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ABSTRACT

A method has been developed for modelling the cat middle eat using
structural finite-element analysis. One aim of this research 1s to model
the changing ossicular axis of rotation. Anatomical information 1s input
to the computer by digitizing outlines of structuies of interest from
serial-section slides. The resulting three-dimensional volume is
discretized into tetrahedral elements using a previously developed mesh
generator developed to mesh 1irregularly shaped objects. Further
development of this generator was done to allow 1t to handle more
complex objects. Preliminary static models of a test structure and of a
simple ligament indicate that the modelling scheme developed is capable
of modelling the complex structures in the mddle ear. Further
improvements required in the mesh generator, such as the need for a more
robust two-dimensional contour triangulation algorithm, are identified.

The proposed direction of future work on the middle-ear model 1s descrihed.




Une méthode de modélisation de l’oreille moyenne du chat a été
développée en utilisant la méthode des éléments f nis. Un des buts de
cette recherche est de modeler les changements de 1'axe de rotation des
osselets. Comme données anatomiques on utilise, en firme numérique, les
contours des tranches en série des structures pertinentes. En utilisant
une méthode de maillage pour des objets de forme 1irréquliére qu’on a
développée auparavant, le volume résultant est divisé en des éléments
tétraédriques. On a développé plus loin cette méthode pour permettre de
traiter des objets plus complexes. Des modeles statiques préliminaires,
d'une structure d'essar et d’un ligament simple, indiguent que la
méthode est capable de modeler les structures complexes de l’oreille
moyenne. On 1identifie aussi des améliorations nécessaires a cette
méthode, comme un algorithme plus robuste pour trianguler des contours
bi-dimensionnels. On propose la direction a suivre pour des travaux

futurs sur ce modéle de 1l’oreille moyenne.
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CHAPTER 1

INTRODUCTION

1.1 OBJECTIVES

It is becoming increasingly clear that the mechanical behaviour of
the middle ear is more complex than previously thought. Traditionally,
the middle ear has been thought of as a lever system whose axis of
rotation remains in a relatively fixed position. Recent evidence
indicates that this axis of rotation changes with frequency in a
complicated manner.

Finite-element analysis is a method well suited to the detailed
analysis of complicated mechanical systems. This thesis describes
preliminary work on the design and implementation of a finite-element
model of the middle-ear ossicles and important soft tissues. By
combining this model with a previously developed finite-element model of
the eardrum (Funnell et al., 1987), a quantitative understanding of the
mechanical behaviour of the middle ear should be obtained.

There are a number of reasons why a better quantitative
understanding of the mechanical behaviour of the middle ear 1s required.
Much research 1s currently being focussed on high--frequency hearing loss
in humans. Research in this area 1s hindered by the difficulty of
characterizing the high-frequency input to the «ochlea. This 1nput 1s
strongly affected by the middle ear, but currently available mordels of
the middle ear do not provide much insight into the mechanical operation
of this structure at high frequencies. The finmite-element model should
help to address this problem.

A finite-element middle-ear model should help in the design and




choice of techniques for middle-ear surgery and should aid in the
clinical evaluation of middle-ear and inner-ear function. It should help
also 1n the design and fitting of hearing aids. The research involved
in developing this model is amportant 1in advancing finite-element

analysis techniques for biological structures in general.

1.2 THESIS OUTLINE

This thesis describes work done in developing and testing tools
needed to construct a structural finite-element model of the middle ear.
Preliminary work on this model will be presented. The tools described in
this thesis will eventually be used to model the dynamic behaviour of
the middle ear as a whole.

Chapter 2 1s a review of the anatomy of the middle ear. Chapter 3
discusses experimental observations on the structure and function of
the middle ear. It describes currently available models of the middle
ear and a brief discussion of the material p.operties of structures in
the middle ear is included. Finally, it outlines the computer-based
finite—element model being developed during the course of this
tesearch., Chapter 4 explains the finite-element method and briefly
describes finite-element packages available for structural analysis,
including the package modified and used for this model.

Serial-section histological slides are used as the anatomical
basis for the model of the ossicles and important soft tissues. Chapter
5 desciibes the histological data used and outlines the system used to
mput this data to the computer and to redisplay it. Chapter 6 describes
various mesh-generation techniques used to define finite-element meshes.
In particular 1t describes a series of three-dimensional mesh—generation

computer programs (Boubez, 1986b) that were tested, debugged, enhanced



and automated during the course of this research. The resulting maste:
program is used to create meshes of middle-ear structures based on the
data input from the histological slides.

Chapter 7 describes preliminary results of a static fimte-
element analysis of a test structure and of a simple ligament model.
Finally, Chapter 8 outlines conclusions drawn fiom this preliminary work
and describes future work needed to complete the modelling of the static

and dynamic behaviour of the middle ear.




CHAPTER 2

REVIEW OF MIDDLE-EAR ANATOMY

2.1 INTRODUCTION

The middle ear serves as an impedance-matching transformer. It
transforms the acoustic sound pressure in front of the tympanic
membrane, or eardrum, into perilymph fluid pressure in the cochlea, or
inner ear. The cochlea converts the mechanical energy transmitted by the
middle ear to neural activity capable of being analysed by higher
processing centers of the central nervous system. Direct acoustical
stimulation of the cochlea would be ineffective because of the high

impedance of perilymph fluid as compared to air.

2.2 THE HUMAN MIDDLE EAR

2.2.1 Introduction

To understand how the middle ear acts as a transformer, a review of
the anatomy of important structures in and around the middle ear is
necessary. The human ear is illustrated in Figure 2.1. The middle-ear
cavity is of complex form and consists of three parts. The main part cf
the cavity 1s the tympanum which lies behind the eardrum. Above and
extending backward and laterally 1s the epitympanum. Still farther
backward and laterally 1s the mastoid antrum (not shown in the figure)
which is connected to numerous and irregularly placed air cells. These
air-filled cavities are connected to the outside world via the
Eustachian tube. The cavities contain the ossicles, a series of three

bones: the malleus, the incus and the stapes. Two windows exist between

the middle ear and the inner ear, the round window and the oval window.
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FIGURE 2.1: THE HUMAN EAR
on the right side, seen from the front.
(After Lindsay and Norman, 1977)



An annular ligament connects the footplate of the stapes to the oval

window.

2.2.2 The Eardrum

The eardrum is approximately 0.1 mm thick and lies obliquely in the
ear canal as shown in Figure 2.2. It is held firmly in a little groove
in a bony ring formed by the walls of the canal except in a region at
the upper border where the ring is 1incomplete, called the notch of
Rivinus. The eardrum has a conical shape whose deepest point, the umbo,
points toward the middle ear. The sides of this cone are convex outward.

The eardrum contains the manubrium or handle of the malleus. The
manubrium is embedded i1n the eardrum along the radius of the eardrum,
and runs from the notch of Rivinus to the umbo. The manubrium-eardrum
interaction is complicated and quite dependent on the structure and
function of the eardrum. Funnell and Laszlo (1982) give a thorough
review of eardrum structure and function.

The typical mammalian eardrum consists of two main areas, the pars
tensa and the pars flaccida. The pars tensa, a very thin sheet of
connective tissue, 1s surrounded by a thick fibrous annular ligament
that anchors it to the wall of the ear canal around most of its
circumference. (This annular ligament should not be confused with the
annular ligament connecting the footplate of the stapes to the oval
window.) The section of the annular ligament not anchored to the bone is
connected to the more elastic pars flaccida, which is at the superior
part of the drum. The manubrium is embedded in the pars tensa.

The eardrum 1s composed of three layers. Within the middle layer
are four sublayers, two of which form the main structural components of

the eardrum. The innermost of the two layers is composed of circular
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fibres while the outermost 1s composed of radial fibres. These fibre
layers consist of parallel arrays of fibres in a meager matrix of ground

substance.

2.2.3 The Ossicular Chain

The head of the malleus articulates with the incus and the incus
articulates with the stapes, a stirrup-shaped bone. This ossicular chain
1s suspended in the middle-ear cavities by a number of ligaments and
muscles (Figures 2.2-2.3). In the human there are four ligaments. The
first 1s the anterior malleolar ligament, connecting the anterior
process of the malleus to the anterior wall of the middle ear. The
second ligament is the lateral malleolar ligament, joining the lateral
portion of the neck of the malleus to the edge of the notch of Rivinus.
The third ligament 1s the posterior incudal ligament, connecting the
short process of the incus to the posterior wall of the epitympanum. It
1s extremely thick and 1s divided into lateral and medial bundles. The
lateral bundle 1s thicker and stronger than the medial one. The fourth
ligament 1s the annular ligament connecting the footplate of the stapes
to the oval window. According to Kobayhashi (1954b), the so-called
superior malleolar ligament 1s merely a fold of mucous membrane.

In the human, as in most mammals, there are two muscles as
1llustrated in Figqure 2.3. The body of the tensor tympani muscle lies
1n a canal that runs above the Eustachian tube. The muscle fibres are
attached at the anterior end to the canal walls and run posteriorly to
insert into the tensor tympani tendon. This tendon is attached to the
upper part of the manubrium of the malleus. The stapedius muscle lies in
an almost vertical canal posterior to the tympanic cavity. The muscle

fibres are attached at one end to the bony walls of the canal and at the
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on the right side, seen from within.
{after Funnell, 1972)
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10
other end to the stapedius tendon. This tendon is attached at the
posterior aspect of the neck of the stapes. Both muscles are composed of
numercus short fibres grouped i1n parallel. This pemate type of muscle
provides much tension and little displacement. Upon contraction both
muscles exert tension lateral to the course of the ossicular chain.
These muscles are involved in the middle-ear reflex (Wever & Lawrence,

1954).

2.2.4 The Cochlea

The cochlea or inner ear is a spiral-shaped passage in the temporal
bone lying medial to the middle ear as illustrated in Figure 2,1. It is
divided lengthwise into three fluid-filled tubes. The first tube, the
scala vestibuli, is in contact with the oval window via the fluid-filled
vestibule of the cochlea. The floor of the scala vestibuli is Reissner’s
membrane which borders on the second fluid-filled tube, the cochlear
duct. The floor of the cochlear duct 1s the basilar membrane which
borders on the third fluid-filled tube, the scala tympani. The scala
tympani 1s 1in contact with the second opening to the middle ear, the
membrane-covered round window.

Vibration of the stapedial footplate in the oval window creates a
wave of pressure in the scala vestibuli. This wave propagates along the
scala vestibuli to its apical end and back through the scala tympani to
the round window. As the wave propagates, most of its energy is
dissipated directly through Reissner's membrane to the cochlear duct and
in turn through the basilar membrane. The vibration pattern of the
basilar membrane determines the resulting neural activity mentioned in

the introduction to this chapter.
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2.3 THE CAT MIDDLE EAR

The model developed in the course of this research is of a cat
middle ear, because experimental data on the cat middle ear are motre
abundant than are data on the human middle ear. The use of cats, instead
of humans, in experimental work has the advantage that measurements may
be taken in vivo, 1instead of in cadavers. Thus, these measurements arte
not as susceptible to degenerative effects. Also, the middle ear of the
cat permits a relatively easy access to the eatdium and middle-eal
cavities. It should be noted that the modelling procedure used here fou
the cat could easily be used to model a human middle ear.

The overall anatomy of the cat middle ear 1s similar to that of the
human but there are nuamerous differences in detail. Figure 2.4 shows a
schematic representation of both the cat and human ossicles and
cavities. The epitympanum 1in the cat 1s considerably smaller than in
human and there 1s no antrum. The tympanum is considerably larger 1in the
cat and 1s divided into two cavities, the ectotympanum (sometimes
referred to as the bulla cavity) and the entotympanum (sometimes
referred to as the middle-ear cavity). These cavities are separated by a
bony septum and only a small opening or foramen is left bhetween them.

The three ossicles of the cat are similar tc those of the human.
The manubrium 1s similarly connected to the eardrum, as 15 the stapes to
the oval window. There are two muscles, the stapedius and tensor
tympani, acting in much the same manner as 1n the human. In the cat,
only the posterior incudal ligament and the annular ligament at the
stapes have true ligamental structure. According to Kobayashi (195%4a),
the anterior, lateral and superior malleolar ligaments are either folds
of mucous membrane or absent completely. In the cat, as 1in the human,

the posterior incudal ligament is extremely thick and 1s divided into a

11
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(After Funnell, 1972)



thicker and stronger lateral bundle, and a thinner and weaker medial

bundle.

2.4 CONCLUSION

The eardrum and the bones and soft tissues of the middle ear ate
important in understanding the transformer action of the middle ear.
This transformer action will be discussed 1in the next chaptet.
Previously developed mathematical models of middle-ear function will be
described, and the motivation for developing a finite-element model will

be discussed.
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CHAPTER 3

EXPERIMENTAL OBSERVATIONS ON AND MODELS OF MIDDLE-EAR FUNCTION

3.1 INTRODUCTION

This chapter describes some experimental observations on the
transformer action of the middle ear, and also describes a number of
models of the middle ear that have been developed to model this action.
The motivation for developing a finite-element model of the middle-ear
ossicles and 1important soft tissues will be discussed. A brief
discussion of the material properties of structures in the middle ear is
included. Finally, the outline of a proposed finite-element middle-ear

model wi1ll be presented.

3.2 THE MIDDLE-EAR TRANSFORMER

3.2.1 Primary Transformer Action

One method of transformer action (Helmholtz, 1869) depends on the
ateal ratio of the eardrum to the oval window. Most of the force of the
air pressure at the eardrum 1s transmitted to the oval window via the
footplate of the stapes. Due to the smaller area of the oval window,

pressure 1s 1increased. This areal ratio depends not on the actual

membiane areas but rather on the ¢ffccrive areas of the two membranes.

The effective area of a membrane 1s the area a rigid piston would need

to have, 1n oider to displace a volume of air equal to the volume of air

actually displaced when the membrane 1s deformed, for some wverage

membrane displacement. These effective areas are highly dependent on the
vibration pattern in the middle ear and on the particular shape of the

eardrum. Wever and Lawrence (1954) estimate that the effective area

14




ratio is approximately 24.3 in the cat and 14.0 in the human.

3.2.2 Lever Action of the Ossicular Chain

A second method for securing a mechanical advantage in the middle
ear is the lever action of the ossicular chain. Because of the
complicated geometry and method of suspension of this chain, the
physical basis of this lever action is hard to determine.

Wever and Lawrence (1954) postulated an ossicular lever system fou
the cat. This postulated system was based on experiments that they
performed on anesthetized cats. These expeiiments 1nvolved driving
points on the manubrium and on the incus with a constant-displacement
driver at audio frequencies and observing the cochlear potential at the
round-window membrane. The magnitudes of these cochlear potentials were
assumed to be proportional to the amplitude of the iesulting stapes
motion. They performed a series of four experiments to determine the
probable axis of rotation of the ossicular chain.

The purpose of the first series of experiments was to determine if
a lever system did exist and if so 1n which direction the effective
force arm of the system ran. Various points along the manubrium, from
its tip to its base, were stimulated. The resulting cochlear potentials
increased as the point of stimulation moved closer to the base of the
manubrium. The pattern of these points indicated where the force arm was
and that its fulcrum was near the base of the manubrium.

The second series of experiments involved driving a point on the
tip of the manubrium alternately with one at the end of the long process
of the incus. The resulting potentials were consistently higher when
stimulating the incus, for all frequencies tested between 100 Hz and 10

kHz. For frequencies between 100 Hz and 1 kHz the mean ratic of
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potentials resulting from incus stimulation to those resulting from
manubrial stimulation (averaged over three cats) was 2.5. This value
represents the ossicular lever ratio in the cat.

The third series of experiments was performed to determine the
locus of the fulcrum of the incus. As the point of stimulation of the
incus approaches the fulcrum of the 1incus the resulting potentials
should approach infinity. (In fact they were observed to become highly
irreqular at this point.)

