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tympanic-membrane vibrations
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Abstract
Early detection of hearing loss is important so it can be addressed in a timely manner. Current newborn

hearing screening methods produce high false-positive rates which are attributed to transient conditions

in  the  external  and  middle  ear  in  the  first  48  hours  after  birth.  Tympanometry  (acoustical  input

admittance measurement in the presence of a range of quasi-static pressures) is a promising tool for

characterizing  middle-ear  status  in  newborns  but  their  response  to  tympanometry  is  not  well

understood.  Tympanometry  involves  large,  nonlinear  deformations;  viscoelastic  (time-dependent)

effects; and complex dynamic responses. The goal of this study is to combine these three features in a

dynamic nonlinear viscoelastic model. The constitutive equation of this model is a convolution integral

composed of a Mooney-Rivlin hyperelastic model and an exponential time-dependent Prony series with

six  time  constants. Material  properties  are  taken  from previous  measurements  and  estimates.  The

tympanic membrane contributes to the overall response more than other middle-ear components do and

those other components are greatly simplified in this model. The tympanic membrane is assumed to be

homogeneous  and  nearly  incompressible.  The  loading  conditions  included  low-amplitude  sound

pressures;  high  quasi-static  pressures;  and  combinations  of  high  quasi-static  pressures  with  low-

amplitude  sound  pressures,  corresponding  to  those  involved  in  tympanometry.  Simulations  were

performed  with  two  different  finite-element  solvers  and  we  report  simulated  displacements  and

vibrations in the frequency and time domains for the different loading conditions. Results from the two

finite-element solvers were compared and were similar. The simulation results were compared with

measured  data  from  experimental  animals.  In  response  to  high  quasi-static  pressures,  the  model
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replicates  the  asymmetrical  effects  of  positive  and  negative  pressures  on  the  displacement;  the

hysteresis  of  the  displacement;  and  the  frequency  dependence  of  the  hysteresis.  The  model  also

replicates the differences between the peak-admittance magnitudes and the pressures at  which they

occur for low-amplitude vibrations during negative and positive sweeps of high quasi-static pressures.

Our dynamic  nonlinear  viscoelastic  model  of  the middle ear  permits  quantitative  insights  into  the

middle ear’s response to different loading conditions and will help to establish improved applications

of tympanometric measurements in newborns. 
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Modélisation par éléments finis des

vibrations de la membrane tympanique

mise en pression quasi statique

Résumé
La détection précoce de la perte auditive est très importante pour une intervention précoce appropriée.

Les  méthodes de dépistage de perte d’audition actuelles pour les nouveau-nés produisent des taux

élevés  de faux positifs  que l’on attribue au régime transitoire  qui  prévaut  dans l'oreille  externe et

l’oreille  moyenne  dans  les  premières  48  heures  postnatales.  La  tympanométrie  (la  mesure  de

l’admittance d'entrée acoustique en présence de pressions quasi statiques) est un outil prometteur pour

évaluer l'état de l'oreille moyenne chez les nouveau-nés, mais, leur réponse à la tympanométrie n'est

pas  bien  comprise.  La  tympanométrie  comprend  de  grandes  déformations  nonlinéaires;  des  effets

viscoélastiques  (dépendants  du temps);  et  des  réponses  dynamiques  complexes.  L’objectif  de  cette

étude est de combiner ces trois caractéristiques dans un modèle dynamique viscoélastique nonlinéaire.

L’équation  constitutive  de  ce  modèle  est  une  intégrale  de  convolution  composée  d’un  modèle

hyperélastique Mooney-Rivlin et de la fonction exponentielle dépendante du temps de la série de Prony

avec six constantes temporelles. Les propriétés des matériaux sont déterminées avec des mesures et des

estimations antérieures. La membrane tympanique contribue davantage à la réponse globale que les

autres composantes de l’oreille moyenne et ces autres composantes sont simplifiés dans ce modèle. La

membrane tympanique est supposée homogène et quasi incompressible. Les conditions de chargement

comprenaient  des  pressions  sonores  à  faible  amplitude;  pressions  quasi  statiques  élevées;  et  des

combinaisons  de  pressions  quasi  statiques  élevées  avec  des  pressions  sonores  à  faible  amplitude,

correspondant à celles impliquées dans la tympanométrie. Des simulations ont été effectuées avec deux

solveurs d’éléments finis différents et nous signalons les déplacements simulés et les vibrations dans
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les domaines de fréquence et du temps pour les différentes conditions de chargement. Les résultats des

deux solveurs à éléments finis ont été comparés et étaient similaires. Les résultats de la simulation ont

été  comparés  aux données  expérimentales  provenant  d’animaux.  En réponse à  des  pressions  quasi

statiques élevées, le modèle réplique les effets asymétriques des pressions positives et négatives sur le

déplacement; l’hystérésis du déplacement; et la dépendance en fréquence de l'hystérésis. Le modèle

réplique  également  les  différences  entre  les  magnitudes  d'admission  maximum  et  les  pressions  à

laquelle elles se produisent pour des vibrations de faible amplitude lors de balayages négatifs et positifs

de  pressions  quasi  statiques  élevées.  Nos  modèles  numériques  dynamiques  viscoélastiques  et

nonlinéaires de la membrane tympanique fournissent une piste pour étudier la mécanique de l’oreille

moyenne en réponse à différentes conditions de chargements et, en particulier, établissent les bases

pour améliorer l’application clinique des mesures tympanométriques chez les nouveau-nés.
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Chapter1: Introduction

1.1 Motivation
Hearing loss is one of the most common birth defects – about 3 in 1000 babies are born with some

degree  of  hearing  impairment.  Early  detection  of  hearing  loss  accompanied  by  appropriate  early

intervention is important in order to avoid problems associated with language development that affect

daily  communication,  educational  achievement,  psychosocial  development,  and  quality  of  life  in

general. Currently, otoacoustic emission (OAE) and/or auditory brainstem response (ABR) tests are

employed  as  screening  tools  in  newborn  hearing  screening  programs.  However,  they  have  high

false-positive rates that are often attributed to transient conditions in the middle ear due to fluid and

other residual material in the first 48 hours after birth, which conflicts with the desire for in-hospital

screening and shorter hospital stays. 

Admittance measurement is a promising tool for assessing middle-ear status in newborns. In this

method, the acoustical input admittance of the outer and middle ear is measured in response to an

acoustical  excitation,  which  can  be  either  single-frequency  or  wideband.  Tympanometry  provides

additional information by introducing a range of quasi-static air pressures in the ear canal along with

the acoustical excitation. Low-frequency tympanometry with a single probe-tone frequency provides

easy-to-interpret results  for adult ears,  but the results in newborns are very different from those in

adults.  Differences  in  the  interpretation  of  results  in  adults  and  newborns  may  be  attributed  to

anatomical and physiological changes during maturation. More information can be obtained quickly

over a broad frequency range by using a wideband stimulus, but the wideband admittance response of

the infant ear is  even less well  understood. Furthermore, many procedural variables,  including the

direction  and rate  of  the quasi-static  pressurization  and the  frequencies  of  the acoustical  stimulus,

influence tympanometric results. It is unclear exactly  how these variables affect tympanometry and
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what their clinical significance is. 

