance peak in the 

icinity of 1100 Hz that produces an admittance measurement far larger than that seen for 

e can

 

 

 

 

 

 

 

 

4

frequency. In the middle-ear mode

v

th al wall. Above this frequency, the admittance gradually decreases, reaching a 

value approximately twice that of the canal wall. Overall, the middle-ear admittance only 

dominates that of the canal wall in a narrow band around the middle-ear resonance, if at 

all.  
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 
 

 

6.1 INTRODUCTION 

 

 In this chapter, the conclusions that can be drawn from the results of the previous 

chapter are presented, and potential future work that can be done with these models is 

discussed. 

 

6.2 CONCLUSIONS 

 

6.2.1 LOW-FREQUENCY SIMULATIONS 

 

In this section of the research, a static model of the newborn ear was used to 

simulate the response to low-frequency probe-tone input. The simplification of the 

system to a model where damping and inertia are not included allowed for there to be 

nly one major material property of interest: the Young’s modulus. However, this 

arame

reasonably direct experimental measurements.  

 

o

p ter has not been measured experimentally for either the newborn’s canal wall or 

the TM. Therefore, large ranges of possible values were used for their moduli, based on 

indirect evidence. Within those ranges, parameter values were found such that the models 

produce an overall behaviour that is in reasonable agreement with measured data. It 

would be beneficial for future work if the material properties of these newborn tissues 

were studied more closely so that the parameter choices could be supported by 

 The primary justification for using a static simulation is that at low frequencies all 

of the time-dependent effects become insignificant due to how slowly the system is 

moving. A reasonable concern about this assumption might be that the frequency at 

which this simplification is valid is outside of the normal audible hearing range and 

would not be within the realm of typical tympanometry. However, as seen in Section 

5.2.4, the experimental work by Keefe et al. (1993) shows that the total compliance of the 
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ear changes by only 5% as the input frequency is doubled from 125 Hz to 250 Hz. This 

suggests that the typical 226 Hz probe-tone frequency is low enough, even in newborns, 

at the displacements of the system are very insensitive to frequency changes and are 

nly structure of interest. Currently, newborn tympanometry is most often performed 

t a frequency of 226 Hz for the reasons described in Section 2.8.1. Figure 5.14 shows 

at at 226 Hz, the canal-wall admittance is as large as or even larger than the middle-ear 

dmittance, so this frequency is far from ideal. In this situation, the signal of interest 

iddle-ear behaviour) is being combined with an additional signal with minimal clinical 

alue (canal-wall behaviour). It is likely that an important reason for the difficulty in 

nderstanding newborn tympanograms is that the canal-wall admittance is mistakenly 

eing interpreted as additional middle-ear admittance.  

It is clear that a different probe-tone frequency should be considered for newborn 

sting, and an obvious choice based on the desired output is in the vicinity of the 

sonance frequency of the middle ear. At this frequency, the results of this work suggest 

at the middle-ear admittance is several times larger than the canal-wall admittance. The 

iddle-ear admittance signal would be much larger than the unwanted effect being 

roduced by the canal wall, improving the chance that the data would give useful 

formation about the middle ear. These findings consistent with those of the groups 

iscussed in Section 2.8.2 who have concluded that 1000 Hz is a much better probe-tone 

frequency to use for newborns.  

th

mostly due to stiffness effects. Therefore, it is reasonable to assume that static 

simulations are able to give a fairly good estimate of newborn ear behaviour at realistic 

low probe-tone frequencies. 

 

6.2.2 DYNAMIC SIMULATIONS 

 

The primary goal of tympanometry is the discovery of middle-ear pathologies. It 

is not needed for analysis of the ear canal since most canal pathologies can be discovered 

through visual inspection. It is therefore desirable that the admittance signal measured in 

tympanometry should correspond only to the admittance of the middle ear since this is 

the o
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As seen in Table 5.3, the resonance frequency of the newborn’s middle ear is 

relatively insensitive to parameters such as damping and TM thickness. Therefore, any 

variation in these parameters, whether they re due to pathology or simply inter-subject 

t the resonance frequency far away from its typical value. As 

videnced by Table 5.3, any significant deviation in the middle-ear resonance frequency 

The middle-ear admittance resonance peak may be quite sharp, and its position is 

ively small shift in the location of the peak could be enough to 

ause large changes in the admittance measured at any one frequency in its vicinity.  

the admittance at several frequencies in the 

icinity of the middle-ear resonance in order to pinpoint its exact location. 

rate. For example, if the μ value of a 

arameter is high, this implies that the behaviour of the model will vary widely across the 

a

variability, will not shif

e

is likely due to pathology or anatomical variability affecting the density and/or the 

Young’s modulus of the TM.  