The last series of experiments indicated the probable position of
the ax1s of rotation of the ossicular chain. Once the incudal lever arm
had been roughly identified, from the third series of experiments, the
distance of a number of manubrial driving points from the axis of
rotation could be calculated. This distance is equal to the length of
the incudal lever arm, times the ratio of the potential resulting from
driving the incus, over that resulting from driving the manubrium.
Knowing a number of these distances, the probable ossicular axis of
totation could be determined. Wever and Lawrence postulated the axis to
run from a point on the short process of the incus (from the posterior
incudal ligament) to a point on the anterior process of the malleus (at
the anterior malleolar ligament) as shown in Figure 3.1.

A number of previous researchers had postulated an axis of rotation
for the human middle ear similar to that proposed by Wever and Lawrence
for the cat (i.e. running approximately from the posterior incudal
ligament to the anterior malleolar ligament). Dahmann (1929, 1930 as
described by Wever and Lawrence) formulated a system by observing
angular deflections of light from small mirrors set up within the human
middle ear. He located the main vibratory axis of the ossicular system

by noting that a mirror on a rotational axis produces no deflection of a
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FIGURE 3.1: PROBABLE OSSICULAR AXIS OF ROTATION OF THE CAT
according to Wever and Lawrence.
The figure is in the plane of the annular ligament of the eardrum.
Line ¢d (oriented 34 degrees above this plane) 1s the probable
ossicular axis of rotation. (After Wever and Lawrence, 1954)



light beam along the line of the axis but only in a plane perpendicular
to the axis. His calculated lever ratio is 1.31:1. Békésy (1941)
deduced a similar position of the axis of rotation by noting that the
cutting of the posterior incudal ligament and the anterior malleolar
ligament caused no change 1in the vibratory amplitude of the stapes when
driven by high-frequency sound introduced at the ear canal. He assumed
the line joininr _hese ligaments coincided with the center of gravity of
the ossicles themselves and thus, by reason of distribution of their
masses alone, they rotated about this axis.

Other researchers have postulated somewhat different lever systems.
Based on his morphological and functional studies of the middle ear,
Helmholtz postulated that the human ossicular chain formed a single
lever system with a lever ratio of 1.5. Fumagalli (1949) based his
middle-ear lever system on extensive morphological studies of various
animals, including man. He proposed two vibratory axes, one with a lever
ratio of 1.3:1 for low tones (similar to that proposed by Dahmann) and
one with a ratio of 10:1, for higher frequencies. Stuhlman (1937)
studied a large-scale model of human ossicles he had made after
observing human middle ears. He came up with three different lever
ratios, depending on whether the joint between the malleus and incus was
fixed (1.27:1) and, 1f 1t were not, depending ori whether the vibratory
motion of the eardrum-ossicular chain was inward (2:1) or outward (1:1).
The lever systems mentioned in this paragraph wece determined at large
displacements and thus possibly outside the normal operating range of
the middle ear.

More iecent researchers have formulated middle-ear models (Onchi,
Mgller, Zwislocki, Peake and Guinan, Lynch) and have agreed with the

position of the ossicular axis of rotation proposed by Wever and
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Lawrence, at least for lower frequencies. Their models will be described

later in this chapter.

3.2.3 Eardrum Curvature

A third method of transformer action, proposed by Helmholt:,
depends on the particular curvature of the eardrum. The radial fibies of
the drum are anchored firmly at one end to the edge of the bony tympanic
ring and at the other to the manubrium. The middle section 1s relatively
free to move in response to sound pressure. Sound waves hitting this
free section were thought to be transformed to smaller amplitude, highet
pressure vibrations at the manubrium tip by the lever action of the
eardrum itself as 1llustrated in Figure 3.2. This lever ratio would be
highly dependent on the amount of curvature in the radial fibres.

Using a capacitive probe, Békésy (1941) made measurements of human
cadaver eardrum vibration patterns. The one figure published with his
results aindicated that the central portion of the drum experienced no
bending in the direction at right angles to the manubrium and indicated
the eardrum vibrated as a whole. This contradicted Helmholtz's
hypothesis. However, later measurements of vibration patterns by Khanna
and Tonndorf (1972) indicated displacements were greatest partway
between the manubrium and the annular ligament and were greatest in the
posterior segment of the drum, indicating Helmholtz’s hypothesis might
be correct. It is apparent that an accurate representation of eardrum
shape and mechanical characteristics 1s requited to deteimine what lever

action, if any, exists in this structure.
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FIGURE 3.2: LEVER ACTION OF THE EARDRUM
The eardrum is shown in cross section. A sound pressure s applied to the
radial fibers of the eardrum is transformed into relatively large forces
v and ' at the ends of the fibers. The force v has a horizontal
component /1 which tends to move the center of the eardrum inward.
{(From Wever and Lawrence, 1954)




3.3 LUMPED PARAMETER MODELS

3.3.1 Introduction

The aim of a good middle-ear model 1s to determine the precise
nature of the middle-ear transformer, especially its dependence on
frequency. Mathematical models of the middle ear have been used for many
years to model its transfer characteristics. All models of the ossiculat
chain, and most models of the eardrum, have been lumped-paiametet
models, wusually cast in the form of mechano-acoustical circuits ot
equivalent electrical circuits. Lumped models attempt to lump ceitain
characteristics of a system in large discrete circuit elements. ‘These
circuits may then be analysed using ordinary differential equations.

A mathematical equivalence may be formulated between acoustical,
electrical and mechanical circuits. All these circuits have three
generic quantities; quantity « is the drop across an element, quantity #
is the flow through an element, and quantity « 1s the magnitude of an
element. As long as the product of the drop across an element « and the
flow through an element # has the units of energy per unit time an
analogy may be drawn (Beranek, 1954).

In most middle-ear circuit models the following analogies,
summarized in Figure 3.3, are drawn. The flow through an element « 1s
electrical current, mechanical velocity or acoustical volume velocity.
The drop across an element # is electrical voltage, mechanical force or
acoustical pressure. Electrical capacitors, mechanical springn and
acoustical cavities are equivalent elements. Electiical inductors,
mechanical masses and acoustical tubes are also equivalent elements.
Electrical resistors, mechanical dashpots and acoustical meshes are a
third set of equivalent elements. These elements have magnitude « . It

should be noted that a number of circuit models include transformers as
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an element to represent the interface between different modes (1.e a
transition between electrical, mechanical or acoustical circuits) or to
represent a lever action. These elements may be avoided by absorbing

their transformer ratios into the values of other circuit elements.

3.3.2 Examples of Lumped Parameter Models

Guinan and Peake (1967) observed ossicular motion in the
anesthetized cat visually with stroboscopic illumination. They measured
stapes displacement in response to tones of known sound pressure. These
experiments were performed on ears with tympanic cavities open but a
correction was made for this, so the transfer function of the middle ear
with cavities intact could be calculated. They determined a linear range
of up to 130 dB in response to tones of less than 2000 Hz and 140 dB for
tones below 3350 Hz. Observations on human cadavers indicate that theie
is a large rocking motion at the stapes, but the cat stapes was
predominantly piston-like in motion. For frequenci s below 3000 Hz, the
ossicles were seen to move as one rigid body. Above that however the
displacements of the incus and the stapes lagged behind those of the
malleus, possibly due to flexing of the incudomalleclar joint. They
concluded that the ossicular 'lever ratio’ in the cat was frequency
dependent, but for frequencies below 3000 kHz 1t was constant and equal
to two. Below 7000 Hz it was determined to be approximately constant and
equal to two.

The circuit model derived from the experiments perfoirmed (Peake &
Guinan, 1967) is 1llustrated as an electrical circurt in Figure 3.4. All
circuit illustrations of middle-ear models presented 1n this chapter
will be in terms of electrical circuits for consistency. Tn this model

the pressure at the lateral end of the ear canal 1s reduced by the first
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complex, which consists of the eardrum and malleus. The complex is

modelled by an inertia (L ), a resistance (R ) and a compliance (C. ).

EM
The incudomalleolar joint is not assumed to be rigid in this model. Some
of the volume velocity in the middle ear 1s lost to the cochlea (eneigy
is shunted past the cochlea) through the compliance (C ,,) of this

joint. The incus/stapes/cochlea complex 1s represented by a compliance

(C;q.), @ resistance (R ) and an 1inertia (L _.). The pressure 1in the
middle-ear cavities is modelled by the acoustic mass (L,) and
resistance (R, ) of the foramen connecting the entotympanum and

ectotympanum, the acoustical compliance of the air in the ectotympanum

(C...) and the acoustical compliance of the air in the entotympanum

ECT
(CENT)'

From observations on cadavers, Onchi (1961) proposed a circuit
model of the human middle ear. By measuring the impedance at the eardium
for the normal ear and for the experimentally modified ear he determined
model parameters to fit his eqguations. His model 1s 1llustrated in
Figure 3.5. It differs from the cat model of Peake and Guinan because it
includes the effect of the human antrum and mastoid cells rather than
the effects of the ectotympanum and entotympanum. This model also
differs from that of Peake and Guinan in that the eardrum 1s modelled as
two parts. Some of the energy at the eardrum 1s shunted past the
ossicular chain through the compliance associated with the ligamentous
connection of the middle portion of the eardrum and the malleus (€ ).
The other eardrum compliance in the model (C, ) represents the compliance
between the middle zone of the eardrum and the hony wall where 1t 15
rigidly clamped. In this model the incudomalleclar joint 1% modelled as

rigid and the incudostapedial joint is modelled as non-rigid, by an

associated compliance.

(51}
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Mgller (1961) proposed a circuit model of the middle ear by taking
acoustic impedance measurements from live humans. By taking
measurements for different clinical situations he could determine the
effects of certain functional parts of the middle eat. Foi instance,
measurements were taken during stapedius muscle contraction,
representing the middle ear with stapes blocked. Good agieement between
model and impedance measurements was found from 200 to 1800 Hz. His
model 1s 1i1llustrated in Figure 3.6. It does not include the effects of
the middle-ear cavities. In this model energy 1s shunted past the
ossicular chain by the impedance of the eardrum and past the cochlea by
both the non-rigid 1incudostapedial joint and the non-rigid
incudomalleolar joint.

Zwislocki (1962) constructed a circuit model of the noimal human
ear based on the functional anatomy of the middle ear. Parametet values
were derived from impedance measurements of normal and pathological ears
and from anatomical data. His model was valid for the range of 1300 to
2000 Hz. Above that his data were scarce and inconclusive. His model 1s
illustrated in Figqure 3.7. Energy is shunted past the cochlea by two
separately vibrating sections of the eardrum. Energy 1s also shunted
past the cochlea by the non-rigid incudostapedial joint. This model
includes the effects of the middle-ear cavities, the antrum and the
mastoid cells.

A model of the cat middle ear by Lynch (1981) 15 1llustrated 1n
Figure 3.8 and is similar to the model of Peake and Guinan. This mocel
differs from that of Peake and Guinan in that 1t includes an uncouplerd
portion of the eardrum. The components of the i1mpedance of the middle-
ear cavities, Z__ , were modelled using four elements, as in the model

ec

of Peake and Guinan, and the value of Z _  agreed well with measurements

—




28

stapes and

salleus 1ncus cochlea

1ncudo- 1ncudo-
eardrue aslleclsr tapedial

Joint o1nt

Cw Ly Lt Cs Lot Le2 Loy Loy
i
(}——1—*——‘!!‘ ol Lk i W W L
Liny
C C C
I C[NJ C[sJ

(o]

Subscript Key:

E: eardrum

M: malleus

IMJ: incudomalleolar joint
I: incus

I58J: incudostapedial joint
S: stapes

C: cochlea

FIGURE 3.6: HUMAN MIDDLE-EAR MODEL (After Mgller, 1961)




O~

P: antrum and mastoid cells

TEUS: tympanic cavaity and Eustachian tube

MEC: middle ear cavities

FIGURE 3.7: HUMAN MIDDLE-EAR MODEL (After Zwislocki, 1962)

eardrua,
salleus and
1Nncus
incudo-
cardrua stapedial cochlen aan
Joint nd yindo
i n1ddle ear
cavities
CeMr Lewr Rewg
—mn—
T Ce Cscr
c Crs T
E2T: s Le 5 i Lscr
Cp R Reg>% 1 IsJ%
T Ret Rscr
waRTEUS
wy
\
|
Cuece
Subscript Key:
E: eardrum
EMI: eardrum, malleus and incus
ISJ: incudostapedial joint
SCR: stapes, cochlea and round window
A: passage between tympanic cavity and antrum




coupled stapes and_
o eardrua anlleus 1NCuUs ?ngizgt
incudo-
U,r:-%l:zl:d salleolar cochles
_joint
siddle ear round n
O lcavities ¥1ndow
CL LS QL
< Z[c ] ZM ZI
Ly
Zey VALK
o Rc3E
Ceer Lr RF
3 |
i
1 Cr
Cent

Subscript Key:

EC:
EU:
M: malleus
IMJ:
I: incus

coupled

eardrum

uncoupled eardrum

L: annular ligament
S: stapes

C: cochlea

0O: oval window

R: round window
ENT: entotympanum
ECT: ectotympanum

F: foramen

V: cochlear vestibule

FIGURE 3.8: CAT MIDDLE-EAR MODEL (After Lynch, 1981)

incudomalleolar joint




between 10 Hz and 10 kHz. Measurements of the admittance at the eardrum
were made for various experimental adjustments of the ossiculat chain to
determine effects of certain elecments in the impedance of the ossiculat
chain, 2 _ . The complete interpretation of these results into specific
anatomically identifiable circuit elements 1s not included in the
circuit diagram of Figure 3.8.

One of the experimental adjustments involved removing the cochleat
'load’ by interrupting the incudostapedial joint. This had a large
effect on the eardrum input impedance between 800 Hz and 2.8 kHz. 2
was largely influenced by the cochlear load over this range but
elsewhere it was influenced more by the ossicular chain and the eardrum.
Both 2 __ and Z _ were mainly resistive between 2.1 and 3.0 kHz and
thus a transformer ratio was calculated for this range of frequency hy
taking the ratio of a previously measured cochlear impedance and the
eardrum impedance. The value of 52 calculated implicitly included the
areal-ratio lever action and the ossicular lever action. The portion of
the eardrum not coupled to the malleus affected 2 = above 4 kHz but was
unimportant below 1 kHz. Lynch found the low-frequency value of 7, to
be dependent on the annular ligament of the stapes and the eardrum
compliance. By mass loading the ossicles it was found that inertial
effects had a small but noticeable effect on Z_ _ in the 2 kHz to 3 kiz
region.

Included in the circuit diagram of Figure 3.8 are elements haoed on
a model by Lynch et al., 1982. They determined the acouctic impedance of
the cochlea, and of the combined stapes and cochlea. They did this hy
measuring the complex amplitudes of the sound prescure at the stapes,
the stapes velocity, and the sound pressure in the vestibule, and by

determining experimentally how modifications of certain structures
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influenced the impedance. They found that for the range 5 Hz to 5 kHz
the impedances were mostly resistive but were dependent on the basilar
membrane and cochlear fluid. At frequencies below 3 kHz the stapes-
cochlea impedance was greater than the cochlear impedance and was
controlled by the stiffness of the annular ligament. For frequencies
helow 30 Hz, the impedance of the cochlea was assumed, from Nedzelnitsky
(1980), to be determined by the stiffness of the round window. This
assumption was supported by measurements of the impedance of the stapes
and cochlea for a series of cochlear manipulations.