Understanding and predicting the response of the middle ear to tympanometry can be facilitated by

developing numerical models of the middle ear. Such models allow us to study the effects of different

parameters quantitatively to get a better understanding of their roles. Different approaches to modelling

the  middle  ear  were  reviewed  by Funnell  et  al.  (2012) and are  discussed  briefly  in  section 3.3.3.

Finite-element models allow us to connect the detailed anatomical and mechanical properties of the

middle-ear  structures  to  the  physiological  characteristics  of  the  system.  In  recent  years,  the

finite-element method  has  been  increasingly  applied  in  modelling  of  the  middle  ear  due  to  the

increasing accessibility of finite-element preprocessing programmes and solvers. 

1.2 Objectives
Tympanometry involves both nonlinear responses and viscoelastic (time-dependent) effects. To the best

of our knowledge, no previous numerical models have addressed the dynamic response of the middle

ear  in  the  presence  of  both  quasi-static  pressures  and  acoustical  stimuli  (comparable  to  those  in

tympanometry) while accounting for both nonlinearity and viscoelasticty. The research conducted here

forms part of a research programme that has as its goal an improved understanding of tympanometry in

newborns.  In  this  research,  an animal  model  (the Mongolian gerbil  ear)  is  used because it  allows

comparison  with  experimental  measurements  that  are  not  possible  with  human  ears. The  overall

objective of my thesis is to develop a better quantitative understanding of the mechanical behaviour of

the gerbil middle ear, particularly its response under conditions involving both nonlinear viscoelasticity

and linear dynamics as found in tympanometry. The specific objectives of my thesis are listed below:

1. Development of a dynamic, nonlinear viscoelastic model for the gerbil middle ear, with the

material properties of the different components estimated from previous work.

1. Investigation of the behaviour of the model in conditions relevant to tympanometry, involving

2



the presence of large quasi-static ear-canal pressures with and without the presence of a sound

stimulus. 

2.  Comparison of the model results with experimental measurements. 

1.3 Thesis outline
Chapter 2 of the thesis is a basic overview of the auditory system with emphasis on the anatomy of the

middle ear. Chapter 3 consists of a literature review of concepts and previous studies related to the

present  work.  The  methods are  presented  in  Chapter 4,  followed  by  our  results in  Chapter 5.  A

summary of our findings, a discussion of potential future work and the significance of our research are

presented in Chapter 6. 
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Chapter 2: The auditory system

2.1 Introduction
The auditory system is designed to collect sound signals, transform and amplify them, and channel

them to the brain via neural pathways. In general, the vertebrate peripheral auditory system consists of

three sections: the outer, middle and inner ear (Fig. 2–1). Detailed descriptions of the anatomy of the

ear can be found in standard anatomy textbooks (e.g., Standring, 2008, chaps. 36 & 37). In this chapter

we include a brief description of the anatomical characteristics of each part of the human ear, with a

focus on the middle ear as it is the most relevant to this research. We also highlight the similarities and

differences between the human middle ear and the gerbil middle ear.

2.2 Anatomy of outer ear
The outer ear consists of the auricle (or pinna) and the external acoustic meatus (or outer ear canal). 
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Fig. 2–1: Overview of he human ear anatomy (Adapted from:
http://audilab.bme.mcgill.ca/AudiLab/teach/me_saf/me_saf.html as of 2017 August 2, after

Cull (1989)) 



The pinna has a quite complex anatomy and its growth continues until approximately 9 years of age

(e.g., Saunders et al., 1983, p. 4).

The ear canal is an air-filled tube that extends from the pinna to the TM. In adults, its length is

approximately  25 mm (Anson and Donaldson,  1992,  p.  146).  The  adult  ear  canal  has  an  S-shape

curvature; it has a bony wall in its inner two-thirds and a soft-tissue wall in the outer one-third (Abdala

& Keefe, 2012).

 The postnatal development of the ear canal continues to the age of about 7 years (e.g., Saunders et

al., 1983, p. 4). The canal is shorter in infants than in adults and is said to be straighter. The cross-

section of the canal at birth is approximately oval and much narrower than that of the adult. The ear

canal of the newborn is surrounded by soft tissue. The surrounding bony wall is developed during “the

first 3 years of age” (e.g., Eby & Nadol, 1986).

2.3 Anatomy of middle ear
The middle ear  is  an air-filled space located between the ear  canal  and the Eustachian tube.  It  is

bounded laterally by the tympanic membrane (TM), more commonly referred to as the eardrum and

medially by the stapes footplate. The ossicles and their suspensory attachments are located within the

middle-ear cavity. This cavity is connected to the throat by the Eustachian tube, which is normally

closed and which equalizes the pressures on the two sides of the TM when it is opened.

2.3.1 Tympanic membrane 

The TM is a very thin structure, approximately conical in shape with an apex pointing towards the

middle-ear cavity.  Its longest and shortest diameters measure between 9 to 10 mm and 8 to 9 mm,

respectively, in adults (e.g., Lim, 1970; Anson & Donaldson, 1973, p. 147). Its periphery is thick and

forms a fibrocartilaginous ring.
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The  TM has  two components,  the pars  tensa  (PT)  and  the pars  flaccida  (PF)  (Fig. 2–2).  The  PT

represents the larger portion of the TM, and is generally stiffer than the PF (e.g., Dirckx et al., 1998).

The PF represents approximately one-tenth of the TM. The motion of the PF appears to be more or less

independent of the PT and it is deformed easily by small static pressure differences (e.g., Teoh et al.,

1997;  Dirckx & Decraemer,  2001).  Both  the PT and PF are composed of three layers:  the lateral

epidermal  layer,  the  intermediate  lamina  propria  and  the  medial  muscosal  layer  (Fig.  2–3).  The

epidermal layer is similar in both areas of the TM and is a specialized type of skin that does not contain

any glands or hair follicles, and it can migrate laterally. This latter phenomenon plays an important role

in the self-cleaning ability of the ear canal. The mucosal layer is thin and is a continuation of the

mucosal lining of the middle-ear cavity. The lamina propria represents the main difference between the

PT and the PF. It has four distinct parts in the PT: subepidermal connective tissue, radial fibres, circular

fibers and  submucosal  connective  tissue  (see  Fig.  2–3). Collagen  types  II  and  IV are  the  major

constituents of the fibres in the fibrous layer of the PT. In the PF, the lamina propria consists mostly of

loose connective tissue with elastin and collagen fibres. The PF is  much thicker than the PT. The

thickness of the PF varies between 0.08 mm and 0.60 mm in adults while the mean thickness of the PT

varies between 0.04 mm and 0.12 mm (Kuypers et al., 2006).
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Even though the TM develops in the embryo and reaches its adult size before birth, it still undergoes

morphological  changes  during  post-natal  development.  Ruah  et  al.  (1991) reported  age-related

structural changes of the TM that are similar to the changes observed in skin. The TM in newborns is

significantly thicker than that of adults, with a thickness ranging from 0.4 to 0.7 mm in the posterior-

superior region, 0.7 to 1.5 mm in the umbo region and 0.1 to 0.25 mm in other regions. The TM in

adults lies at an angle of about 45° with respect to the roof of the canal while in newborns it is nearly in

line with the canal roof (e.g., Bailey, 2001). The bony tympanic ring does not completely develop until

the age of about 2 years (e.g., Standring, 2008, p. 624).