 

uncertain. Even a relat

c

Because of this, it may be better to measure 

v

 

As stated in Section 5.3.3, the admittance of the middle-ear model is quite 

insensitive to any changes to the material properties of the ossicles and their ligaments. 

This suggests that tympanometry will have difficulty detecting any abnormality or 

pathology of these structures since they have little effect on the measured admittance. 

 

 When using EEM, the perturbations of the parameter values are normalized using 

a scale defined by the user. In our case, the perturbations were chosen according to the 

uncertainty present in the experimental measurements. With this choice of scale, it 

follows that the μ value of a particular parameter will decrease as experimental 

measurements of its value become more accu

p

range of potential parameter values, whereas if μ is small, the model will behave 

similarly regardless of where the parameter magnitude lies within its range of 

uncertainty. Therefore, parameters with a large μ are the top priority for further study and 

more accurate measurements. In the case of these models, Table 5.3 seems to suggest that 

better estimates of the Young’s modulus and density are most important for obtaining 
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more accurate resonance frequencies, while better estimates of the damping ratio and TM 

thickness are important for obtaining more accurate maximum admittances. 

 

As mentioned in Sections 4.2 and 4.4.2.5, two modelling errors were found after 

the thesis had been written, examined and passed. First, the anterior-superior quadrant of 

the TM was set as the thickest rather than the posterior-superior quadrant. Second, the 

odel was elongated in the inferior-superior direction by 25%. Preliminary tests have 

se errors on the model results.  

 

ow changes in the results that are 

ot negligible, they are not large compared with the effects of anatomical variability and 

arame

 of the newborn ear, many of the parameter values used 

m

been done to assess the effects of the

For the quadrant error, correctly setting the posterior-superior quadrant of the TM 

as the thickest lowers the maximum admittance of the middle ear by approximately 20%, 

raises the resonance frequency by approximately 150 Hz, and introduces a secondary 

peak in the middle-ear frequency response at approximately 900 Hz. For the scaling 

error, compressing the middle-ear model by 20% in the inferior-superior direction (not 

changing the already correct TM thickness) lowers the maximum admittance by another 

20%; lowers the resonance frequency by approximately 50 Hz; and increases the size of 

the secondary peak in the frequency-response curve. The changes due to scaling the ear-

canal model are much smaller: the resonance frequency only increases by approximately 

50 Hz and the maximum admittance only decreases by approximately 7%.  

 

Although the results of these preliminary tests sh

n

p ter uncertainty, and the overall conclusions regarding the relative admittances of 

the ear-canal and middle-ear models remain the same. It appears that the revised models 

may actually match the experimental data better than the incorrect models do.  

 

6.3 FUTURE WORK 

 

 There are several different steps that should be taken to pursue this research. 

Firstly, there is a need for additional experimental work. Due to a lack of knowledge 

about the true material properties
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in the m

 

simulations results could give valuable insight into the mechanics of the newborn ear 

canal a

 in 

ewborns (Saunders et al. 1983) and would allow the vibrations of the canal wall to 

introduced into an ear that is subject to a static pressure of 4000 Pa, the large 

odels, such as the Young’s moduli and damping ratios of the TM and ear canal, 

were crudely estimated. There is also a need for more precise imaging of the newborn 

ear. Higher-resolution images would allow for the construction of smoother and more 

accurate 3-D models and would provide insight into areas such as inter-subject variability 

and age-related anatomical changes. Overall, the accuracy of the FE simulations is 

limited by our knowledge of the true system, and therefore further experimental research 

would be extremely valuable. 

A closer look could also be taken at the displacement patterns of the ear canal and 

the middle ear. In this research, the primary results were the volume displacements and 

volume velocities of the system. Close attention was not given to results such as the 

points of maximum displacement, displacements of key points such as the umbo, the 

spatial distribution of the displacement patterns, etc. Further analysis of these types of 

nd middle ear. 