The action of the eardrum 1n transmitting vibrations to the malleus
1s obviously complicated. To try to model this, Shaw proposed an
eardrum model consisting of two ’zones’ (Shaw 1977, Shaw & Stinson 1983)
or three ’'zones’ (Shaw & Stinson, 1986). In the two-zone model one zone
modelled the freely vibrating portion of the eardrum. The other zone
modelled the portioa of the eardrum tightly coupled to the malleus. In
the three-zone model, the freely vibrating zone of the two-zone model
was subdivided into anterior and postecior zones of the eardrum. The
zones 1n these models were modelled as rigid pistons each coupled
together by a frequency-dependent mechanical impedance. At lower
fiequencies the 1mpedance represented the stiffness of the membrane
Letween the zones. At higher frequencies it represented the internal
damping of the membrane.

Vliaming (1987) proposed a middle-ear model with either a two- or
thiee--one drum model. In his three-zone model, one zone contained the
malleus, the second zone represented the posterior portion of the drum
and the third represented the anterior portion. The anterior and
posterior zones were each coupled to the malleus zone but not to each

other.
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All of the above lumped-parameter models represent the mechanical
or acoustical behaviour of relatively large anatomical structures or
combinations of structures by a combination of 1i1dealized circuit
elements or more directly by a set of ordinary differential equations.
These model parameters are not necessarily closely tied to physical or
anatomical data. For example, the models previously mentioned involve
the assumed axis of rotation of structures i1n the middle eair. If this
axis 1is 1incorrect then relating parameter values to anatomical
structures will give misleading results. If the axis of rotation changes
with frequency then parameter values are frequency dependent and the
mathematical formalism of the ideal circuit element 1s destroyed.

Recent experiments (Gundersen et al. 1976, Gyo et al. 1987,
Brenkman et al. 1987, Decraemer et al. 1989) indicate that this axis of
rotation 1is not necessarily fixed and can vary considerably with
frequency. Decraemer et al. used a homodyne interferometer on cats with
closed bulla to measure the relative vibration amplitude and phase
between two points on the manubrium. Assuming the malleus 15 rigid and
rotates around a certain fixed axis, the relative vibration amplitude of
all points on the malleus may be calculated. The amplitude ratio was
calculated for a point near the umbo and a point partway between the
umbo and the lateral process of the malleus. Assuming an ossicular axis
of rotation running approximately from the anterior malleolar ligament
to the posterior incudal ligament (1.e. similar to that chown in Fiqure
3.1), the ratio was calculated to be 0.81.

For low frequencies the observed value was 0.85. Between 100 Hz and
10 kHz the observed value varied between 0.85 and 1 and then dropped
down to 0.45 as the frequency increased past 10 kHz. Thr relative phase

response of the two points varied also. These results are not consistent



with a simple rotation of the malleus and suggest that the mode of
malleus vibration varies with frequency. It is also possible that the

manubrium 1s not rigid.

3.4 OTHER EARDRUM MODELS

Some of the problems associated with lumped-parameter models of the
eardrum have been addressed in a finite-element model of the cat eardrum
presented by Funnell (1975). Instead of having two or three zones as
did the models of Vlaming, and of Shaw and Stinson, this model may be
interpreted as having N zones, where N is the number of finite elements.
The coupling of these zones 1s accomplished implicitly in the finite-
element analysis. Thin, so-called shell finite elements model the
detailed geometry of the eardrum as 1llustrated in Figure 3.9. Material
properties were estimated from the literature. Parameter fitting did not
occur and the model could be independently verified from vaibratory and
impedance measurements. Although finite-element analysis is
computationally more expensive than i1s lumped-parameter modelling, 1t is
useful to complement and possibly guide lumped models. This finite-
element model was the first to present an eardrum model using the
geometry and details of mechanical properties of it and surrounding
structures.

Vibration patterns calculated from a static (low-frequency) finite-
element model (Funnell & Laszlo, 1978) agreed well with experimentally
observed results (Khanna, 1970). Important characteristics of the model
were found to be the material stiffness and thickness, and the
curvature, conical shape and anisotropy of the eardrum. Boundary
conditions and the Poisson’s ratio (the ratio of lateral strain to

longitudinal strain) of the eardrum material were found not to be so
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The geometry of the cat eardrum is modelled by Funnell using
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seen at the bottom right portion of the figure.
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important.,

Inertial effects were then included in the model (Funnell, 1983).
The natural frecquencies and mode shapes of the eardrum agreed
reasonably well with experimental results (Khanna & Tonndorf, 1972).
Results suggested that the conical shape and possibly the curvature of
the eardrum extend its frequency range. Ossicular parameters seemed to
have little effect on the natural frequencies and mode shapes of the
eardrum.

Finally, the effects on the eardrum of damping were studied
(Funnell et al., 1987). The experimental data needed to estimate the
damping are scarce, especially at high frequencies, so a range of values

-1 and

was used. A mass—proportional damping coefficient of 1.5 x 10° s
a stiffness proportional term of =zero agreed fairly well with
experimental evidence cited. In this model, the frequency response of
the eardrum away from the manubrium showed sharp variations. For points
on the manubrium the variations were smoother, even when there was no
ossicular loading, indicating that spatial integration over the eardrum
occurted at the manubrium. This 1s consistent with the experimental work
of Decraemer et al. (1989).

Another eardrum model that overcomes certain problems with lumped
parameter models was proposed by Rabbitt and Holmes (1986). They
proposed an analytic model based extensively on physical characteristics
of the membrane, especially on the anisotropic nature of the eardrum.
Bending, shear and extensional stiffness equations are used to describe
stiuctural damping, transverse inertia and membrane restoring forces.
This approach complements the finite-element analysis approach. It is

simpler computationally, but the accuracy of the geometric and material

assumptions of this model are critical to its success. Every assumption




and approximation made affects the subsequent problem formulation. It 1s
more difficult to change the assumptions in this model than 1n a
finite-element model where element material properties may be altered

easily and successive mesh refinements may be used.

3.5 MOTIVATION FOR A FINITE-ELEMENT MIDDLE-EAR MODEL

The models of Rabbitt and Holmes and of Funnell et al. require a
detailed model of the ossicular chain and cochlea. For the model of
Rabbitt and Holmes, at high frequencies the parameters selected to
represent the ossicular chain corresponded to a rotational axis of the
malleus which did not agree well with the low-frequency axis determined
experimentally.

The dynamic behaviour of the ossicular axis of rotation appears of
great importance 1in understanding how the middle ear functions. Present
models of the eardrum model the ossicular axis of rotation as fixed.
Due to the mechanical coupling between the eardrum and the malleus, part
of the force acting on the eardrum 1s transmitted to the malleus. This
coupling has yet to be adequately modelled.

Finite-element analysis is a method that could model both the
manubrium/eardrum interaction and the resulting motion of the ossicular
axis of rotation, especially at high frequencies where other models seem
to break down. As was demonstrated in the finite-element eardrum model,
the detailed mechanical behaviour of a complicated mechanical syotem can
be modelled using this method. A model of the ossicler and 1mportant
soft tissues in the middle ear, together with the existing eardrum
model, would implicitly model the lever action, determining properties
such as the effective area of the eardrum.

Modelling of the distributed interaction of the annular ligament
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and cochlea could alsc be accomplished with this technique. Recent
research suggests that raised perilymph pressure changes the way the
eardrum responds to contractions of the stapes muscles, prcbably due to
a change 1n stapes position. A lumped model of the stapes and its
ligament and muscle has been developed (Tweed, 1985). It was
unsuccessful under certain conditions, suggesting that another approach
may be helpful. In the cochlear model mentioned earlier (Lynch et al.,
1982) evidence indicated that the mechanically important parts of the
annular ligament may not be uniformly distributed, and that they may
not necessarily occupy the annular space. The finite-—element method may

be useful 1n analysing this situation.

3.6 MATERIAL PROPERTIES
3.6.1 Introduction

Before further discussion of a middle-ear finite-element model,
characterization of the material properties of the middle-ear
connective tissues and ossicles is required. This information is needed
1in order to describe the stress—strain relationships of the finite

elements. The following is a brief discussion of these properties.

3.0.2 Connective Tissues
3.6.2.1 Introduction

Connective tissues are composed of fibres which are in turn
composed of collagen, elastin and other proteins. The mechanical
responses of these tissues are generally loading-path and rate
dependent. This non-conservative characteristic of these tissues
complicates modelling beyond the normal problems of nonlinear elastic

theory.




Few experimental data are available for material properties of
soft tissues, especially for structures in the middle ear. When data are
available, they must be considered carefully as to how they wete
collected and thus to their limitations. For instance, when material
property data are collected from excised specimens, degenerative effects
must be carefully assessed. When considering data collected in vavo, the
effects of biochemical responses in the body must be consideired.

The material parameters initially used to model the posterion
incudal ligament are very saimplistic, but will later be refined. The
following is a brief discussion of linearity, homogeneity and 1isotiopy

of material properties in the middle ear.

3.6.2.2 Linearity

Material linearity exists in a problem 1f, for the tange of
displacements considered, the material exhibits a linear stress-stiain
relationship (i.e., the displacements in a problem must be small enough
so that the material remains within 1ts linear stress-strain range).
Geometric linearity exists if, for the range of displacements
considered, the effects of changing load and boundary conditions are
considered insignificant.

Although little direct evidence is available, the posterior incudal
ligament (and later other middle-ear soft tissues) 1s modelled using
both material and geometric linearity. Various experiments on the cat
middle ear indicate linearity of the umbo displacement at  wvarious
frequencies. Vlaming (1987) demonstrates linearity of umbo displacement
at several frequencies up to 8960 Hz for sound pressure levels bhetween
30 and 110 dB SPL. This saituation is 1llustrated i1n Fiqure 3.10. As

mentioned earlier, Guinan and Peake (1967) also determined a linear
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FIGURE 3.10: LINEARITY OF UMBO DISPLACEMENT
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between 30 and 110 dB SPL. (From Vlaming, 1987)
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range of up to 130 dB in response to tones of less than 2000 Hz and 140

dB for tones of less than 3350 Hz.

3.6.2.3 Homogeneity and Isotropy

Because of their oriented nature and varying composition, the
material properties of connective tissues are 1n general neithet
isotropic nor homogeneous. Both inhomogeneity and anisotropy can be
modelled in linear finite-—element analysis. Inhomogeneity is modelled by
defining different material propcrties for each element. Anisotropy 1s
modelled by using appropriate stress-strain relationships for each
element (see section 4.3.4). In the 1initial finite-element analysis of
the connective tissues in the middle ear, both homogeneity and isotropy

are assumed.

3.6.3 Modelling Parameters

Because so little experimental evidence is available for the middle
ear the material properties of the structures of interest have been
estimated indirectly. PFunnell (1975) estimates the posterior incudal
ligament to have a modulus of elasticity of 2 x 107 N/m and a
Poisson’s ratio of 0.3 based on material properties measured for the
eardrum.

The middle-ear ossicles are generally assumed to he completely
rigid. Du2 to the scope of this thesis, modelling of the osqicles will
not be done here. However, in the future, the ossicles will 1nitaially be
modelled as rigid. This may be an incorrect assumption in Jight of the
experiments by Decraemer et al., 1989, which indicate poscible bending
of the manubrium. As the middle-ear modelling proceeds, the question of

bending will be addressed.

41




3.7 DESCRIPTION AND SCOPE OF THE MIDDLE-EAR MODEL

The first step in modelling the middle ear should be the
development of a static (low-frequency) model of the important soft
tissues. These soft tissues should then be integr .ted with the ossicles
and a static analysis should be performed on the integrated complex.
This static model would include effects of ligaments whose stiffness
appears significant at low frequencies, such as the posterior incudal
ligament, the anterior malleolar ligament and the annular ligament. The
passive effects of the middle-ear muscles can be ignored in a static
model as they are thought to have little effect at low frequencies
(Funnell, 1972;.

Next a model determining the natural frequencies and mode shapes of
the middle ear should be attempted, and finally a model simulating the
damped frequency response should be developed.

In order to develop a static model of the middle ear a modelling
scheme must be developed. The methodology used here is as follows.
First, the geometric parameters of the model are gathered by digitizing
outlines of structures of interest from histological slides. Chapter 5
describes the data input and manipulation scheme developed and used. The
next step 1n the modelling scheme 1s to generate finite-element meshes
of structures of interest from three-dimensional suriace reconstructions
of the digitized contours. Chapter 6 describes the mesh generation
scheme developed and used to do this.

The final step in the modelling scheme 1s the finite-element
analysis of important structures in the middle ear, and the assembly of
these structures to form the integrated middle-ear model. Due to the
limited scope of this thesis, only an initial static analysis of the

lateral bundle of the posterior incudal ligament is performed. Chapter 7
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describes this analysis. Comments on the modelling procedure and futuie
work required for the middle-ear model will be discussed in Chapter 8.
Before examining in detail the modelling method developed and used
in the course of this research, an understanding of finite-element
analysis 1is required. The next chapter explains the finite element

method.




CHAPTER 4

THE FINITE-ELEMENT METHOD

4.1 INTRODUCTION

Solving problems in structural mechanics involves determining the
distribution of stresses and/or displacements throughout a structure. In
order to determine the system of stresses and displacements, the
governing differential equations of the problem that preserve
equilibrium, differential element continuity, and constitutive (stress-—
strain) requirements must be established. Unfortunately it is difficult
to determine equations that adequately represent a physical problem for
all but the simplest problems, since complications in geometry, loading
and material pLoperties must be considered. When analysing two or three-
dimensional problems these governing eguations contain partial
differentials, further complicating the problem.

This chapter describes how the determination and solution of
governing equations in a continuum may proceed 1in general. In particular
1t describes the displacement-based finite-element method. This method
involves dividing the physical system to be analysed into a mesh of two
o1 thiee-dimensional subregions or elements and finding a solution over
each of these elements that is very much simpler than that required
over the entire 1eqgion. The mechanical behaviour of each element is
analysed and the iesult of the analysis 1s a matrix equation relating
the behaviour of the element to applied forces. The matrix equations are
functions of the shape and material properties of the elements. These
matirix  equations can be combined into a global matrix equation

describing the behaviour of the entire structure. In this manner the
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response of the structure to applied loads can be expiessed i1n teims ot
displacements at the edges of any or all elements. The finite-element
method is particularly useful in complicated systems where the governing

equations over the entire reqion are difficult to faind.

4.2 DETERMINATION OF THE GOVERNING EQUATIONS OF A PROBLEM

In continuous systems, a number of different approaches may be used
to determine the system of governing differential equations. In the
direct or differential formulation of a problem, the equilibtium,
continuity and constitutive reguirements of a typical differential
element are established in terms of the state variables, leading to a
system of differential equations 1n those variables. In general these
equations must be supplemented by differential equations that impose
constraints on the variables. Also the boundary conditions (geometric
and force boundary conditions for structural mechanics) and the initial
conditions (for dynamic problems) must be stated.

Another approach used to establish the governing differential
equations of a problem is the variational approach. In this approach the
principle of minimum potential energy 1s, in general, employed. To do
this one must calculate the total potential energy of a system, . For
structural problems, the potential energy includes the strain enerqgy
(SE) and the force energy (FE). The actual configuration of a deformerd
elastic continuum yields a mxmimum value of thic potential energy (= SE
+ FE). By invoking the stationarity of T (é&0=0), thio miramum 15
determined and thus the governing equations of the oyotem may  be
derived. This procedure works not only for problems in structural
mechanics but for any problem where the functional N can be determinerd,

e.g. heat flow, acoustical, or electrical field problems. It should bhe
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mentioned that there are areas where a functional may not be known, or
may not exist, as in some types of flow in fluid mechanics. Alternate
methods such as the weighted residual methods must then be used (Reddy,
1984).