2.3.2 Ossicles

The middle ear contains an ossicular chain made up of three interconnected bones, called the malleus,

incus and stapes. The malleus (Latin ‘hammer’), the most lateral, is the largest of the ossicles. It is

shaped somewhat like a hammer. The malleus measures between 7.6 and 9.1 mm in length (e.g., Wever

& Lawrence, 1954, p. 417). It is composed of a head, a neck and three processes: the lateral process,

the anterior process and the manubrium. The head represents the large oval-shaped upper part that is

7

Fig. 2–3: Layers of the PT (Source: http://audilab.bme.mcgill.ca/AudiLab/teach/me_saf/me_saf.html as
of 2017 June 5, after Lim (1968))



attached to the incus.  The head continues as the neck which projects inferiorly to the manubrium.

Between the neck and the manubrium, lateral and anterior processes emerge. Both the lateral process

and the inferior tip of the manubrium connect tightly to the PT. 

The incus (Latin ‘anvil’), the middle bone in the ossicular chain, is said to be shaped like an anvil

and consists of a body and the posterior, long and lenticular processes. The incudomallear joint is a

synovial joint between the malleus head and the incus body. The short process of the incus extends into

the posterior incudal recess, and is attached to the cavity wall by the posterior incudal ligament. The

long process ends in a small region called the lenticular process. The incudostapedial joint, another

synovial joint, is located between the lenticular plate and the head of the stapes. The lengths of the

short  and long processes of the incus  are  approximately 5 and 7 mm, respectively  (e.g.,  Wever  &

Lawrence, 1954, p. 417).

The stapes is the smallest and most medial bone in the ossicular chain and looks like a stirrup. It

includes  a  head,  a  neck,  two crura (or  legs,  posterior  and anterior)  and a  footplate. The stapedial

annular ligament attaches the footplate to the oval window of the cochlea. The two crura diverge from

the neck and connect at the ends of the flat oval footplate. The anterior crus is generally straighter than

the posterior crus, and both vary in thickness and curvature across individuals. The surface area of the

footplate is about 2.3 – 3.75 mm2 (e.g., Wever & Lawrence, 1954, p. 417).

The ossicles are completely formed prenatally but continue to mature after birth (e.g., Saunders et

al., 1983, p. 10).

2.3.3 Ligaments and muscles

The ossicles are supported by ligaments and muscles. The TM is connected to the malleus along the

length of the manubrium by a ligament. Three ligaments are attached to the malleus, called the anterior,

lateral  and  superior  mallear  ligaments.  The  incus  is  attached  to  the  tympanic  cavity  wall  by  the
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posterior and superior ligaments. The posterior incudal ligament is composed of a medial bundle and a

lateral bundle (Winerman et al., 1980). As mentioned above, an annular ligament attaches the footplate

of the stapes to the oval window. Some authors (Proctor, 1989) have discussed the existence of other

ligaments such as the posterior mallear ligament.  The ligaments are made of collagenous tissue that

undergoes morphological changes from newborn to adult (e.g., Williamson et al., 2001). 

The movement of the ossicles is influenced by two striated skeletal muscles in the middle-ear cavity:

the stapedius muscle and the tensor tympani  muscle.  The stapedius muscle represents the smallest

muscle of the body, with an approximate length of 6.3 mm (e.g., Wever & Lawrence, 1954, p. 417). It

connects  the  stapes  head  to  the  mastoid  wall  of  the  tympanic  cavity.  The  tensor  tympani  is

approximately 25 mm in length (e.g., Wever & Lawrence, 1954, p. 417). It attaches the handle of the

malleus to the anterior wall of the tympanic cavity. Both muscles are fully developed before birth, but

the attachments mature about one week after birth  (e.g., Saunders et al., 1983, p. 10). These muscles

work to reduce the response of the middle ear by constraining the motion of the ossicles, and at high

sound levels they contract to produce reflex effects to protect the inner ear. In addition to these muscles,

smooth muscle fibres have been found in the fibrocartilaginous ring (Kuijpers et al., 1999). The muscle

fibres are oriented radially and fill the gaps between the blood vessels while extending toward the TM.

It has been hypothesized that the role of these fibres may be to “regulate tympanic membrane tension

and control blood flow” (Yang & Henson, 2002). 

2.3.4 Middle-ear cavity

The middle-ear cavity is an irregular set of inter-connected air-filled cavities. This space consists of

four parts:  tympanic cavity,  aditus ad  antrum, mastoid antrum and mastoid air cells. The tympanic

cavity is situated between the TM and the inner ear, and contains the ossicular chain. It is also the site

of the opening of the Eustachian tube. The aditus ad antrum is located at the posterior-superior portion
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of the tympanic cavity, and connects to the antrum. The antrum is situated at the base of the skull

behind the ears and connects to the mastoid air cells. These air cells are numerous irregular spaces

formed by the mastoid bone, and they have different sizes and numbers in different individuals. In

general the mastoid air cells contribute the most to the volume in the middle-ear cavity, followed by the

volume of  the  tympanic  cavity.  The  air  volume  in  the  middle-ear  cavity  has  a  large  intersubject

variability, ranging from 2000 to 22000 mm3 in adults (Molvaer et al., 1978). The newborn middle-ear

cavity is much smaller than in adults with an approximate volume for the tympanic cavity equal to

330 mm3 (Ikui et al., 2000). The newborn mastoid volume is very small. The volume of the middle-ear

cavity increases postnatally until the teenage years (e.g., Saunders et al., 1983, p. 11). The mastoid bone

begins to grow in all three directions at approximately one year after birth, influencing the middle-ear

function (Eby & Nadol, 1986).

2.4 Anatomy of inner ear
Unlike the other two parts of the ear, the inner ear is liquid-filled. Its role is to convert mechanical

energy into action potentials. Its main components are the cochlea, vestibule and semicircular canals.

The communication of the inner ear with the middle ear is established via two openings: the oval

window and the round window. The vestibule is located medial to the oval window. It houses the utricle

and saccule.  The utricle  detects  linear accelerations andhead-tilts  in the horizontal  plane while the

saccule detects head-tilts in the vertical plane, and both provide information to the brain about head

position when it is not moving. Posterior to the vestibule are the semicircular canals, oriented at right

angles with respect to one another, which detect angular acceleration. Anterior to the vestibule is the

snail-shaped  organ  called  the  cochlea  which  is  responsible  for  receiving  the  sound  waves  and

converting them into electrical impulses to transmit to brain for neural processing.