 

Also, the models could be run without assuming that the tympanic ring is fixed in 

place. This might be a significantly better representation of the actual tympanic ring

n

affect those of the TM and vice versa. However, this new type of interaction would 

clearly require that the canal model and middle-ear model be coupled and run 

simultaneously. This would greatly increase the computation time required. 

 

 Another interesting next step would utilize an input pressure that has both a large 

static component and a small dynamic component, as this is the complete input signal 

that is used in tympanometry. However, using this type of input would result in several 

complications. First, the static pressure component of the input can reach up to 4000 Pa, 

and as shown by Qi et al. (2008), this requires a non-linear formulation for the materials 

in the models. This new type of input pressure would also require that the model solver 

have extremely high precision. For example, for the case when a 0.4 Pa probe tone is 
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displacements caused by the static pressure would be solved with the same tolerance (the 

allowable error in each integration step) as the much smaller displacements produced by 

e probe tone. This leads to the necessity for 10000 times less tolerance for the large 

displac

 he goal of this work on models of the newborn ear is to be able to accurately 

simulat

 

th

ements than would be needed if there was no probe tone. Obviously, a dynamic, 

non-linear model with a complex geometry and the need for a very high level of precision 

would require a very powerful computer setup and the simulations would be very time-

consuming.   

 

T

e the complete response of the newborn ear canal and middle ear to 

tympanometry. When this is achieved, the results should provide insight into the typical 

shape of a newborn’s tympanogram (see Figure 2.7) and should aid with the proper 

screening and diagnosis of a newborn’s hearing. Additionally, pathological changes, such 

as a stiffening of the TM or the introduction of fluid in the middle ear, could be 

introduced into these models. These types of modifications would demonstrate how the 

newborn tympanogram would differ in these pathological situations and would 

potentially allow for much greater precision in clinical diagnoses.  
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APPENDIX 

 

 

 

 

 Young’s modulus Density  Damping Ratio 

Baseline B B B 

Step 1 + Δ B B 

Step 2 + Δ + Δ B 

Step 3 + Δ + Δ + Δ 

Reset B B B 

Step1 B − Δ B 

Step 2 B − Δ − Δ 

Step 3 − Δ − Δ − Δ 

Reset + Δ − Δ + Δ 

Step 1 + 2Δ − Δ + Δ 

Step 2 + 2Δ − 2Δ + Δ 

Step 3 + 2Δ − 2Δ + 2Δ 

Table A.1 Procedure used for studying the elementary effects of the ear-canal model. B signifies the 

baseline parameter value at the centre of its range.  
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Young’s 

Modulus  
Density  

Damping 

Ratio 

TM 

Thickness ¾ 

TM 

Thickness ¼  

ME Cavity 

Size 

Baseline B B B B B B 

Step 1 + Δ B B B B B 

Step 2 + Δ + Δ B B B B 

Step 3 + Δ + Δ + Δ B B B 

Step 4 + Δ + Δ + Δ + Δ B B 

Step 5 + Δ + Δ + Δ + Δ + Δ B 

Step 6 + Δ + Δ + Δ + Δ + Δ + Δ 

Reset B B B B B B 

Step 1 B − Δ B B B B 

Step 2 B − Δ B − Δ B B 

Step 3 B − Δ − Δ − Δ B B 

Step 4 B − Δ − Δ − Δ B − Δ 

Step 5 B − Δ − Δ − Δ − Δ − Δ 

Step 6 − Δ − Δ − Δ − Δ − Δ − Δ 

Reset + Δ − Δ + Δ − Δ + Δ − Δ 

Step 1 +2Δ − Δ + Δ − Δ + Δ − Δ 

Step 2 +2Δ − 2Δ + Δ − Δ + Δ − Δ 

Step 3 +2Δ − 2Δ +2Δ − Δ + Δ − Δ 

Step 4 +2Δ − 2Δ +2Δ − 2Δ + Δ − Δ 

Step 5 +2Δ − 2Δ +2Δ − 2Δ +2Δ − Δ 

Step 6 +2Δ − 2Δ +2Δ − 2Δ +2Δ − 2Δ 

Table A.2 Procedure used for studying the elementary effects of the middle-ear model. B signifies the 

baseline parameter value at the centre of its range.  
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