If the variational form of a problem exists, an approximate
solution for the dependent variable, U, can be formulated by creating a
trial solution function that minimizes the functional 1(J). The
approximate trial function U must satisfy the boundary conditions and
contain arbitrary constants that can be adjusted. For instance, the form

of the trial function may be

U(X)= ) c ¢ (X) (4.1)

1

where ¢ are linearly independent basis functions and ¢, are constants
to be determined. Substituting this into the functional A(U) and setting
and(ﬁ)/acl=0, (I 1s the approximation of the I because IJ(X) is only
an approximation), one will end up with » differential equations in
urknowns. Thus the approximate displacements may be determined. This
method was proposed by Rayleigh and generalized by Ritz (Grandin, 1986).
Another approach used to determine the governing eguations of a
sy«tem, which can be shown to be equivalent to the above variational
approach (Bathe, 1982), is the one usually employed in the analysis of
a  lrnear  elastic continuum. It involves the pranciple of virtual
displacements. A bit of explanation 1s needed before stating this
principle. There are many geometric configurations a body can undertake
that satisfy the geometric constrainls. Possible configurations lie in
the neighbouthood of the true configquration that satisfies equilibrium.
The small, compatible displacements that correspond to these possible

configurations are termed wvirtual displacements. During these



displacements the forces are fixed at their equilibrium values. The
principle of virtual work states that the total internal virtual work
(the work resulting from the true stresses going through vittual
strains) is equal to the total external virtual work (corresponding to
the actual forces going through the assumed displacements). This may be

stated mathematically as follows.

T T T
J"e'Trdv=IuB fav+ [T o+ O R (4.2)
v S

v 1

where € is the vector of virtual strains. (The reader should recall

T _

that the transpose of ¢, € ={¢g ., €. €. v, v, v, 1,
U v _ oW

where €, ==, €, =3¢ &; = 37/

_ U, v _ VW _ W . AU

YTt e YT wm e s o

T is the vector of actual stresses, T = [T“ T T T T T l.

e

t1 Rz Al 4 Al

The vectors £, £ and F* are the surface traction vector, the body
force vector and the ccncentrated force vector respectively. U, U' and
U' are the vectors of virtual displacements of the body from an unloaded
confiquration in a UVW Cartesian coordinate system, corresponding to
the forces mentioned above. (U' =[U V W].)

This equation provides the basis for generating finite-element

equations that govern the response of the system.

4.3 THE FINITE-ELEMENT METHOD

4.3.1 Introduction

It is difficult to model an entire continuum by one assumed net of

basis functions. The displacement-based finite-element method 1nvolves
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dividing the physical system to be analysed into a mesh of discrete
elements and using much simpler basis functions for each element. The
elements are joined together mathematically by forcing shared nodes,
created on the edges of two-dimensional elements or on the faces of
three-dimensional elements, to have identical displacements.
Appropriate degrees of freedom are constrained by forcing the
displacements of certain nodes or their derivatives to be zero. One of
the most c¢ritical points in finite-element analysis is that the
behaviour of the element must be accurately modelled by the set of basis
functions.

In general elements should also be compatible, which means no gaps
or overlaps should exist between elements 1n a continuum. This
requitement 1s not absolute, however. Finite-element analysis tends to
overestimate the stiffness of a structure, and overlaps and gaps tend
to ’soften’” a structure. Thus sometimes 1incompatible elements are

actually preferred (Cook, 1981).

4.3.2 Derivation of System Matrix Equations

The governing equation for a continuum may be written as the sum

of 1ntegrations over all finite elements from (4.2):

— 1 _ T
¥ [ e oTdavie! = Y J‘ Pie) goelgyle!
e {e)

© \ » v

T
+ZJ‘ U(»' ff(u)ds(ﬁ)
{ o)

+

_T
Yo R (4.3)

where the supetscript « refers to elements 1,2....n and n 1s the number
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of finite elements. The superscript : refers to the nodes of the
element assemblage.

In the finite-element method the displacements of points within an
element, measured in a local coordinate system, are functions of the
displacements of the structural nodal points, measured in a global

coordinate system, and may be interpolated from them as follows:
u'*'(x,y,z)=H°®" (x,y,2)U (4.4)

where 6 is a vector of global nodal displacements and H'®' is an element
displacement interpolation matrix. (Note here that H'"' implicitly
includes a transformation from a global to a local coordinate system).
Although l:) contains all global nodal displacements, the strains and
displacements within an element depend only on displacements at the
nodes of that element.

The corresponding element strains may then be derived. They are
e°'(x,y,z)= B'®) (x,y,2)U (4.5)

where B'®’) is the strain-displacement matrix of an element calculated hy
(o)

differentiating and combining appropriate rows of H “'.

Element stress-strain relationships may be described 1n terms of

the element stress-strain matrix C'°', which deceribes the material
properties of the element, and the initial strese in the clement, ',
_l.(e) =C(e)e(e) +.l_I(e) (4.6)

Using (4.4), (4.5) and (4.6), equation (4.3) may be rewritten

J4
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where U are the virtual nodal displacements and F is a vector of
externally applied forces at the nodes of the element assemblage. By
1mposing unit virtual displacements in turn at all nodes, (’; becomes the
rdentity matrix I. (This may be done because imposing a virtual
displacement at one node is assumed not to affect the force
distribution at all others.) Thus (4.7) may be restated in matrix form

as
KU = R (4.8)

where K= ) K'*!, Ki®' = J- B‘e’TC'e’B‘e’dV‘e’

Vie)

and R 1s the load vector which includes the effects of the element body
forces R" , surface forces R, concentrated nodal forces R and element
mitial stresses R'.

This 1s a statement of the static equilibrium. In the equilibrium
considerations, the applied force may vary with time. Thus the
displacements also vary with time. If loads are applied rapidly,
imertial forces are significant. Also, energy is dissipated in vibration

and thus velocity-dependent damping forces must be included. By




incorporating these effects into the governing equations, a matrix
equation describing a dynamic system may be derived. It 1s

LY 0
~ ~ -~

MU+ DU+ KU =R (4.9)

where M is a matrix containing inertial terms and D 1s a matiix
containing damping coefficients. The symbols (-) and (-+) 1indicate
first and second derivatives respectively.

This thesis deals only with static analysis i1n the middle ear.
Static analysis will in effect model the low-frequency behaviour of the
middle ear below 1 Khz where inertial and damping effects aie
negligible. However, as with the eardrum model of Funnell, the ultimate
aim of this research is to solve (4.9) to determine the high-frequency

dynamic response of the middle ear.

4.3.3 Choice of Local and Natural Coordinate Systems

Typically, when working with finite elements, three types of
coordinate system must be considered. The first 1s the glohal
coordinate system which is the frame of reference for the entire
continuum., Its coordinate axes have dimensions of length. 'The second
system is the local coordinate system. Its orientation 1s determined
with respect to the individual element and may be different from that of
the global system., Its dimensions and units are usually the same as for
the global system. The third system 1s the natural coordinate oyotem, It
consists of dimensionless coordinates that identify poortions an an
element without regard to size and shape. The local and natural
coordinate systems exist for convenience 1n  developing  element

relations, e.g. performing integrations as in (4.8). The choice of which
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of these systems to use determines how the displacement assumptions are

formulated.
When working with a local xyz Cartesian system, the displacements

may be interpolated usino generalized coordinates as follows:

ulx,y,z) = o + ouX + oy + @2z + X’ ... (4.10)
vix,y,z) = B + B,x+ By + Bz + 65x2 - (4.11)
wix,y,7) = v, + ,X+ ,¥ + 7,2+ v ,x ... (4.12)
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where o« , B8 and vy are the generalized coordinates, and polynomials in

x, y and z are the basis functions. There must be one basis function for
each degree of freedom in the element. The generalized coordinates here
turn out to be combinations of the element nodal point displacements.
The motivation for using the natural coordinate system is that the
element displacements may be interpolated directly in terms of the

element nodal point displacements as follows:

ulx,y,z) = % h (r,s,t)u (4.13)
viny,e) = 3 ho(r,s,t)v, (4.14)
wix,y,s) = 3 h (r,s,t)w (4.15)

whete h are the basis functions (here assumed identical in each
dimension); u o, v, ., w are the element nodal displacements in the x,
and o~ ditections; and r, s and t are the natural dimensionless

coordinates. Using this formulation, the element geometry is

interpolated 1n the same way as are the displacements, as follows:

x = ¥ hx (4.16)

4




y=hy, (4.17)

1

Z = 2 h.\.zl (4.18)
1

Use of this formulation has the advantage that the element basis
functions are easily constructed, by inspection, and the elements can
easily have curved boundaries.

Figure 4.1 illustrates the natural coordinate system for a eight-
node brick element and for a four-node tetrahedral element. The basis
functions for these linear elements can be built by inspection by noting
that the value of function h 1s unity at node : and zero at all othe:
nodes. The basis functions for the brick, 1in terms of natural

coordinates, are

h1 = (1+r)(1-s)(1-t)/8
h, = (1+r)(1+s)(1-t)/8
h, = (1-r)(1+s)(1-t)/8
h, = (1-r)(1-s)(1-t)/8 (4.19)
h, = (l+r)(1-s)(1+t)/8
h, = (1+r)(1+s)(1+t)/8
h7 = (1-r)(1l+s)(1+t)/8
h, = (1-r)(1-s)(1+t)/8.
The natural coordinates L1, L2, L3 and L4 for the tetrahedion are the
ratios of volumes of tetrahedra. To determine <oor-hnate LI of point P,

a tetrahedron is drawn with apex at point P anrd whnoe baan 1o opposite
node 1 as shown in Figure 4.1. Coordinate L1 1% the ratio of the

resulting interior tetrahedron (P-2-3-4) to the volume of the entire

l‘;




Eight-node Brick y ¢
8 \

7(—'11 l, l)
8(-1,-1, 1)

"

Four-node Tetrahedron
(t,s,t) z

1(0,0,0)
7

2(1,0,0) \///o://

it =y

FIGURE 4.1: THE NATURAL COORDINATE SYSTEM
for the eight-node brick and the four-node tetrahedron.
(See text for explanatioen.)
(After Grandin, 1986)
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tetrahedron. Coordinates L[2, L3 and L4 are similarly determined. Only
three of these coordinates are independen.. Letting r=L2, s=L3 and

t=L4, the basis functions for the four-node tetrahedron are

h = l-r-s-t

h2 = r (4.20)
h3 =85

h, = t.

4.3.4 Building the Element Stiffness Matrices

To solve (4.8) for 6, the element stiffness matrices K'°' must be
constructed. Once they are constructed, the entire structuial stiffness
matrix K and load vector R are then built.

To construct the element stiffness matrix, the local strain
displacement matrix B'®’ must be calculated using (4.13) to (4.15) such

that
e (x,y,2) =B'® (r,s,t)u (4.21)

where 6 is the vector of element nodal displacements. The strain-
displacement matrix B'®’ here 1s expressed in terms of the natural
coordinate system. (Note that 1in equation (4.5) B'“’ was expressed in a
local coordinate system and implicitly included a transformation from
global to local coordinates.) This matrix 19 determned by taking
derivatives of the displacement interpolation functions h , with reapect
to the local Cartesian system, to build the strain matris €' °'. B"' g
then determined by 1inspection. However the displacement interpolation

functions h are stated in terms of the natural system. The relationship
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between the x, y and z derivatives and the r, s and t derivatives must

be found by the transformation
3 =31 (4.22)

where J is the transformation matrix from local to natural coordinates.
The next step in building the element stiffness matrix K'°' is to
determine the element constitutive matrix C'°’ relating stress to
strain. This matrix describes the elastic properties of the material in
gquestion and may describe a /mear isotropic or anisotropic material.
(Tae linear equilibrium equation (KU=R) was derived assuming small
virtual displacements. The fact that the displacements are small has
entered into the evaluation of the stiffness matrices K'®’ and the load
mattix R because all integrations have been performed over the original
volumes of the finite elements and the strain displacement matrix B'®) |
1s assumed constant and independent of element displacements.) The

matrix C'*' for an element with isotropic material properties is

[ 1-v v v 0 0 0 ]
v 1l-v v 0 0 0
= B v v 1-v 0 0 0
(4.23)
(L + v)(1 ~ 2v) 0 0 0 %v O 0
0

where E 1s the material modulus of elasticity and v is Poisson’s ratio.
The modulus of elasticity 1s the rate of change of tensile or

compressive stress with respect to tensile or compressive strain.




Equation 4.23 describes an isotropic material. However, a fully
populated 6 x 6 C'°’ matrix would define a general anisotropic matetial
which possesses different properties i1n different directions. Special
cases between the extremes of total anisotropy and total isotropy exist
and can be modelled by defining entries in C'*’ accordingly.
Inhomogeneity may be modelled by defining different C'°!' matrices for
different elements.

Once B'®’ and C'®' are determined the integration i1n (4.8) may
proceed. Because the volume integration takes place in the natural
system, the volume differential must be expressed 1n natural
coordinates.

Calculation of the integrals describing the load vectors R', R' and
R proceed in a similar manner as for K. R* may be built directly. The
integrations described are usually performed on computer. For a brick
element, these integrations must be done by one of a number of numerical
techniques such as Newton-Cotes and Gauss quadrature, For a four-node
tetrahedron (with linear displacement assumptions along each edge) the

element stiffness matrix integration is exact. It 1s

Rle)= B(e)Tc(e)B(e)J av (4.24)
Vie)
where J av = |J3'¢'|
v 6
(e)

|J'®) | is the determinant of the Jacobian transformation of the clement
from the local to the natural system. B'“’ happens to be constant
throughout the element.

This integration of the element stiffness matriz produces an o 7

element stiffness matrix where » 1s the number of degrens of freedom 1n




the element. Element load vectors of dimension u are produced.

4.3.5 Building the System Stiffness Matrix

Construction of the system stiffness matrix 1is now
straightforward. To illustrate how this proceeds, a matrix for a two
e:lement system, illustrated in Figure 4.2, will be constructed. For
cimplicity, the elements used are triangular elements with one degree of
firecdom per node. The two-element assembly has a global numbering scheme
ao shown in the figure., The local numbering of the elements 1s 1-2-3 for

the first element and 2-4-3 for the second element. The stiffness matrix

for the first element 1s

kl,, kL, k1 u, £,
[ k1, kl)‘, kl,, u, = £, (4.25)
L k1, k1, . u, £,
and for the second one 1t is
k2, k2., k2, u, g,
ke, k2, k2, | u, = g9, (4.26)
ke, k2, k2, u, g, .
The system matrix 1s
ki, kLl , ki, 0 ] "ul 1 1 f1 )
L ; kl.,‘Jkall kl:l+k2lz k2, , u, _ £, + g, (0.27)
R, l\l“wuk?,ll k1H+k2” k2., u, f3 +q,
¢ k2 | N k2., 1 Ll | g, |

'l

Thee boundary conditions are specified by constraining the appropriate
degrees ot fieedom to their prescribed values. For instance u, may be

constrammed to be fixed as follows.




D

FIGURE 4.2: SIMPLE TWO-ELEMENT SYSTEM
Two triangular elements are coupled at nodes 2 and 3.
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b1 kl,, k1, 0 1 [y ] £
0 1 0 0 u, 0
= (4.28)
k1, kl,,+k2,, KL, +k2,, K2, u, £, + g,
0 k2, k2,, k2,, 1 Lu, | L g,

The solution of the system matrix will yield the actual nodal
displacements. (Once the displacements have been calculated, the stress

field may also be calculated from (4.6).)

4.3.6 Convergence

It can be shown from minimum energy considerations (Bathe, 1982)
that 1n finite-element analysis the strain energy of a structure is
always underestimated, providing that the elements in the mesh of that
structure are complete and compatible.

In order for an element to be complete its interpolation functions
mist be able to represent rigid body modes and constant strain states.
Rigid bhody modes are those displacement modes where no stresses are
developed 1n the structure (e.g., pure translation). Constant strain
states must be able to be represented because in the limit of
infinitesimally small elements the strain in the element must approach a
constant value so that any complex variation in strain may be
tepresented. As mentioned earlier, 1n order for elements to be
compatible the displacements between elements must be continuous (i.e.,
ne gaps ot overlaps can develop).