When the stapes footplate vibrates in and out of the oval window, it  displaces the liquid in the
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cochlea. Reacting to the intracochlear pressure resulting from footplate vibration, the round-window

membrane moves in and out of the cochlea, with a phase opposite to that of the footplate. The pressure

of liquid inside the cochlea causes the basilar membrane, stretched along the cochlear duct at the base

of the organ of Corti,  to vibrate up and down. This creates a shearing force between the tectorial

membrane and the basilar membrane. Within the organ of Corti reside the sensory hair cells. In the

mammalian cochlea, there are two distinct types of hair cells: inner hair cells and outer hair cells. The

vibrations at each site along the basilar membrane deflect the stereocilia of the sensory hair cells. Thus,

the sensory hair cells are depolarized, thereby sending signals to the brain via cranial nerve VIII.

2.4 Gerbil middle ear 
The use of experimental animals in medical research is sometimes the only possible way to obtain data

involving  experiments  that  would  have  been  very  invasive  and harmful  if  performed  on  humans.

Experimental animals offer a number of additional advantages as well: in vivo or recently euthanized

animals are fresher than the human cadavers available for research, and there is less subject-to-subject

variability than in humans. Over the last few decades, Mongolian gerbils (Meriones unguiculatus) have

been very popular in middle-ear research (e.g., von Unge et al., 1991, 1993; Teoh et al., 1997; Dirckx et

al., 1998; Rosowski et al., 1999; Dirckx & Decraemer, 2001; Dong & Olson, 2006; Ravicz et al., 2008;

Maftoon et al., 2014). Gerbils are an excellent candidate  for auditory research for their affordability,

easily approachable middle-ear structures, and relatively large eardrum to body size ratio. 
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The anatomy and function of the gerbil middle ear are generally similar to those in humans except for

the following aspects:

1. The human middle ear is larger than the gerbil middle ear, as shown in Fig. 2–4. 

2. The gerbil middle ear is encased by an inflated bony shell called the bulla.

3. The gerbil middle ear has a relatively large PF with a PF to PT area ratio estimated to be 0.11,

compared to 0.027 in humans (Teoh et al., 1997).

4. The gerbil TM has less collagen and a lower density than the human TM (Chole & Kodama,

1989).

5. Unlike the case in the human ear, the gerbil manubrium is tightly connected to the PT along its

entire length. 

6. In gerbil the anterior process of the malleus is longer than in the adult human middle ear and is

connected to the middle-ear cavity wall by a direct bony attachment, rather than the anterior

mallear ligament found in humans. 

7. The posterior incudal ligament in gerbils is  one entity surrounding the  short process of the

incus, compared with the human posterior incudal ligament that is composed of two bundles. 
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Fig. 2–4: Sizes of human and gerbil middle ears are compared. Air spaces in the ear: (a)
hypotympanum; (b) tympanic cavity; (c) epitympanic recess; (d) aditus; (e) mastoid cells; (f) ear

canal; (g) hypertrophied bulla. (after Funnell,
http://audilab.bme.mcgill.ca/AudiLab/teach/me_saf/me_saf.html, as of 2017 June 9)



Chapter 3: Literature review 

3.1 Introduction
In this chapter, we present a review of concepts and previous studies relevant to our research. In section

3.2,  tympanometry  is  explained.  In  section 3.3,  a  review  of  the  finite-element  method  and  its

application in auditory research is presented. A review of previous experimental studies on the middle

ear is included in section 3.4. 

3.2 Tympanometry
Tympanometry is a promising clinical tool for evaluating the status of the middle ear in newborns. It

measures acoustical input admittance in the presence of a range of static pressures. In section 3.2.1, we

introduce the principles of tympanometry.  We present the clinical applications of tympanometry in

section 3.2.2 and summarize the use of tympanometry in newborns in section 3.2.3. 

3.2.1 Principles of tympanometry

Immittance is a term used to refer to both impedance  Z and admittance  Y. Impedance (measured in

ohms) is a measure of the opposition of a system to forces, and admittance (measured in mhos) is the

reciprocal of impedance. In acoustics, the admittance of a system is defined by

Y=U /P , (3–1)

where U and P are the volume velocity and the acoustical pressure, respectively, at the point where the

measurement is performed. Volume velocity is the volume of fluid (e.g. air) that passes through a unit

surface area per unit time. 

The impedance is defined by 

Z=1 /Y . (3–2)
Admittance and impedance are complex numbers, which can be expressed either by magnitude and

phase or by real and imaginary parts. Admittance can be expressed as
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Y=G+ jB (3–3)
where G is the conductance, B is the susceptance and j=√−1 . The unit of acoustical admittance is the

mho (m3/Pa.s).  In tympanometry, in addition to the acoustic stimulus, a pump generates quasi-static

pressures ranging generally between −400 and +400 daPa (−4 and +4 kPa), going from negative to

positive pressures or vice versa. (The unit usually used in clinical tympanometry for pressures is daPa

and 1 daPa=10 Pa.) 

Fig. 3–1 is an illustration of a tympanometer. A hand-held probe is inserted into the ear canal and

forms a leak-free space from the probe tip to the TM. The probe is comprised of three components: a

small sound source , a microphone and a pump. The sound source delivers the acoustic stimulus to the

ear canal through a tube, and the pump generates varying quasi-static pressures within the sealed canal.

The  microphone  measures  the  sound  pressure  level  at  the  probe-tip  location.  The  voltage  at  the

microphone output is monitored to control the sound pressure in the ear canal. The voltage values are

then converted to an equivalent admittance value.

Fig. 3–1: Shematic diagram of a tympanometer (after Funnell,
http://audilab.bme.mcgill.ca/AudiLab/teach/me_obj/me_obj009.html, as of 2017 August 18)

Tympanometry  is  widely  used  to  assess  middle-ear  status.  It  was  introduced into  clinical  practice

during the 1970s  (Stach,  2008, p.  314) and its  clinical  use is  established in adults.  The acoustical
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admittance is an indication of the amount of sound energy absorbed and reflected by the TM. 

 The  middle  ear  can  be  thought  of  as  a  system composed  of  mechanical  masses,  springs  and

dampers.  The  admittance  of  this  system  is  frequency-dependent;  it  is  stiffness-controlled  at  low

frequencies and mass-controlled at high frequencies. Damping plays an important role at mid to high

frequencies.

The goal of acoustical immittance measurement is to characterize the middle ear, but the probe tip

cannot be placed at the TM and is instead placed near the entrance of the ear canal. Consequently, the

admittance measured at the probe tip (Ya) (i.e., “a” for acoustical) is the sum of the admittance of the

ear-canal volume (Yec) and the admittance at the TM (Ytm). If we know Yec, we can thus calculate Ytm.