Both the biich and tetrahedral elements mentioned earlier are
complete and compatible 1f the basis functions of (4.19) and (4.20) are
assumed. Thus the strain eneigy 1in a mesh composed of these elements

will  be underestimated. Displacements therefore wi1ll also be
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underestimated. Consequently the mesh will be too stiff. As the sice ot
the elements in a mesh of these elements decreases, the displacement
interpolations of (4.13) to (4.15) will be mote able to treptesent
complex strain states and will be more able to accutately tepresent the
true strain energy 1in the aidealized continuum. As this occurs, the
calculated displacements will increase towards the tiue displacements.
This convergence will be monotonic provided that every finer mesh used
is a subset of a previous coarser mesh. If this 1s not the case the
displacements will 1increase towards the true displacements but  not

necessarily monotonically.

4.3.7 Finite-Element Packages

Many finite-element packages exist to handle both linear and
nonlinear analysis (Brebbia, 1985). The most popular commetcial finite
element package available today 1s generally accepted to he MSC-NASTRAN,
It is a large-scale general-purpose digital computer program whone
capabilities include static and dynamic analysis of structwal problems
with material and/or geometric linear:ity or nonlinearity. Ite c¢lement
library 1includes more than fifty elements. Tetrahedral elemente are
available as are various pre- and post-processing packages to help the
user generate meshes and inspect results.

The finite-element package used 1n this analysio 1o SAP 1V, a
program for the static and dynamic analycis of lincar o potem, fBathe ot
al., 1974). 1t was used because 1t was  reabily  azarlabbe,  wa
inexpensive, and has been used and modified fon sesrral years an thee

middle-ear research (Funnell, 1978).
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4.3.8 Choice of Elements

There are many element types besides the brick or the tetrahedron
available for finite element analysis. These two elements are general
thiee-dimensional elements that could theoretically be used in any
“tructural analysis. However, by taking advantage of certain
characteristics of a given structure, elements may be used which are
lros general but also less complicated. For example, wher analysing the
eardium, Funnell took advantage of the fact that the eardrum 1s a curved
hell stiucture. (Its dimensions in the eardrum thickness direction are
mich  smaller than 11n  the other two directions.) One of the
simplifications this leads to for instance is that the stress through
the thackness 1s zero.

The mesh generation scheme used 1in this analysis produces
tetrahedral elements with nodes defined at each vertex. This mesh
generator was used for a number of reasons, to be explained in Chapter
f. The linear basis functions of (4.20) may be used to perform the
analysis of these meshes of tetrahedral elements.

Unfortunately, the finite-element package available for this
1esearch dud not include code for a tetrahedral element. There are two
way« to proceed given this problem. It 1s possible to ’‘convert’ the
brickh element to a tetrahedral element by assigning certain nodes of the
element  the same spatial coordinates. This process 1s illustrated in
Frqure 4.3, The tesulting collapsed-biick tetrahedral element uses the
hasis functions of the brick (4.19). The second possibility 1s to write
code for a true tetirahedral element.

Both the collapsed-btick  tetiahedral element and the true
tetrahedral element give equivalent results in the linear case. However

new code for the tiue tetrahedral element 1is used in the finite-element
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FIGURE 4.3: COLLAPSING AN EIGHT-NODE BRICK ELEMENT
The eight-node brick element 1s converted to a four-node tetranedron
by assigning certain nodes of the brick the same glohal
coordinates. (After Bathe, 1982)
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analyses of Chapter 7, to save unnecessary calculations.

It should be noted that the SAP code itself had to be modified to
handle the collapsed-brick tetrahedral element. Sometimes element
interpolation functions may be wused that do not satisfy the
requirements of compatibility. In the case of the brick element
described 1n this chapter, extra basis functions may be added to the
interpolation functions. Because these basis functions are not
assoclated with any nodal degrees of freedom, incompatibilities may
arise, However, if these displacement functions are known beforehand to
represent  the displacements of the brick they can be allowed. For
example, 1f the brick 1s approximately rectangular, extra gquadratic
basis funclions can allow a constant bending moment. These extra basis
tunctions tend to make the element less stiff, which in turn tends to
speed up the convergence of a solution. SAP code includes these extra
bas1s functions or ‘incompatible modes’ because 1t assumes that the
brick elements used are not extremely distorted. Because the collapsed-
brick tetrahedral elements are extremely distorted these incompatible

mocles had to be deleted from the code.

1.4 SPEUIAL CONSIDERATIONS FOR PHYSIOLOGICAL SYSTEMS

The study of the relationships between the geometry, material
properties and loading history of a body 1s needed in order to solve any
problem 1n stiuctural mechanics., Finite-element analysis i1n man-made
systems provides a satisfactory solution to the detailed mechanics of
complicated  structures because usually these relationships can be
adequately established. When dealing with biological systems, however,
these relationships are much less clear. Thus, the accuracy and validity

ot any finite-element analysis must be objectively established before
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its results can be used.

Many of the difficulties 1in analysing anatomical structutes come
from the geometric complexity, the 1inhomogeneous material property
distribution and uncertainties about the 1n vivo loading conditions. In
addition, even in a saimplified physiological finite element analysis
the three-dimensional nature of a problem, often iequired to model
complicated geometries, may tax the computer powetr available. Fven 1t an
extremely accurate structural analysis could be done, the etfects of
biochemical responses present in physiological systems may tuithel
complicate matters.

The model of the middle ear being developed 1s a telatively simple
one. Experimental evidence on loading conditions and material pioperties
in the middle ear, and indeed in most physiological systems, 1% scaice,
It 1s apparent that 1f a simplified finite-element analysis 1< to be
performed on a physiological system, 1ts purpose 15 not to provade
definitive quantitative results but rather 1t 15 Lo provide o
quantitative basis for more study of the same problem 1n an evolving

fashaion.
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CHAPTER 5

ANATOMICAL DATA DESCRIPTION, INPUT AND MANIPULATION

5.1 INTRODUCTION

In order to wview 1n detail mammalian anatomy, a number of
techniques may be employed. A specimen may be investigated post mortem.
This is often done by sectioning the structure of interest, staining the
sections and mounting the sections on glass slides for later viewing,
usually under a microscope. More recent techniques involve imaging the
structure of interest non-invasively, often 1in vivo. Medical 1maging
techmques 1nclude conventional X-rays, computed X-ray tomography (CT},
position emission tomography (PET) and magnetic resonance 1maging (MRI).
Both imaging and sectioning techniques produce two-dimensional cross—
sectional representations of structures of interest, but present non-
lnvasive 1maging techniques produce representations of fairly low
tesolution. One of the problems of data acquisition of structures of
interest 1n the m.ddle ear 1s that the structures are extremely smail.
The middle-ear cavity volume 1n the cat is approximately 2 cm®. Present
medical 1maging techniques cannot provide the resolution necessary to
allow one to extiact the outlines of structures accurately,

The fiist step in defining the present finite-element model of the
middle ear 1s the input of two-dimensional anatomical data to the
computer.  Using the mesh generation scheme described 1n the next
chapter, contowrs of stiuctures of interest from these two-dimensional
slides o1 1mages may be used as a basis for producing three-dimensional
tinite-clement meshes. The present chapter describes a data input and

manipulation scheme used to process two-dimensional contours to produce
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three-dimensional surface definitions required for finite-element
analysis. It also briefly describes display software used to view these
three—dimensional surface definitions and later the iesulting finite
element meshes. The software described in this chapter 1s an outgrowth
of developments spanning many years (Chawla et al. 1982, Funnell &

Phelan, 1981).

5.2 HISTOLOGICAL MATERIAL

The histological material used as a basis for the middle ear model
consists of 250 serial section slides from a left cat ear obtained from
Dr. S.M. Khanna of Columbia University in 1982. The 2-kg cat had been
used for an ultrasound experiment (Basek, 1970). Priot to sectioning,
the ear was decalcified and embedded i1n plastic. The sections were cut
at 50um intervals in a plane approximately patallel to the legs (ctura)
of the stapes and every second section was stained and mounted.

Figure 5.1 is a photograph of one of the slides. In this slide
structures of 1interest include the lateral and medial bundles of the
posterior incudal ligament, the eardrum and connective tissues, the

malleus and incus, and the tensor tympani muscle.

5.3 CONTOUR IDENTIFICATION

Contours may be extracted from two-dimensicnal representations
either by manual tracing of outlines ot by antomatye ordge detectjon
image-processing techniques. Edge-detection technie e ongal e Tonking
for sharp aintensity variations 1in an image andd ozt racting thene
variations to produce edges. These techniques rould Le ned for contou
identification from images of histological <lides. Howesr tor the

complicated structure 1in the middle ear, this would not he a simple




FIGURE 5.1: PHOTOGRAPH OF A HISTOLOGICAL SLIDE
of the left middle ear of the cat, shown approximately
6.3 x magnification. Structures of interest are identified
1in the digitized version of this slide shown in Figure 5.2.
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task. For simplicity, the method used in the course of this iteseaich to
extract contours is to manually trace the outlines from magnitied

projections of histological slides.

5.4 DATA INPUT AND MANIPULATION

5.4.1 Introduction

A program (DIG), is used for the data input and manmipulation. This
program was developed in this lab and was used to produce a file
containing the three-dimensional surface point definitions of structuies

in the middle ear.

5.4.2 Tracing and Alignment

Each histological slide of interest was placed 1n a holder undet a
light source. The image of the slide was projected through a lens, of
approximate magnification 19, downward onto a digitizer surface. The
digitizer, a Numonics Graphic calculator, 1s an electro-optical device.
The contours of structures of 1interest were then digitized onto
computer. The errors involved in tracing the contours are considered to
be insignificant compared to cat-to-cat anatomical variations. Figure
5.2 is a digitized version of some of the structures on the slide of
Figure 5.1. Contours are divided into classes hy colour for easy
distinction {(i.e. muscles, ligaments, bones).

Contours are indexed and any or all contouts on any or all <lides,
may be redisplayed at any time. Contours may he i1otated, crspanded or
shrunk for better viewing and to allow for contour alignment. Berause
no absolute alignment reference exists in the hictological material the
contours on consecutive slide must be aligned i1n a phycically reasonable

way. This is done interactively by marking corresponding landmarks on
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FIGURE 5.2: DIGITIZED CONTOUR

showing outlines of scme important structures
on the slide illustrated in Figure 5.1,
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consecutive slides and aligning accordingly. Figqure 5.3a i1llustrates two
unaligned marked contours and Figure 5.3b illustrates the contours afte:
alignment. Obviously the accuracy of the geometiic representation of
structures in the middle ear depends on the alignment of contours.
Ideally histological material containing an alignment reference should
be used, but unfortunately that 1s not yet available for the middle ecat.

Contours are entered in segments. Sections of contours that ate
shared between two distinct structures (e.g. between the posterior
incudal ligament and the incus, or between the ligament and the middle-
ear wall) are marked as such. Thus, 1n the surface-point definition
files, sections of a structure shared with other structures are easily
identifiable. Thic is done so that after mesh generation, shared nodes
on meshes of these connected structures may be identified fot
integration with other structures, or constrained as recuired. (E.q.
the section of the lateral bundle of the posterior incudal ligament
attached to the middle ear wall must be constrained not to move in the
finite-element analysis. Also, shared nodes between the incus and the
posterior incudal ligament must not be duplicated in a finite-element

analysis of the integrated middle-ear model.)

5.4.3 Extraction and Display

Once all slides containing a structure of 1nterest have heen
aligned, that structure may be extracted from the digitized data using a
simple command. For example, all sections containming rontours of the
lateral bundle of the posterior incudal ligament may be estracted. The
result is a file containing the three-dimensional curface point
definition of the object. Figure 5.4 1s a display of all contours of the

lateral bundle of the posterior incudal ligament after alignment.
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FIGURE 5.3: DIGITIZED CONTOURS
a) before and b) after alignment.
Contours are aligned by marking corresponding landmarks on
consecutive slides and aligning accordingly.
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FIGURE 5.4: DIGITIZED CONTOURS
OF THE LATERAL BUNDLE OF THE POSTERIOR INCUDAL LIGAMENT.
The incus/ligament boundary is at the left of the figure. The
middle-ear wall/ligament boundary 1s at the right of the fiqure.
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The sourface-point definition files may be processed using a
curface-reconstruction program, TR3, developed 1n this lab. This
program works by triangulating between boundary nodes on consecutive
digqitized  contours (Funnell 1984a, 1984b). Thus the surface of
strurtures of i1nterest may be reconstructed.

Another program developed in this lab, SMF, has the ability to
choplay triangular-face representations of middle-ear structures from
e1ther surface triangulations produced by TR3 or from traiangular-face
representations of the final tetrahedral meshes produced by the mesh
gqenetation scheme  described 1n the next chapter. Thus surface
revonstructions  or meshes of middle-ear structures can be easily

displayed and examined. The program has the ability to rotate these

triangular  face representations so that a structure of interest may
examined  from many perspectives. Structures can be displayed with
chading 1 a desited colour scheme on a VAXStation or other graphics

display. A *cut’ may be made thiough an object and faces in front of
that «ut may be removed. These reconstructions may also be displayed in
black and white on a haid copy. Figure 5.5 1s a three-dimensional
sutface  reconstiuction of contours of the lateral bundle of the
posterior incudal ligament, the incus and the malleus produced using the
proqram TR3 and displayed using the program SMF. Hard copies of displays
ot meshes produced by SMF will be presented Chapters 6 and 7.

Once the sutface-point definition files have been defined, the next
phase ot modelling may proceed. The next chapter describes the mesh
generation scheme used to transform these surface reconstruction files

mmto a fimte-clement mesh.
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FIGURE 5.5: THREE-DIMENSIONAL SURFACE RECONSTRUCTION
of contours of the incus, the malleus and the lateral
bundle of the posterior incudal ligament, produced using
the surface-reconstruction program TR3 and displayed
using the display program SMF.
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CHAPTER 6

MESH GENERATION FROM SERIAL SECTIONS

6.1 INTRODUCTION

One of the largest problems i1n any finite-element modelling scheme
1% that of mesh generation. Two-dimensional mesh generation of
irreqular contours 15 not trivial. The task of creating a mesh of
three-dimensional elements 1s definitely not a simple one.

Many different approaches to three-dimensional mesh generation have
heen taken (Boubez, 1985, 1986a, 1986b). In interactive techniques, the
computer helps to visualize the mesh as 1t 1s being created and graphic
mput devices help to define coordinates. This task 1s time-consuming
and, due to the two-dimensional nature of most graphic devices, is
patticularly difficult in three-dimensional analysis.

Interpolation mapping technmiques involve laying down similar meshes
on consecutive two-dimensional contours. These contours all have the
same number of nodes and coriesponding nodes on consecutive contours are
101ned - by anterpolation.  Deformation mapping techniques 1involve
generating a reqular mesh and deforming 1t to fit the object. These
methods work well for reqular geometries, However, since the same
number  of nodes 1s generated for each cross section, for irreqular
gqeometries nodes become crowded 1n smaller cross-sections, resulting in
an excessive mimber of natrowly shaped elements. When 1iieqularly shaped
Cross sections  are encountered,  bad  interpolations are common in
interpolation methods, and 1n deformation methods it may be difficult to
find proper mapping functions.

Filling techniques involve defining nodes within an object and
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filling the object with elements by generating tetiahedia to suriound
the nodes. This generation is difficult for 1iitegular shapes. Because a
convex hull of the nodes 1s generated, this method requites much wotk to

handle holes and concavities.

6.2 TOPOLOGICAL METHODS

Topological methods are better suited to meshing 1rrequlan
contours. They involve cutting tetrahedra away from an object using a
library of topological operators. F.rst the surface of the object must
be triangulated. A list of faces, edges and vertices, together with
information defining their relationships, describes this trianqulation.

Most topological methods 1involve wusing two main  topological
operators which each act on an object by removing a tetiahedion. Aa
tetrahedron 1s cut away, the edge, vertex and tace list must be updated
to describe the new shape of the mesh. This 1s done itepeatedly until the
list describes only one tetrahedron.