Terkildsen and Thomsen (1959) suggested that Yec can be measured independently when a large static

pressure (e.g., 200 daPa) is applied. At such a high pressure, the TM and the other middle-ear structures

are pushed almost to their limits and can no longer vibrate very much. Thus, all (or at least most) of the

energy of the probe tip is reflected at the surface of the eardrum, making Ya≈ Yec. In Fig. 3–3B, Ya is

equal to 1 mmho at 200 daPa. If the volume of the ear canal changes, Ya shifts higher or lower on the y

axis without altering the shape of the tympanogram. Several studies (e.g., Shanks & Lilly, 1981) have

shown that 200 daPa is not actually sufficient to drive the TM admittance to zero. 
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Fig. 3–2 Two methods of analyzing 226-Hz tympanograms. A: A qualitative analysis of tympanogram
shape, designated as Type A B, or C (Strain & Fernandes, 2015). B: A quantitative analysis of

equivalent canal volume (Vea in cm3), acoustic admittance ( Ytm in mmho), tympanogram peak pressure
(TPP in daPa), and tympanogram width (TW in daPa) (Adapted from:

https://www.slideshare.net/amirmah/topic5-49228595).

Acoustic admittance as a function of varying air pressure in the external ear canal for a specific

probe-tone frequency results in a graph called a “tympanogram”. Fig. 3–2 demonstrates two methods,

one qualitative and one quantitative, for analyzing tympanograms.  The qualitative typing procedure

(Fig. 3–2A) was introduced by Jerger  (1970) and is still deeply ingrained in clinical practice  (Park,

2017). A normal tympanogram has a peak near 0 daPa and is asymmetric with higher admittance values

for  positive  pressure  values  than  for  negative  values.  The  asymmetry  is  attributed  to  eardrum

movement,  enlargement  of  the  cartilaginous  portion  of  the  ear  canal,  movement  of  the  probe  tip,

residual middle-ear effects and viscoelasticity of soft tissues (Elner et al., 1971). Such a tympanogram

is designated as type A. Subcategories of type A are AS (i.e.,  “S” refers to  a shallow notch in an

impedance tympanogram)  for a small peak (low admittance) and type  AD (i.e., “D” refers to a deep

notch in an impedance tympanogram) for a sharp peak (high admittance). Type AS tympanograms are

associated with otosclerosis and type AD are associated with ossicular discontinuity or atrophic scarring

of the eardrum  (Shanks & Shohet, 2009). Type B tympanograms are flat  and generally occur with

middle-ear effusion and eardrum perforation. Type C tympanograms are characterized by negative peak
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pressures indicating negative pressures in the middle-ear cavity, characteristic of a malfunction of the

Eustachian tube. Differentiating among different types of tympanograms is very subjective. Feldman

(1976) criticized  this  coding  procedure  as  it  may  cause  confusion,  and  recommended  a  more

quantitative analysis of tympanometry with a focus on quantitative measures.

Fig.  3–3B  shows  how  a  tympanogram  can  be  analyzed  in  terms  of  four  numbers:  acoustic

admittance magnitude Ytm (mmho), peak pressure TPP (daPa), width TW (daPa), and external ear canal

volume Vea (ml). These four numbers differ in their degrees of diagnostic relevance. Tympanometry can

also be analyzed in  terms of  the real  part  and the imaginary part  of the acoustic  admittance (i.e.,

conductance  and  susceptance).  This  has  been  used  to  study  the  W-notching  of  tympanograms  in

response to high acoustic frequencies to evaluate mass-related pathologies of the middle ear (Vanhuyse

et al., 1975) .

3.2.2 Clinical applications of tympanometry

The first clinical application of clinical immittance measurement was in the 1940s, and it was starting

to be widely used in clinical practice during the 1970s. Early tympanometry devices only provided

qualitative and semi-quantitative measurements of middle-ear impedance. Quantitative measures were

later  added,  leading  to  the  widespread  use  of  tympanometry  as  a  routine  clinical  procedure  in

audiological  examination  for  older  children  and  adults.  It  is  a  well-established  method  for  the

physiological  assessment  of  the  middle  ear.  Although  there  are  only  limited  correlations  between

tympanometry  and  specific  middle-ear  pathologies,  it  has  often  been  used  to  estimate  middle-ear

pressure, determine the presence or absence of fluid in the middle ear, and assess the condition of the

ossicular chain. 

Tympanometry was initially performed at 226 Hz with no consideration as to the diagnostic value of

that  particular  frequency.  This  was  mainly  done  for  calibration  reasons:  at  standard  sea-level  air
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pressure, the compliance of 1 cc of air for a 226-Hz pure tone is equal to 1 mmho. Most diagnostic

immittance measurements on adults  still  use a 226-Hz probe tone because it  has shown definitive

advantages for testing in adult middle ears  (Roup et al., 1998). The frequency 226 Hz is below the

normal adult middle-ear resonance, which lies between 650 and 1400 Hz, so the effects of mass and

damping are minor.  Normal 226-Hz tympanograms are single peaked,  and as  the probe frequency

increases tympanograms begin to display notches in a systematic way. 

Multifrequency  tympanometry  (MFT)  emerged  in  the  1970’s  as  a  promising  new  method  for

identification of middle-ear conditions. The use of multiple frequencies results in more information

(e.g., Alberti & Jerger, 1974; Colletti, 1975; Funasaka et al., 1984; Keefe & Levi, 1996; Shahnaz et al.,

2008), and MFT has been shown to improve the test sensitivity in some cases of conductive hearing

loss and outer/middle ear pathologies (e.g., Ferekidis et al., 1999; Shahnaz et al., 2008). 

There are two methods of achieving MFT: sweep-pressure  (Colletti,  1975) and sweep-frequency

(Funasaka et al., 1984) procedures. In the former method, a full course of quasi-static pressure variation

is performed, while the probe tone is held constant at a certain frequency, and the procedure is repeated

for multiple discrete frequencies. In sweep-frequency MFT, a wideband acoustic stimulus is introduced

to the ear canal in the presence of a sweeping quasi-static pressure. The acoustic stimulus can be a

sweep-frequency tone, also referred to as a chirp  (Funasaka et al., 1984)  , or a click  (e.g., Keefe &

Simmons, 2003). The sound stimulus is repeated during the pressurization cycle (e.g., every 40 ms).

Within the duration of the acoustic stimulus, the quasi-static pressure changes are very small (e.g.,

0.48 daPa for  a  pressure  course of  –400 to +200 daPa at  a  rate  of  50 daPa/s  as  in  Therkildsen  &

Gaihede (2005)). This leads to the assumption that the pressure remains constant within each chirp or

click.

MFT can be used to measure the resonance frequency of the middle-ear system. The resonance

frequency may be altered due to middle-ear disorders that affect the mass and stiffness of the middle
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ear  components.  For  instance,  in  the  case  of  otosclerosis  (i.e,  a  middle-ear  disease  caused  by an

abonormal growth of bone that reduces the vibration of the ossicles), the stiffness of the middle ear

increases,  resulting  in  an  increase  of  the  middle-ear  resonance  frequency.  On  the  other  hand,  an

ossicular-chain disruption results in a decrease in the stiffness of the middle ear and consequently a

decrease in the middle-ear resonance frequency. It has been reported that MFT can detect otoclerosis

(Van Camp & Vogeleer, 1986).

Vanhuyse (1975) made a significant contribution to understanding how the tympanogram changes as

a function of frequency. At low frequencies (e.g., below 2 kHz), the acoustic pressure distribution is

approximately  uniform  in  the  ear  canal  and  across  the  TM.  At  higher  frequencies,  however,  the

interaction between the impedance of the ear canal and TM becomes complex, and the ear canal and

TM can no longer  be  considered  as  a  parallel  system.  The  complex  behaviour  of  high-frequency

admittance  tympanograms  has  limited  their  usefulness  so  far  for  the  identification  of  middle-ear

pathologies. That is why multi-frequency probe tones are not used clinically as often as the 226 Hz

probe tone.

3.2.3 Tympanometry in newborns

Hearing  is  very  critical  for  speech  acquisition  in  children.  Hearing  loss  can  result  in  subsequent

behavioural, psychological and educational difficulties. Early screening for hearing loss is important so

it can be addressed in a timely manner. Neonatal hearing screening often uses an evoked otoascoustic

emissions  (EOAE)  test  as  the  first  step,  to  assess  cochlear  function.  EOAE  measures  the  sound

produced in the cochlea and is affected by any abnormalities in the sound transmission either forward

or in reverse through the middle ear. Acoustic brainstem response (ABR) tests are sometimes used as a

second step in neonatal hearing screening. ABR uses surface electrodes placed on the infant’s head to

measure the auditory nerve’s response to sound. Immittance measurements have been recommended
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for inclusion in a battery of screening tests to identify any abnormality in an infant’s hearing  (e.g.,

Calandruccio  et  al.,  2006;  Shahnaz  et  al.,  2008).  ABR and  OAE results  are  believed  to  be  most

effective when they are interpreted along with tympanometry measurements  (e.g.,  McKinley et al.,

1997; Kilic et al., 2012). 

It  has been shown that 226-Hz tympanograms in infants below the age of 6 months are not as

reliable as in adults  (e.g.,  Paradise,  1982; Holte et  al.,  1990). For instance,  it  is possible to obtain

normal 226-Hz tympanograms in infants even with confirmed middle-ear effusion (Meyer et al., 1997).

It is also possible to obtain abnormal-looking low-frequency pure-tone tympanograms in normal infant

ears (McLellan & Webb, 1957). The interpretation of tympanograms in infants is very different from

the case in adults. This is attributed to the anatomical differences (Fig. 3–3) in the developing newborn

ear (e.g., McLellan & Webb, 1957; Holte et al., 1991). The changes in the external and middle ear after

birth that could account for the acoustic alterations include: 

• The newborn canal wall undergoes ossification.

• The sizes of the ear canal, middle-ear cavity and mastoid continue to change after birth.

• The relative orientation of the TM and the ear canal is different in newborns than in adults.

• The TM in infants is thicker than in adults, but less stiff. 

• The tympanic ring is not fused in newborns.

• The density and the size of the ossicles change, and the mesenchyme, amniotic fluid and 
residual fluid clear out during the first hours and days after birth (Roberts et al., 1995) leading 
to a decrease in the overall mass of the middle ear.

• The ossicular joints tighten after birth.
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Fig. 3–3. Comparison of the ear anatomy between newborns and adults (After Fowler EP Jr. (1947):
Medicine of the ear, 2nd ed., T. Nelson, New York from

http://audilab.bmed.mcgill.ca/AudiLab/teach/me_saf/me_saf016.html, as of 2017 August 8)

It  has  been recognized that  the  external  and middle ear  systems can  vary significantly  in  their

acoustic response properties over the first 2 years after birth  (André et al., 2012).  Higher-frequency

probe  tones  have  been  explored  and  displayed  improved  specificity  and  better  correlation  with

OAE/ABR screening. Through the use of either MFT or single high-frequency probe tones, it has been

concluded  that  high-frequency  tympanometry  can  more  accurately  identify  middle-ear  effusion

(Marchant et al., 1986). Many studies have stated that the use of 1000-Hz probe tones is preferable to

the use of 226-Hz probe tones for infants (e.g., Kei et al., 2003; Wet et al., 2007; Glater, 2009; Kilic et

al., 2012).

Other studies have also tested the performance of MFT in infants. McKinley et al. (1997) measured

both  multi-frequency tympanograms (at  226,  678 and 1000 Hz)  and evoked otoacoustic  emissions

(EOAE) in first-day neonates.  They reported that  there is  no clear  correlation between admittance

characteristics and EOAE results. Shahnaz et al. (2008) investigated MFT in 3-week-old infants and

adults. They found that at 1000 Hz, the admittance tympanograms had a single peak for 74% of infant
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ears, while 78% of adult ears showed multiple-peak or irregular patterns. They also investigated MFT

in well babies and intensive-care-unit babies (with an average age of 3 weeks) at 9 frequencies (from

226 to 1000 Hz). They found that the tympanograms obtained at 1 kHz are more sensitive and specific

for presumably abnormal and normal middle-ear conditions, and that tympanometry at 1 kHz is a good

predictor of the presence or absence of transient EOAE’s.

3.3 Finite-element method
In this section we discuss the finite-element (FE) method and some concepts that are important to the

generation  of  our  FE model  of  the  middle  ear.  A  definition  of  the  FE method  and its  basics  are

summarized  in  section 3.3.1.  Nonlinear  and  time-dependent  models  are  defined  in  section 3.3.2.

Previous FE models of the middle-ear are reviewed in section 3.3.3. 

3.3.1 Introduction

Continuum mechanics is concerned with the mechanical behaviour of solids and fluids on macroscopic

scales.  Continuum  mechanics  applies  fundamental  physical  laws  to  continua  to  derive  partial

differential  equations  describing  their  behaviour.  Information  about  the  particular  materials  of  the

continua is added through empirical constitutive laws.

 The existing strategies to solve stress problems include analytical solutions. They can be derived

from the  differential  equations  only  for  simple  cases  and rapidly  become very  complex  for  more

elaborate materials, geometries and loading conditions. In fact, exact analytical solution methods for

solving problems in deformable mechanics often don’t  exist.  Real engineering applications  seldom

involve geometries or loading conditions exactly equivalent to those analyzed, so use of these methods

often involves some approximations. 

Numerical  methods  are  appropriate  when  no  plausible  idealization  of  the  real  problem can  be

analyzed, or when greater accuracy is required than the idealization is expected to produce. By far the
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most versatile and widely used numerical method is the FE method that dates back to the work of

McHenry, Hrenikoof and Newmark in the field of solid mechanics (e.g., Zienkiewicz et al., 1977). Here

we present a brief description of the method, but a more detailed overview can be found in standard FE

method textbooks (e.g., Dhatt et al., 2012). 