Topological methods are relatively slow as compared to other thiee-
dimensional meshing techniques. However they can generally produace
consistent meshes for irregulatly shaped objecto. A number  of
topological methods have been developed (Ewing et al. 1970, Mantyla &
Kagawa 1983, Woo & Thomasma 1984, Wordenwebrt 1984),

The mesh generation technique used to create mechern for the middle
ear will be one designed and initially deseloped by Boubes (198600 Thae
generator was developed specifically wsith anatamir ol otructures in mind.
Serial histological sections are commonly woed to study  anatomrcal
structures 1in the life sciences and thus are an obvior, tool too e
exploited when describing the geometry of such stiuctures. A mesh

generation technique which con build meshes from <erial section dataq
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would have applications 1n many areas in the life sciences and
eloewhere.

This mesh generator originally consisted of a series of programs
capable of reading specific serial section data and generating a mesh of
tretrahedral elements from a slice of an 'irregularly’ shaped object. A
sli1ce of an object 1s that part of an object defined by two consecutive
two-dimensional contours. This generator was tested by Boubez on fairly
cimple 1rreqular shapes, using relatively low mesh resolutions, and had
never been used tor any finite-element analysis.

A major portion of the work done for this master's thesis involved
continued development and testing of this generator. This work involved
streamlining and debugging 1t, adding and improving graphical displays
to help the user monitor 1ts progress, testing and enhancing it to
enable 1t to be used for more general irreqularly shaped multi-sliced

objects, and automating 1t into one master program. This chapter

deccrnibes the philosophy behind the generator and outlines some of the
additional work performed on 1t.
6.3 ‘It MESH GENERATOR

t. 3.1 Philosophy

The philosophy behind the mesh generator 1s described in detail in
Boube. (1986b). The following section summarizes this description.

Two dimensional closed contours input from each histological slide
are  triangulated as follows. Equidistant nodes are created on the
contour, spacad according to the mesh iesolution required. The contour
14 superimposed on a grid of equilateral triangles and all internal grid
nodes that are positioned at least a certain minimum distance from the

contout boundary are kept, forming a regular two-dimensional core of

78




triangles as shown in Fiqure 6.la. Internal grid nodes that are too
close to the contour boundary are discarded so as to avoid small
elements in the outer ring in the subsequent triangulation of that ring.
The triangulation is performed by joining nodes on the core boundaty to
nodes on the contour boundary as 1llustrated in Figuite 6.1b. The
triangulation algorithm identifies all external edges on the inner core
of triangles by inspecting a list of edges making up the internal core
triangles and discarding those that occur twice. The nodes on thig
boundary are numbered 1in increasing order 1n a counterclockwise
direction. All edges on the external boundaiy are also identified and
numbered 1n a counterclockwise direction. The first step 1n the
triangulation is to join the two 1initial nodes on the 1nner and outer
boundary. These nodes are the laiger nodes shown 1n Fiquie 6.1h. The
next line of the triangulation 1s the shortest line that can be diawn
from either of the first two nodes to the second node on the oppostte
boundary. The algorithm proceeds around the two-dimensional ring until
the triangulation 1s complete. This triangulation 1s done for each two-
dimensional contour of the structure of interest.

Next, consecutive two-dimensional contours are  overlaid.
Corresponding nodes on overlapping two-dimensicnal cores are joined ar
shown 1n Figure 6.lc and the resulting three-dimensional rore of right-
angled prisms, 1llustrated in Figure 6.2, 1s shredded 1nto tetrahedia
using a lookup table. The remaiming arecas of each teo dimensional
contour are used to generate a ring.

The outer and inner edges of this ring are trvangulated ao ohean
in Fiqure 6.2, The main work of the mesh generator g to mech thio ring
of each slice of the structure until the ecntire <tructural mech e

created. It meshes a ring by repeatedly cutting away tetrahedra untal

4




e

. )
A [ . \
v L \ ot
’ N 2R \ M ' o f
: LT .
' & L] i ,/‘\~ \ I
* ¢ ' v e e

b) Full triangulation of two-dimensional contours.

c) Resulting overlap of two-dimensional cores.

FIGURE 6.1: TWO-DIMENSIONAL CORE AND RING TRIANGULATIONS
AND RESULTING CORE OVERLAP.
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FICURE 6.2: THREE-DIMENSIONAL CORE AND RING
of two consecutive two—dimensional contours of the lateral
bundle of the posterior incudal ligament.




only one tetrahedron i1s left. As mentioned, this cutting away is done by
deleting appropriate edges, faces and vertices from the list describing
the structure until the list describes only one tetrahedron. The meshed
structure huilt up 1s described by a 1list of tetrahedra. Each
tetrahedron 1s described by twelve nodal coordinates grouped in threes,
each group representing one face of the tetrahedron. This descriptive
foimat 15 used by the display program SMF (see section 5.4.3) to display
any stage of the mesh generation procedure.

The meshing 1s done using four operators. The first two operators
ate the two cutting operators referred to earlier (see section 6.2) and
are 1llustiated i1n Figure 6.3a and 6.3b. The vertex operator Tl locates
a trivalent convex vertex and removes the tetrahedron attached to it in
one cut. Usually the Tl operator is used repeatedly until no suitable
vertex can be found (1.e. all tetrahedra protruding from the ring are
cut off). Next the edge opeirator T2 1s used. A starting edge number is
grven to 1t and 1t proceeds through the list of edges in the ring until
1t locates a convex edge, It removes the tetrahedron attached to this
edge 1n two cuts, The vettex operator Tl is then reused to cut off
protruding tetrahedra., If after a number of cuts neither Tl or T2 can be
used, a thiid operator, the topological cut operator, is employed. This
operator makes a cut through a triangular cross-section of the ring,
thus producing two new triangular faces. The first cut of the ring
ptoduces one polyhedron. Each successive cut produces another polyhedron
as 1llustiated n Frquie 6.3c.

Using these opeirators 1t 1s possible to reach a situation where a
tettahedron cannot be cut away from any of the polyhedra created. Such a
situation 1s 1llustrated 1n Figurte 6.4a. The simple solution to this

problem 15 to flip a diagonal on a side of a polyhedron as shown in the
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a) The vertex operator locates a trivalent convex vertex and
removes the tetrahedron attached to 1t in one cut,

b) The edge operator locates a counvex edge and removes the
tetrahedron attached to it in two cuts.

i

c) A topological cut 1is performed on a polyhedron,
dividing 1t into two separate polyhedra.

FIGURE 6.3: THE VERTEX, EDGE and CUT TOPOLOGICAL OPERATORS
{(After Boubez, 1986b)
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tetrahedron can be cut away from this polyhedron until one

a) No
of its diagonals is flipped.

b) 1f the flipped diagonal is not on the outside surface of the mesh
tetrahedron is created.

a 'flat’

c) No diagonal can be flipped on this polyhedron
and thus 1t cannot be meshed.

EXAMPLES OF DIFFICULT POLY{:EDRA

FIGURE 6.4:
a) flipping a diagonal. b) creating a flat tetrahedron and
¢) encountering an unmeshable polyhedron. (After Boubez, 1986b)




figure. The two faces attached to the diagonal in question must be
planar if tne geometry of the polyhedron is to be preserved upon
flipping. The polyhedron side must be an exterior side of the 1i1ng in
question and must not be a side that will later be pert ol a boundary
with another mesh. If this is not the case, the flip is topolegically
unacceptable, since adjacent finite elements will have 1nteisecting
edges and faces. In this case, a ’'flat’ tetrahedron i1s created, as shown
in Figure 6.4b. This flat tetrahedron operator, T2P, is an operator
unique to this mesh generator.

The presence of this flat tetrahedron preserves the cortectness of
the mesh, but it is useless as a finite element. Howeve:r, at the end of
the mesh generation process, after all cores and rings of all slices
have been meshed and assembled, the mesh is 'relaxed’. This 1s done by
moving every node in the mesh to a more suitable position. This mote
suitcble position is, i1n the case of the mesh generator, the geometiyce
centre of all nodes attached to the node 1n qguestion. In this mannetr the
flat tetrahedron will be ’inflated’. It should be noted that only nodes
not defining the surfare of a structure may be moved, otherwise the
shape of the structure would change.

The relaxation is done not only to inflate flat tetrahedra but also
to ensure that tetrahedra i1n the mesh have high aspect ratios. The
aspect ratio is a measure of how equilateral a tetrahedron 1s. A flat
tetrahedron has an aspect ratio of sero while a tetrahedhion with Al
internal solid angles equal has a tatio of umity. Tetiahedra with high
aspect ratios are desired in finite element analynio. Thio 1+ hecause,
if the aspect ratio of a tetrahedron 1s small, the tetiahedron 1o narrow
{(i.e. some of 1its vertices have low <olid angles) and wome of 1te edqger,

are longer than those of a more equilateral tetrahedron. The




displacement assumptions associated with these longer edges will not

reflect the true displacement field as well as will those associated
with shorter edges. This problem is equivalent to the pioblem associated
with having larger elements in a mesh. Furthermore, tetrahedia with low
aspect ratios contribute to errors in the computer solution in fimte
element analysis; this problem will be discussed in section 7.2.2.

The relaxation procedure may be visualized by magining an
assembly of springs constrained by an external surface. The relaxed mesh
is equivalent to the equilibrium position of the spring assembly given
the external shape constraints.

Unfortunately, it is possible to reach a situation where a diagonal
cannot be flipped to produce a polyhedron capable of being meshed. This
situation is 1llustrated in Figure 6.4c. In this case the meshing of the
ring must be restarted. Usually, by giving the edge operator a new
starting edge number, a successful mesh is created. However 1t 1s
possible that no starting edge can be found to generate a successful

mesh.

6.4 IMPROVEMENTS TO THE MESH GENERATOR

6.4.1 Introduction

Previously the mesh generator consisted of a series of separate
programs. One program performed input and triangulation of the two-
dimensional contours input in a very specific form. aAnother program
built the slice core while a third built the slice ring. A fowrth
program meshed the structure while a fifth assenbled slicesn and relaxed
the structure. Input and output from each program harl to he verifierd
manually to ensure the meshing procedure produced a topologically

correct mesh. The final output was a list of vertex coordinates of each
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tetrahedron, 1in a form readable by the display program SMF but not
suitable for input to the finite-element program. Meshing a structure
was fairly cumbersome, especially when many slices were involved.

A number of procedural problems with the generator were corrected
and all programs required for the mesh generation process were unified
under one master progra.n so that the mesh generator can now be run with
no user interaction. The input routines wcre generalized to handle input
from any file containing the point definitions of consecutive two-
dimensional contours. The output routines were modified so that a file
was generated that contained a list of node numbers and their
coordinates, and a list of elements defined by their node numbers. This
file was used by the finite-element program. Graphical displays were
improved to better monitor the progress of the generator and the
improved display program SMF helped to identify a number of meshing
procedural problems.

Fiqure 6.5 1s a flow chart of the automated master program TRA4F.
The triangulation subroutine TR42D is called once and is responsible for
trrangulating all two-dimensional contours making up the object under
study. The master program then enters a loop where each slice (adjacent
pair of two dimensional contours) is processed. Subroutine TETRA is
responsible for joining overlapping two-dimensional cores and shredding
the resulting prisms into tetrahedra. Subroutine RING performs the
surface tiiangulation of the inner and outer edges of ring. Once the
cotes and rings of all slices have been formed, the program enters a
loop where subroutine STRUCT then meshes the ring of each slice.

Subroutine GLOBAL is called after all slices have been processed.
It assembles the meshed slices and performs the mesh relaxation. This

telaxation must be carried out while ensuring the aspect ratio of all
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Call subroutine TR42D to tnangulate all
two-dimensional contours

l

| SLICE NUMBER =1 |
I

|
[ SLICE NUMBER=SLICE NU'MBER + { ]

Call subroutine TETRA 10 buld shice
core

I

Call subroutine RING to build slice
nny

MORE

SLICES”

[ SLICENUMBER =1 |

1
I SLICE MIMBEBTI JCE NUMBER + 1 I

Call subroutine STRUCT to mesh

shice

YES

MORE

~

SLICES?

1

Call subroutine GLOBAL to assemble
shices and perform global rel ixation

Call STRUCT 1o

remesh offending sheets)

FIGURE 6.5: LOGIC OF THE MESH GENERATION PROGRAM TR4F
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tetrahedra remain above a certain value. While testing the generator, it
was found that some flat tetrahedra could not be inflated to an
acceptable aspect ratio (as will be explained in section 6.4.6). If
this occurs then the slice containing the offending tetrahedron is
remeshed and the relaxation is redone. Finally, when a successful
relaxation occurs the mesh 1s written to a file.

lhere were a number of serious procedural problems that only
surfaced when meshing more complicated structures. The following

sections describe a sample of them.

6.4.2 Slice Triangulation — TR42D

One of the problems encountered in this subroutine was that
contours were read without being oriented (numbered) in the proper
direction. They were assumed to be numbered in the same direction. This
caused problems when subroutine RING tried to triangulate the outside
surface of a slice. That surface 1s discretized by triangulating between
ronsecutive two-dimensional contours (rather than between inner and
outer contours as was the case for the triangulation of the two-
dimensional ring.) If the nodes were not numbered in the same direction
on adjacent contours, the triangulation algorithm tried to join a node
on one side of the object on one contour with a node on the opposite
side of the object on the next contour. This violated the geometry of
the mesh. All contours are now forced to be counterclockwise as they are

read in.

6.4.3 Building the Core - TETRA

The program previously could not handle the case where no matching

two-dimensional elements were found (i.e. no core existed) and thus
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code was added to handle this case.

6.4.4 Building the Ring - RING

One of the most serious problems with the generator was that the
orientation of element faces was not consistent. Orientation of element
faces determines how the nodes of tetrahedra are numbered. Proper node
numbering is crucial in finite-element analysis. Calculations of the
volumes of elements are meaningless 1f the numbering of nodes in an
element is not consistent throughout a mesh. Proper assembly of these
element matrices is impossible. The convention desciibed 1n the original
mesh generator documentation specified that all four faces 1n every
tetrahedron must be oriented so that, using the right-hand rule, the
vectors normal to the faces pointed outward from the tetiahedton.

One of the areas where the orientation prcblem manifested itself
was in subroutine RING which 1s responsible for forming the outer r1ing
of the object. To do this the list of faces making up tetrahedia in the
core was examined. In this list of faces making up the coie, taces on
the outer edge of the core will be listed once while 1nner cote
tetrahedron faces will be listed twice (since adjacent _etrahedra share
faces). By searching for faces occurring only once 1in the list, the
inner face of the ring can be defined. Before using these faces to bhuld
the ring they must first have their orientations flipped 5o that,

instead of having their normals pointing away from the cope, they have

them pointing away from the ring. This was not being done ol wae thue
corrected. This was important because later 1n the cubroutine all faces
of the ring were being oriented using these inner ring faces g o
reference.

This orientation procedure i1tself was being performed incorrectly.
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The top and bottom faces of the ring should have been oriented by noting
the orientations of adjoining inner ring faces attached to them and
orienting accordingly. External faces could then be oriented by noting
the orientation of adjoining top or bottom faces. However, due to a
programming error the bottom faces were being oriented in the wrong
direction. The orientation algorithm was corrected.

Another problem encountered in the generator was that the marking
of different classes of faces was incorrect. Nodes of faces on the
exterror of the object had to be marked as fixed in order not to be
displaced during relaxation. Due to a programming error, nodes were
assigned the wrong markers and thus the relaxation was procecding

incorrectly.