A mesh  of  the  geometry  is  built  with  a  finite  number  of  elements.  An  exact  domain  Ω is

approximated by the union Ωh of N non-overlapping elements Ωe (h) in such a way that:

Ωh=
N
∪

e=1
Ωe(h) , lim

h→0
(

N
∪

e=1
Ωe (h))=Ω (3–4)

where h reflects the size of the elements. 

The  sought-for  solution  is  then  approximated  over  each  element  by  means  of  a  function

approximation (usually a simple polynomial expansion) and is quantified in terms of values at discrete

points within the elements called the nodes. The discretization process establishes an algebraic system

of equations to approximate the continuous solution. 

To develop the  FE equations,  we must  first  formulate  the  ‘strong form’ of  the  boundary-value

problem, which consists of the ordinary or partial differential equations together with the appropriate

boundary conditions. The strong form can be restated in an integral form called the ‘weak form’ which

can be proved to be equivalent to the strong form. The name weak form originates from the fact that

solutions have weaker continuity requirements than solutions of the strong form.

The FE strategy uses a Rayleigh-Ritz approximation in a piecewise manner on each finite element to

linearize  the  weak  formulation  for  each element.  Solving the  resulting  system of  linear  equations

provides  the  response  of  the  system.  The  Rayleigh-Ritz  approach  considers  a  series  of  trial

approximation that satisfy the displacement boundary conditions in a point-wise fashion but not the

partial differential equations. 

The FE method can be very accurate with certain assumptions on the behaviour of each element and
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proper boundary conditions. The FE method can also be misleading and even dangerous without a good

knowledge of basic FE Method theory. In fact, a number of factors should be carefully considered to

ensure an adequate and accurate representation of reality:

1. Mesh convergence analysis:  A systematic  mesh convergence  analysis  should be performed.

Identifying an appropriate mesh size that yields accurate results at an acceptable computational

cost is essential. The finer the mesh is, the bigger the system of equation is, resulting in a high

computational cost. 

1. Constitutive laws: Choosing the appropriate material properties to model the material behaviour

is important. For instance, modelling rubber behaviour using linear isotropic constitutive laws is

inadequate unless  strains  are  small  enough.  The nature of the deformations of  the material

determines how it should be modelled. There are different constitutive laws to model a wide

range of nonlinear behaviour.  A priori information about the material properties is favoured

over simply adjusting model parameters to fit a set of experimental results. 

2. Boundary  conditions,  loading  conditions  and  constraints:  The  interactions  among  the

components of the system and the interaction of the system with the environment are usually

very complex. A simplification of these interactions in the FE model should still provide an

adequate representation of reality. 

3. Model  verification  and  validation:  Model  verification  refers  to  the  verification  of  the  FE

computer code and the mathematical calculations. It may consist of comparing the same FE

model  with  different  solvers.  Model  validation  is  the  process  of  comparing  the  FE model

numerical results with experimental measurements.

There are a number of software packages for FE modelling, either commercial or free and open-

source. Commonly used commercial FE software includes ANSYS (www.ansys.com/) and ABAQUS

(www.3ds.com/products-services/simulia/products/abaqus/). Both include the three steps of modelling,
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namely preprocessing (geometry and mesh generation, model creation), solving, and post-processing

(results  visualization).  Free  and open-source software  may include  the  three previously mentioned

components in one product or be designed for certain limited functions. For example, Salome-Meca (at

www.code-aster.org/) is open-source software that incorporates the three steps of modelling. On the

other  hand,  some  software  is  used  for  geometry  and  mesh  generation  (e.g.,  Fie,  Tr3  and  Fad  at

www.audilab.bme.mcgill.ca/sw/, PreView at www.febio.org/preview/, Gmsh at www.geuz.org/gmsh/).

Other  software  is  used  to  implement  new  constitutive  laws  to  model  mechanical  behaviour  not

supported  by  the  FE  solver  (e.g.,  nonlinear  material  representation  using  MFront  at

https://tfel.sourceforge.net/). The latter can be used with commercial software when they do not support

a certain mechanical behaviour. There is software that solves the mathematical equations (e.g., FEBio

at https://febio.org/febio/, and Code_Aster at www.code-aster.org/). Finally, there is also software to

visualize the output (e.g., PostView at www.febio.org/postview/, ParaView at www.paraview.org/). 

3.3.2 Nonlinear and time-dependent material models

Nonlinearities in FE models can be classified into four types: geometric nonlinearities that arise from

large deformations; material nonlinearities that stem from nonlinear material properties (e.g., nonlinear

elasticity);  contact  nonlinearities;  and  boundary-condition  nonlinearities  (e.g.,  pressure  loads  that

change orientation during deformation).

 Some materials exhibit time-dependent behaviour when deforming; they possess a memory of past

events  and  can  both  store  and  dissipate  energy.  These  materials  have  both  elastic  and  viscous

characteristics and are referred to as viscoelastic materials. In this brief introduction, we will provide

descriptions of hyperelastic and viscoelastic behaviours. Detailed overviews of nonlinear and time-

dependent materials can be found in standard textbooks  (e.g.,  Christensen, 2012; Belytschko et al.,

2013). 
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3.3.2.1 Finite-strain theory

For simulations with moderate to large deformation, an appropriate method is required to describe the

geometric configuration. Let us consider a small segment dX=(dX, dY, dZ) between two points M(X, Y,

Z) and P(X+dX, Y+dY, Z+dZ) in an initial configuration of a solid continuum domain. The segment is

transformed through Ф into a different segment dx=(dx, dy, dz) separating the two points M*(x ,y ,z)

and P*(x+dx, y+dy, z+dz) in the deformed configuration. According to this mapping, one can write the

following relationships:

d x=Φ(P)−Φ(M )=Φ(X+d X )−Φ(X) , (3–5)

which can be linearized through a Taylor’s series expansion up to first order as

d x=Φ(X)+ ∂Φ
∂X

⋅d X−Φ(X )=∂Φ
∂ X

⋅d X , (3–6)

which leads to the definition of the gradient tensor of the transformation at X:

F(X )=∂Φ
∂X

=RU (3–7)

where F(X )  is a second-order tensor known as the deformation gradient, which linearly transforms

any  infinitesimal  vector  in  the  undeformed  configuration  to  another  infinitesimal  vector  in  the

deformed configuration of the body; R is the orthogonal rotation tensor and U is the right stretch tensor

(where the term “right” means it is to the right of the rotation tensor  R). The deformation gradient

tensor is not zero for a rigid-body transformation, making it inappropriate to measure deformation of a

mechanical body. Instead, the right Cauchy-Green deformation tensor C is more appropriate and arises

from mapping the scalar product of two initial infinitesimal vectors. It is defined by

C=F T F . (3–8)