6.4.5 Meshing the Ring - STRUCT

The most complicated and time-consuming subroutine 1s STRUCT which
performs the actual meshing of the ring. A large number of problems were
encountered 1n this routine., Many different checks had to be made in the
generator to make sure that edges and faces did not cross as the
structure was being meshed. Due to the difficulty in performing these
checks 1n three dimensions, geometrically inconsistent tetrahedra were
sometimes being produced. No independent verification of the mesh was
being performed. To ensure geometric consistency, as every tetrahedron
was cut, a new check was made to ensure that its volume was positive and
that all four faces were oriented correctly. This not only elimirated
mcortectly oriented tetrahedra but also tetrahedra that had very small,
neat-.eto volumes. This meant that zero-volume tetrahedra could only be

generated by using the flat-tetrahedron topological operator T2P.

Unnecessary zero-volume tetrahedra were thus avoided.
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Another serious procedural problem was that writing of tetiahedia
to file was being incorrectly performed. Fo: 1instance, 1in the otiginal
algorithm, a check was made before every topological cut to see 1if the
number of polyhedra left in the ring was four times the number of
vertices left. This would 1indicate that all remaining polyhedia atre
simple tetrahedra and that the meshing is complete. This check was being
made but only one of the remaining tetrahedra was being written to file,
thus producing an incomplete mesh.

A problem occurred while flipping diagonals. When doing this, care
has to be taken to ensure that the diagonal was not generated outside an
enclosing quadrilateral. This occurs 1f two narrow faces join at an
angle as illustrated in Fiqure 6.6.

Previously, when performing a cut with either the vertex operator
Tl or the edge operator T2, a check was made to ensure that the aspect
ratio of the tetrahedron formed was above a certain limit. This check
was made 1f more than two of the faces of the tetrahedron weire faces on
the external boundary of the structure. This was done for cquality-
related reasons since no nodes of these tetrahedra could be 1elaxed,

It was found necessary, however, to force «// tetrahedra in the
mesh to have an aspect-ratio lower limit. If tetrahedra with very low
aspect ratios are allowed i1n the mesh~generation process, polyhedra that
have very low solid angles result. The mesh generator huilds itself 1nto
a corner because these low solid angle polyhedra tend to bhe impoosible

to mesh.

6.4.6 Assembling the Slices and Relaxing the Mech - GLOBAL

Previously the relaxation algorithm had been te<terd on omall meshes

where zero-volume tetrahedra were inflated without problem. The oriqginal
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FIGURE 6.6: AN EXAMPLE OF A DIAGONAL BEING GENERATED OQUTSIDE
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AN ENCLOSING QUADRILATERAL.
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relaxation algorithm attempted only to move nodes to the geometiic
centre of surrounding nodes. This was done using an 1iterative scheme.
An attempt was made on each iteration to move every node in the mesh to
the geometric centre of surrounding nodes. This attempt was successful
if the move did not violate the kernel of the node in question. (The
kernel is defined as the volume within which a node can move such that
adjoining edges do not cross each other.} If the kernel was violated, an
attempt was made then to move the node halfway to the geometric centie,
If for this attempted move the kernel was still violated, the distance
to be moved was successively halved until the pioposed distance fell
below a certain tolerance. This relaxation procedute was tepeated every
iteration until the maximum acceptable move of all nodes 1n the mesh
fell below a certain lower limit.

To relax more complicated multi-sliced meshes a numher of changes
were made. If no move as described above could be accomplished while
trying to inflate a flat tetrahedron this piresented a pioblem, as
inflation was essential. (No move was possible when the geometric centie
lay on the side of the tetrahedron opposite to the node 1n question.)
This problem was corrected by moving the node away from the geometric
centre, 1in the opposite direction, as 1illustrated 1n Fiqure 6.7,
Unfortunately, 1t sometimes happens that any nodal movement violates 1ts
associated kernel. If flat tetrahedra cannot be 1nflated, the offending
slice is remeshed, the new mesh 15 1eascembhled and the relaration e
redone.

Care had to be taken when reshaping any tetrahedron, flat or not,
that in moving a node no tetrahedron was reflattencd, or alternatively
that all tetrahedra retained a certain minimum asprert ratio. Jf &

proposed move caused the aspect ratio of a tetrahedron to fall below an



towards geometric center
(direction first attempted)

J, away from geometric center
(direction moved)

FIGURE 6.7: INFLATION OF A FLAT TETRAHEDRON
A flat tetrahedron cannot be inflated by moving a
node to the geometric center of all nodes surrounding
1t because opposing diagonals would cross. The node is moved
in a direction opposite to that originally attempted.
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acceptable lower limit, the move was not made.

Finally, a volume calculation and orientation check 1s made on
each tetrahedron in the mesh after relaxation. Additionally, the volume
of all tetrahedra is totalled and checked against the object volume,
These checks ensure that the final mesh 1s cottectly oriented and

complete.




CHAPTER 7

PRELIMINARY MODEL TESTS AND RESULTS

7.1 INTRODUCTION

The only structure in the middle ear analysed so far is the lateral
bundle of the posterior incudal ligament. A preliminary static analysis
of this structure has been done. This chapter describes how this
azalysis was carried out. The results of this analysis give an
indication of how well the tools developed and tested during the course
of this research are suited for the modelling of the middle-ear

ossicles and soft tissues.

7.2 DETERMINATION OF APPROPRIATE MESH RESOLUTION

7.2.1 Introduction

The accuracy and efficiency of any finite-element analysis relies
on the apptopriateness of the mesh resolution used when discretizing the
stiucture of interest. In general, as the mesh resolution used to model
a continuum 1ncreases, the displacement solutions will converge toward
the tiue displacements. However, as the size of the elements in a mesh
decreases (and the number of elements increases), the number of degrees
of freedom increases. This increases the size of the global stiffness
and load matiices and thus the time and resources required for computer
analysis. An optimal resolution 1s the lowest resolution possible such
that the displacement trial functions model the domain to the required
accuracy.

To determine a reasonable resolution 1in an analysis, the

convergence of nodal displacements 1in a structure, in response to a
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given loading condition, as a function of mesh resolution must be
determined. A number of tests should be made of meshes of successively
finer resolutions until the differences in displacements are consideied

insignificant,

7.2.2 Error Analysis

Before determining the optimal mesh resolution for a finite-element
analysis it is important to understand possible sources of error in the
analysis.

One possible source of error is in the evaluation of element force
and stiffness matrices using numerical integration. This 1s unimportant
in the present analysis because for the true tetrahedral element used,
integration of the element stiffness matrices is exact (see section
4.3.4, equation 4.24). In addition, only concentrated forces will be
applied in the analyses presented in this chapter and thus no
integrations are required to produce load matrices either. (For the
collapsed-brick tetrahedral element, numerical integration 1s required
for the element stiffness matrix. However, because linear elements are
used this integration produces exact results, and this explains why
analysis using this element produces the same results as analysis using
the true tetrahedral element.)

Two sources of error may occur due to the use of meshes with non-
equilateral (non-unity aspect-ratio) tetrahedra. The firet  wae
mentioned in Chapter 6, i.e. the linear displacemcnts, accumed by Lhe
shorter edges in the equilateral tetrahedron can better model the trae
displacements of a structure than can those assumed by the longer edger
found in the low-aspect-ratio tetrahedron. Thus, given two meshes with

the same average edge length, the mesh with the higher average aspect
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ratio will be better able to model the true displacements of the
structure.

The second source of error resulting from meshes with
nonequilateral tetrahedra arises in the setting up of the finite-element
equations and their solutions. This is because a computer with a finite
mimber of digits to work with is being used. The errors arise because in
the global stiffness matrices K for these meshes entries K, , of
tetrahedra with widely differing aspect ratios will be of widely varying
values.

If the magnitudes of elements in the global stiffness matrix K
differ greatly, an entry in K with a large magnitude will be represented
with much more percentage accuracy than will an entry with a small
magnitude, when performing adding or subtracting operations. Also, if
diagonals of K differ greatly in magnitude then in the Gauss-Jordan
celimination procedure used to solve the g'obal stiffness equation
(4.27), errors will arise. This is because in this elimination
procedure, a multiple of an entry in one row is subtracted from a
unmultiplied entry of another. Large multipliers occur if{ rows with
widely varying diagonals (which determine the multiplication factor) are
subtracted. Rounding off or truncating in this subtraction could cause
laige eriors. A well-conditioned global stiffness matrix K (one where
all entries are of similar magnitude) is desired in finite-element
analysis. It should be noted that this error is magnified if meshes with
nonhomogeneous material properties are analysed. If two elements have
considerably different aspect ratios and different material properties
the differing values of entries in their element stiffness matrices may
lead to an even more 1ll-conditioned global stiffness matrix.

A number of methods exist to estimate the error in a solution due
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to the finite precision on the computer. Because of these ertors an
approximate solution displacement matrix lNJ is being calculated and not
the true solution matrix U. The difference between the actual load
matrix and the product of the stiffness matrix and the resulting

approximate displacement matrix may be calculated and is the residual,

OR =R - RU . (7.1

The actual crror in the displacement, r (= U - U) can be found by

replacing R by KU, and is

r=K ' AR. (7.2)
Another method of estimating error 1s to determine the

condition number of the matrix K. Because of computer error, the actual

equation being solved is

R = (K + 8K)(U + &8U) (i 3y

Considering this equation, it may be shown (Bathe, 1982, pp. 485-486)
that in the final solution the displacements will he accurate to

significant digits where
s > t - log, (cond(K)) (71.4)

where t is the number of digits of precision of the computer. The

condition number is cond(K)= A: /3\1 where r)}x“ 1S an upper bound for the
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eigenvalues of the global stiffness matrix K and x; is a lower bound.
Considering (7.1) and (7.2), it is possible that the residual &R
may be small while the error in the solution, r, is large. A small
residual 1s thus a necessary but not sufficient requirement for an
accurate solution. Generally the condition number is much more important

than the residual i1n analysing error (Cook 1981, Bathe 1982).

7.2.3 Tests

Preliminary tests were carried out to determine the resolution
required for modelling. The tests involved shredding a regular block
into a set of meshes of differing resolutions. This block had similar
dimensions to the posterior incudal ligament, but because it was of
teqular geometry an analytical solution for a given load condition could
be calculated. The test involved i1mposing boundary conditions on the
block simlar to those occurring for the posterior incudal ligament in
the middle ear. The convergence of the finite-element solution towards
the analytical solution, as a function of mesh resolution, was observed.

The procedure for the test was as follows. A block of dimensions
337um x 1000um x 421um was used. (These are the very approximate average
dimensions of the lateral bundle of the posterior incudal ligament.)
Using the mesh generator this block was shredded into five different
meshes containing 95 (BLOCKLl), 144(BLOCK2), 560 {(BLOCK3), 740 (BLOCK{)
and 1203 (BLOCKS) elements. These meshes are illustrated in Figure 7.1.
Fiquie 7.2 1llustrates histograms of the aspect ratios for all meshes
before relaxation and for the three highest resolution meshes after
relaxation. The relaxation procedure could not increase the average
aspect ratio of BLOCKl (.276) or of BLOCK2 (,242) because no internal

nodes are present 1n these meshes. However, it increased the average




102

BLOCK1 BLOCK2 BLOCK3

(95 elements) (144 elements) (560 elements)

(direction
of
applied
force)

Y

INEAYRYAY,

ISNINING
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(fixed)
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VAN
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BLOCKA4 BLOCK5S

(740 elements) (1203 elements)

FIGURE 7.1: FIVE MESHES OF THE TEST BLOCK
An upwards shear force is applied to all nodes of face B
(not seen in the figqure). All nodes of the face opposite to
face B, face A (seen), are constrained to be fixed.
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FIGURE 7.2: ASPECT RATIO HISTOGRAMS FOR FIVE MESH
RESOLUTIONS OF THE TEST BLOCK
BLOCKl and BLOCKZ could not be relaxed as all nodes of these
meshes are surface nodes. Only one histogram is shown for each
of these meshes. Histograms for both the original and relaxed
state of meshes BLOCK3, BLOCK4 and BLOCKS are shown.
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aspect ratio of BLOCK3 from .397 to .466, of BLOCKd fiom .420 to .d58
and of BLOCK5 from .404 to .450. The shift 1s laigely due to the
relaxation of the inner core tetrahedra, 1increasing their approximate
average aspect ratio from 0.5 to a higher value.

A program FEMODEL. was written to apply appropriate boundary
conditions to the block. All nodes on one face of the block (face A,
seen in the figure) were fixed (constrained to =zero displacement) to
simulate the fixation of the posterior incudal ligament to the middle-
ear wall. An upwards shear force (perpendicular to the plane of the two
dimensional contours) was applied to all nodes on the face opposite to
face A of the block (face B, not seen in the figute). This shear foice
was applied to approximate the action of the incus on this ligament.
This force was distributed over face B as follows. For cach tiiangular
facet of face B the total force to be applied to face B was multiplied
by the ratio of the triangular facet area to the total area of face B to
give the force to be assigned to that facet. Each node on face B was
then given one third of the force assigned to each of the facets
attached to it. These concentrated forces were used to directly huild
the load matrix R.

The geometric and force modelling assumptions for this test are
gross oversimplifications of the true situation in the ear. However,
they give an inmitial estimate of the mesh resolution required to model
the ligament.

The maximum displacement cf the bhlock (L) 1n 1eoponae to g shoe
force (P) applied to face B can he calculated hy concidering the eoffect

of both flexural deformation (4, ) and shearing defroimation (4 ) (Popov,

f

1976). It 1s
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/P = (b, + b )/P

= 4L’ + 12L(1+4v) (7.5)
Ebh’ " BbhE

where E=modulus of elasticity = 2 x 10’ N/m?
v =Polsson’s ratio = 0.3
b=wi1dth of block = 421um

h=height of block

it

1000um

L=length of block 337um.

Thus the maximum deformation in the direction of the shear force, per
unit applied shear force, should be 143 um/N. The force application
condition 1n this test 1s essentially equivalent to fixing a rigid
plate to the face of application and applying the shear force to that
plate, 1.e. nodes on that face do not move relative to each other.
However because the force is applied to the finite-element mesh in such
a manner that the nodes may move with respect to each other, the nodes
on the upper edge of the block should exhibit displacements greater than
those calculated analytically and the displacements should decrease for

successively lower nodes.

7.2.4 Results

Figure 7.3 1llustrates the components in the direction of the
applied force of the displacements of all nodes of face B for all five
mesh resolutions. These displacements converge close to the analytical
solution as expected, indicating that the mesh-generation scheme and the
finite-element analysis procedure are suitable for this simple analysis.
The displacements do not converge monotonically. BLOCK2 1s slightly

stiffer than BLOCK1l even though BLOCK2Z has a higher mesh resolution.
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FIGURE 7.3: DISPLACEMENTS OF ALL NODES OF FACE B OF THE
TEST BLOCK FOR ALL FIVE MESH RESOLUTIONS
The displacements plotted are the components of the actual
displacements in the direction of the applied force. The solid
horizontal line at 143 ym/N indicates the analytical solution.
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However, BLOCK2 has a lower average aspect ratio and this possibly
explains why 1t 1s less able to model the true structural
displacements.

The residual values for all meshes were found to be practically
zero. More importantly, the number of digits of precision for the block
meshes was calculated, wusing equation 7.4, to be 14.0(BMESH1),
13.6(BMESH2), 13.1(BMESH3), 13.1(BMESH4) and 12.5(BMESH5), based on the
16-digit precision of the computer used. This degree of error is

insignificant in this analysis.

7.3 STATIC ANALYSIS OF THE POSTERIOR INCUDAL LIGAMENT

7.3.1 Tests

Once an 1dea of the accuracy of results for various mesh
resolutions was obtained, a static analysis was done on two meshes of
the lateral bundle of the posterior incudal ligament, PILLATL (483
elements) and PILLAT2 (992 elements). Figure 7.4 and Figure 7.5
1llustrate these meshes. Figure 7.6 shows histograms of the aspect
tatios of elements in these meshes before and after relaxation. The
average aspect ratio of PILLAT] increased from .238 to .246 while that
for PILLAT2 remained the same (.329). The relatively low average aspect
tatio of these meshes as compared to the block meshes results from the
fact that many of the slices in the meshes of this ligament have no
core. Tetrahedra of coreless slices generally have low aspect ratios.

The progiram FEMODEL applied requested boundary conditions to these
meshes. Boundary nodes of these meshes could be identified easily
because all two-dimensional contours of the ligament had been digitized
1n segments as described 1n section 5.4.2. All nodes on contour segments

cortesponding to the ligament ‘middle-ear wall boundary were constrained
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FIGURE 7.4: A MESH OF THE LATERAL BUNDLE OF THE
POSTERIOR INCUDAL LIGAMENT (PILLAT1, 483 elements).
Parts of the ligament/middle-ear wall boundary and the
ligament/incus boundary are visible i1n (a). An upwards force
is applied to all nodes of the ligament/incus boundary, shown
outlined in (b). All nodes of the ligament/middle-ear wall
boundary, shown in (c), are constrained to be fixed.
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FIGURE 7.5: A MESH OF THE LATERAL BUNDLE OF THE
POSTERIOR INCUDAL LIGAMENT (PILLAT2, 992 elements),
Parts of the ligament,middle-ear wall boundary and the
ligament, incus boundary are visible in (a). An upwards for-e
1s applred to all nodes of the ligament/incus boundary, shown
4 outlined in (b). All nodes of the ligament/middle-ear wall
s boundary, shown 1in (c), are constrained to be fixed.
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FIGURE 7.6: ASPECT RATIO HISTOGRAMS FOR TWO MESH RESOLUTIONS
OF THE LATERAL BUNDLE OF THE POSTERIOR INCUDAL LIGAMENT
Histograms for both the original and relaxed
state of meshes PILLAT1 and PILLATZ2 are shown.
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to be fixed. All nodes on contour segments corresponding to the
ligament/incus boundary had a force applied to them. This force was
applied 1n a direction perpendicular to the plane of the two-dimensional
contours (as was the case for the block) and was of the same magnitude
as the force applied to the block. The force was distributed over the
ligament/incus boundary in the same way as it was applied to the block
face. (For each triangular facet of the ligament/incus boundary the
total force to be applied to the boundary was multiplied by the ratio of
the triangular facet area to the total area of the boundary to give the
force to be assigned to that facet. Each node on the boundary was then
given one third of the force assigned to each of the facets attached to
1t.) It should be noted, however, that the facets corresponding to the
ligament/incus boundary are not necessarily parallel to the applied
force as was the case for the block.

These loading conditions are obviously not the true conditions in
the middle ear. In reality, the incus will apply a complicated force to
the ligament. Also, in the middle ear the ligament/incus boundary nodes
will not be allowed to move freely as 1in this test case, because they
will be constrained by the rigid incus. Boundary conditions will be
better modelled i1n the 1integrated model of the ossicles and soft

t 1ssues.

7.3.2 Results

Figure 7.7 1llustrates the components in the direction of the
applied force of the displacements of all nodes of the ligament/incus
boundary for both ligament meshes. Figqure 7.8 1llustrates the
displacement vectors of all nodes of the ligament/incus boundary for

both meshes. Although nothing can be concluded about the convergence
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FIGURE 7.7: DISPLACEMENTS OF ALL NODES OF THE LIGAMENT/INCUS
BOUNDARY FOR TWO MESH RESOLUTIONS
of the lateral bundle of the posterior incudal ligament.
The displacements plotted are the components of the actual
displacements 1in the direction of the applied force.
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a) The incus/ligament boundary is (b) The ligament/incus boundary is
oriented as in Figure 7.4b. oriented as in Figure 7.4a.

PILLAT1

R |

a) The incus ligament boundary 1s (b} The ligament,incus boundary 1is
oriented as in Figure 7.5b. oriented as in Fiqure 7.5a.

PILLAT2

FIGURE 7.8: DISPLACEMENT VECTORS OF ALL NODES OF
THE LIGAMENT/INCUS BOUNDARY
for both mesh resclutions of the lateral
bundle of the posterior incudal ligament.
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behaviour of these meshes because only two meshes have been analysed,
the finer mesh (PILLAT2) does exhibit larger nodal displacements than
does the courser mesh (PILLAT1), as expected. The total volume of the
ligament (2.55 x 107'° m?) is larger than that of the test block (1.42 x
1071% m® ). However, the total area of the constrained facets of the
ligament (PILLAT1 = 1.57 x 107’ m , PILLAT2= 1.51 x 10 7 m' ) is smalle:
than the total area of the constrained block facets (4.21 x 10 7 m' ) by
a factor of .373 for PILLAT] and .359 for PILLAT2. In addition the
ligament facets are not necessarily parallel to the applied force.
Because the same magnitude and direction of force 1s applied to the
ligament as to the block, the force per node of the ligament 1s
therefore greater. Thus the ligament mesh displacements, which are up to
more than twice as large as those calculated for the block, are of the
right order of magnitude.

The residual values for all meshes were found to be practically
zero. The number of digits of precision for the ligament meshes was
calculated, using equation 7.4, to be 12.5(PILLAT1) and 11.9(PILLAT2)
based on the 16-digit precision of the computer used. This degree of

error is insignificant in this analysis.

7.4 CONCLUSION

More analysis of the lateral bundle of the posterior incudal
ligament using meshes of finer resolution is required to determine the
value towards which the mesh nodal displacements aie converging. To do
this, further work is required to make 1t easier to generate mechesn, The
modelling scheme wused 1in this analysis 15 able to model  comples
structures in the mddle ear providing a successful mesh can hbe

produced. More study of, and work on the mesh generator 1s required to
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determine whether circumstances leading to unmeshable polyhedra can be
avoided. The next and final chapter summarizes possible methods of
improving the mesh generator and mentions possible improvements that
could be made to the modelling scheme in general. As well, it describes

work required to complete the modelling of the complex mechanical action

of the middle ear.
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CHAPTER 8

CONCLUSIONS AND FUTURE DEVELOPMENTS

8.1 INTRODUCTION

The research described in this thesis involved developing the tools
necessary for the finite-element modelling of the middle ear. This
chapter summarizes conclusions drawn while developing and testing these
tools and briefly describes work remaining in developing both a static

and dynamic middle-ear finite-element model.

8.2 MESH GENERATION

8.2,1 Introduction

Further work is required to make 1t easier to generate meshes of
structures of interest. Methods of improving the efficiency of the mesh

generator are discussed in this section.

8.2.2 Two-Dimensional Triangulation

The algorithm wused to triangulate two-dimensional contours
sometimes runs into problems. For instance, the outer ring of the
contour in Figure 8.la could not be successfully triangulated using the
triangulation routine discussed in section 6.3.1. This 1s hecause, when
making an ordered list of nodes for the inner core honndary, the
triangulation routine cannot determine in which direction to go when 1t
reaches the neck of the inner core. (This 1s because more than two edqges
extend from the node at the neck.) If no successful triangulation can be
performed as in this case the mesh generator triangulates the contour

as in Figure 8.1b. The resulting slice, shown in Figure 8.2a, which uses




(a)

(b)

FIGURE 8.1: TWO-DIMENSIONAL TRIANGULATION OF A CONTOUR
Figure 8.la 1llustrates a two-dimensional contour whose
core prevents a successful triangulation of the
two-dimensional ring. Figure 8.1b 1llustrates the
triangulation subsequently petrformed on the contour.
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Top view Bottom view

(a)

Top view Bottom view

(b)

FIGURE 8.2: A THREE-DIMENSIONAL SLICE OF THE
LATERAL BUNDLE OF THE POSTERIOR INCUDAL LIGAMELNIT
Figure 8.2a 1llustrates a slice constructed using the two-
dimensional contour of Figure 8.1, triangulated as in Fiqure
8.1b, as 1ts bottom contour. The mesh generator could not mesh
this slice. Fiqure 8.2b 1llustrates a slice constructed using
the same two-dimensional contours of Figure 8.2a. The
two-dimensional grid was slightly shifted and shrunk and
the resulting slice was successfully meshed.
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this contour as 1ts bottom contour 1s impossible to mesh. A better two-
dimensional trianqulation routine 1s required that can handle this sort
of problem. A more robust two-dimensional algorithm has already been
developed for triangulating eardrum meshes (Funnell et al., 1987) and
can be adapted for the mesh generator.

At present this two-dimensional triangulation problem can be
corrected 1n a few cases by shifting and/or shrinking the grid of a two-
dimensional contour so that a successful triangulation may be
performed. This results in a meshable slice as shown in Ficure 8.2b. The
three-dimensional core prisms produced for this slice are not right-
angled prisms but this does not necessarily present a problem for the

mesh generator.

8.2.3 Aspect Ratio

As mentioned 1in section 6.4.5, a minimum aspect ratio limit was
found to be required in the mesh generation process. For instance, a
minimum aspect ratio limit of 0.2 was used to generate both ligament
meshes. More work 1s required to determine a systematic method of
determining an optimal aspect ratio lower limit, 1.e., one that 1s low
enough not to restrict too many possible topological cuts, but high
enough to avoid unmeshable polyhedra as mentioned above. A different
algorithm was tried to determine 1f unmeshable polyhedra could be
avoirded by generating, at each cut, the tetrahedron with the highest
aspect tatio possible. Before a cut was made using the edge operator,
all possible edges where this cut (on/d be made were noted, and then the
cut producing the best shaped tetrahedron was actually made. Thus the
tesulting mesh, 1f successful, would have a tuagh average aspect rat:io.

Unfortunately, this algorithm was not always capable of successfully



meshing slices (even when use of the original algorithm could). Possibly
this algorithm should also foirce all cuts performed using the vertes
operator (in addition to the edge operator) to also have as high an
aspect ratio as possible. More study is required to determine what 1
the best strategy to be used to generate a mesh. Possibly this best
algorithm would be a compromise between the original algorithm and the
one attempted above.

One of the factors limiting the efficiency and possible accuracy
of the finite-element analysis performed 1s the relatively low average
aspect ratio of the meshes used. As the resolution of a mesh increases,
an increasing percentage of the mesh 1s made up of core tetrahedia.
Using the present algorithm, these core tetiahedra are tormed hy
constructing right-angled prisms from overlapping two-dimensional cores.
When these cores are shredded, a large number of tetiahedia with solid
right angles are formed. This sort of tetrahedron has an aspect ratio of
approximately 0.5 and thus sigmificantly weights the aspe t tatio
average of a mesh. Surrounding tetrahedra of the ring have arn averaqge
aspect ratio lower than this and thus the prospect of a gonod overall
aspect ratio 1s poor.

Ideally the core tetrahedra should have as high an aspert ratio as
possible. This could be accomplished by modifying the mesh generation
algorithm such that regular grids on adjacent two-dimensional contours
are alternately shifted horizontally with 1espect to carh other. The
amount of shift should be calculated so that the tetiahedira formed fyom
the resulting prisms all have internal solid anqgle< as equal  a
possible. In this manner the average aspect tatio of the core would b
as high as possible. This modification 1s not critical to the successful

operation of the generator but it would help to increase 1ts efficiency.

120




121

The accuracy of the finite-element analysis performed depends more on

the worst-shaped tetrahedron in the mesh.

8.2.4 Bagdygggh Minimization

The global stiffness matrix K for a structure with many degrees of
freedom can be quite large and require much computer storage.
Fortunately this matrix is symmetric in structural finite-element
analysis. Thus, only the lower diagonal portion of this matrix need be
stored. This matrix also turns out to be banded which means for

entries of column j

k.,=0f0[1>3+hbp\ (8.1)
where hb 1s the half bandwidth of K and 2hb,_ + 1 is the bandwidth of K.
Only hb  + 1 elements of column j need be stored. The bandwidth is
determined by the differences between the global node numbers of nodes
within elements and can be minimized by an appropriate global node-
numbering scheme (Funnell & Laszlo, 1978). At present the mesh
generator numbers global nodes in order of increasing Z coordinate
value, then Y coordinate value and then X coordinate value. This is not
optimal 1f the dimension in the Z direction is much greater than that in
the X dimension. A node renumbering scheme that numbers the nodes in

order of 1ncireasing structural dimension should be applied to finite-

element meshes so that global node number difference within an element

can be kept as small as possible.

8...5 Extended graphics

It 1s curtently very difficult to analyse exactly what is happening




as an object is being meshed. At present, analysis of unsuccessful
meshing attempts involves inspecting meshed slice files produced by the
generator visually using the display program SMF and then inspecting a
text recording file to see how the meshing occurted. This 1s itather
tedious. What 1s required 1s a display program that could display a
slice (after the mesh generation process is complete) as 1t had been
meshed. The user could then inspect how the generator had meshed a slice

and interactively determine any problems that might have occutied.

8.3 COMPUTING POWER

One of the major difficulties in the analysis peiformed 1s the
large amount of computer resources required, both for mesh generation
and finite-element analysis. Both the mesh-generation ptocedure and the
finite-element analysis require considerable computer piocessing time
and memory. This analysis will be 1increasingly effective as more
powerful computers become available.

Parallel computers break up a task and perform subtasks 1n
parallel. This sort of computer would he capable of performing mesh
generation and finite-element analysis more quickly than traditional
computers that perform an entire task serially. An analysis of just how
the mesh generation and fainite-element algorithms could be separated
into subtasks is required. One task that could bhe <eparated 1into
subtasks is the meshing of slices 1in the mesh generator. Dyfferent

slices of a structure could be meshed at the same time,

8.4 ASSUMPTIONS
Finite-element analysis has been described as an  art form

(MacNeal, 1987). To properly analyse a structure using finite elements,
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an understanding of all assumptions and approximations made along the
way 15 required.

The model developed at present is a linear, homogeneous, isotropic
model of a ligament whose geometry is only approximately represented.
These approximations are due to artifacts produced when preparing the
histological slides and due to the 1lack of an absolute alignment
reference 1n this data. Errors in tracing and errors produced when
triangulating contours of outlines of structures of interest also
contribute to the geometrical approximations. As the modelling procedure
1s refined, some of these assumptions and approximations can be reduced

but 1t 1s critical that their effects be analysed and understood.

8.5 MIDDLE-EAR MODELLING

The intended direction of future work on the middle-ear model is as
follows. Once the lateral bundle of the posterior incudal ligament has
been analysed, the other structures required for the static model of the
micddle ear must be analysed in a similar fashion. Once these meshes have
hbeen produced, meshes of all structures will be integrated into one mesh
tepresenting the middle-ear ossicles and soft tissues.

Imitrally a static analysis will be performed by loading various
points of the manubrium. Next an analysis of undamped natural
frequencies will be done to indicate what frequencies will probably be
of 1nterest 1n a dynamic model. Next, both the damped and undamped
frequency response will be analysed.

As the theoretical work on the middle ear proceeds, experimental
work will be done by collaborators S.M. Khanna (Department of

Otolaryngology, Columbia University, New York) and W.F. Decraemer

(Laboratory of Experimental Physics, University of Antwerp, Antwerpen,




Belgium) to validate the model. These experiments may involve
stimulating directly various points on the manubrium to bypass the
effect of acoustical stimulation of the eardrum. Also the stapes may be
fixed or freed from the oval window to eliminate the effects of the
cochlea. Detailed measurements and analysis of vibration modes of the
manubrium can be made.

As this research proceeds results should help 1n iefining the
eardrum model. Dynamics of the ossicular axis of rotation will be of
great help in determining the loading of the eardrum. The ossicle and
soft-tissue model will eventually be integrated with the eatdium model.

The pattern of eardrum excitation 1s important 1n determining the
loading of the combined eardrum-middle ear model. Modelling of the sound
pressure variations at the eardrum is needed. An acoustical finite-
element analysis of the ear canal will be performed in this lab in order
to determine these variations.

The finite-element models of the ear canal, eardrum and middle eai
should add significantly to the understanding of the ear external to the

cochlea.
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