Note its symmetry. The difference between the initial and modified scalar products gives rise to the

Lagrangian finite-strain tensor E which is also symmetric and is defined by

E=
1
2
(C−I ) (3–9)
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where I is the unity matrix.  The Green-Lagrange strain tensor is a measure of deformation and for a

rigid-body transformation it is null. It is written as follows with respect to the displacement: 

E=
1
2
(
∂u
∂ X

+(
∂u
∂ X

)
T

+(
∂u
∂ X

)
T
∂u
∂ X

) . (3–10)

The principal invariants of C are defined as follows:

I 1=tr (C )=λ1
2
+λ2

2
+λ3

2

I 2=
1
2
(I 1

2
−tr (C2

))=λ1
2λ2

2
+λ2

2λ3
2
+λ1

2λ3
2

I 3=det(C )=J 2
=λ1

2λ2
2λ3

2

(3–11)

where  λ1 ,λ2 , and  λ3  are called principle stretch ratios and are the eigenvalues of the deformation

gradient tensor F, and J is called the Jacobian and represents the volume change ratio. If the material is

incompressible, the volume change is negligible and J =1 . 

3.3.2.2 Hyperelasticity

A hyperelastic material is a type of constitutive model defined in terms of a stored-energy function W

which depends on the deformation locally (e.g., W(C) and W(F)). A hyperelastic material is an elastic

material that exhibits nonlinear behaviour during large deformation. Unlike the case for linear elastic

materials, the strain-stress relationship is not linear. The strain-energy function is frame-indifferent due

to the symmetry of the Cauchy stress tensor, and the second Piola Kirchhoff stress S can be computed

as follows:

S=
∂W
∂E

=2
∂W
∂C

. (3–12)

Within the context of isothermal processes and isotropic materials, there exists a unique decoupled

representation of the stored-energy function into volumetric and isochoric (volume preserving) parts

(Simo & Taylor, 1985) as shown below:

W=W iso+W vol . (3–13)

A number of constitutive equations have been developed that are expressed in terms of either strain
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invariants or principal stretch ratios, derived from a strain-energy function, such as the Neo-Hookean,

Mooney–Rivlin, Veronda-Westmann, Ogden, Yeoh and Arruda-Boyce models  (e.g., Holzapfel, 2000).

Hyperelastic  materials  have  been  widely  used  to  simulate  large  deformations  in  nearly

incomprehensible soft tissue such as skin, brain tissue, breast tissue, liver and TM (e.g., Qi et al., 2008).

3.3.2.3 Viscoelasticity

In  addition  to  nonlinear  elastic  behaviour  and  large  strains,  soft  biological  tissues  also  exhibit

time-dependent stress results, creep, stress relaxation and hysteresis, which reflect

viscoelastic behaviour. Many viscoelastic models have been proposed in the literature and compared

(Reese & Govindjee, 1997; Simo & Hughes, 2006; Ciambella et al., 2010). Viscoelastic models can be

separated into three groups: linear viscoelastic models (LV) applicable in infinitesimal strain theory,

quasi-linear  visco-hyperelastic  (QLVH)  models,  and  fully  nonlinear  visco-hyperelastic  (NLVH)

models. The latter two are both applicable for finite deformations  (Charlebois et al., 2013). LV and

QLVH models share the characteristic that the stress response is decoupled between time and strain. On

the other hand, in the case of the NLVH model, the nonlinear equation depends on both time and strain:

the deformation gradient  has a  multiplicative split  into a  viscous part  and an elastic part.  We will

present here only isotropic models, which refers to the invariance of the constitutive response of a

material under superposed rigid-body motions of the reference configuration. The condition of isotropy

places  strong  restrictions  on  the  form  of  the  response  function.  Furthermore,  many  nonlinear

approaches are beyond the scope of this thesis. The focus here will be on QLVH models. They are

single-integral  mathematical  models  which  are  an  outgrowth  of  linear  viscoelasticity  convolution

integrals  and  lead  to  an  extended  superposition  principle  that  can  be  used  to  evaluate  nonlinear

viscoelastic materials. 

Let us consider a model that includes an elastic branch, composed of an elastic spring element, in
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parallel with an arbitrary number of viscous branches, each composed of an elastic spring and a damper

in series. This provides a generalized relaxation and creep model.  Fig. 3–4 shows an example of a

circuit  model  composed of  one  elastic  branch and  N viscous  branches.  For  this  model,  the  stress

response is defined by the relationship: 

σ( t)=E0ε(t)−∑
i=1

N

Eiαi (3–14)

where  σ denotes the total  stress applied on the system,  ε denotes the total  strain,  αi is  an internal

variable that represent the inelastic strain in dashpot i with viscosity ηi,  E0 is the initial modulus, and

the  Ei are  the  spring  constants.  The  initial  modulus  E0, the  relaxation  time  constants  τ i and  the

relaxation functions are defined 

E0=E∞+∑
i=1

N

Ei>0

τ i=
ηi

Ei

, i=1,... ,N

G( t)=E∞+∑
i=1

N

E iexp (−t /τ i)

. (3–15)

Fig. 3–4:Schematic of the Generalized Maxwell Model (Source:
https://en.wikipedia.org/wiki/Generalized_Maxwell_model as of 2017 June 29)

This simple model can be extended to three-dimensional linear elasticity. In LV models, the stress is

linearly proportional to the strain history, and the stress tensor can be expressed in a closed form as a
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convolution integral:

σ ( t)=
dW vol

dJ
I +∫

−∞

t

g( t−s)
d
d
(dev

∂W iso

∂ e
)d s

dev .=.−
1
3

tr (.) I
(3–16)

where  g(t),  a  sum  of  exponential  time-dependent  functions,  represents  the  normalized  relaxation

function (also defined as the Prony series):

g(t)=γ∞+∑
i=1

N

γ i exp([−t / τi]) . (3–17)

Here  γ∞ and  γi  represent  the  nondimensional  Prony  series  coefficients  constructed  by  the

relationship:

γ∞=
E∞

E0

γi=
E i

E0

, i=1,2,... , N

. (3–18)

The material parameters γ∞ , γi  and τi  are subject to these restrictions:

γ∞=1−∑
i=1

N

γ i

0⩽γ∞<1
γi⩾0
τi>0

. (3–19)

When the strain is not infinitesimal, linear theory is inappropriate, and a nonlinear constitutive law has

to be considered. Fung  (1993) introduced the QLVH model with the assumption that stress depends

linearly on the superposed time history of a related nonlinear response. The formulation is patterned

after linear viscoelasticity, and the stress response is, as in the linear theory, defined in the following

convolution representation: 

S( t)=∫
−∞

t

g (t−s )
d
d s

(Se
(s))d s (3–20)

where Se  represents the instantaneous second Piola-Kirchhoff stress tensor and may be thought of as
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an equivalent elastic stress. The strain-energy function is split into a long-term equilibrium response W∞

and a nonequilibrium response  Wk  which represents the stored energy in the material that will relax

viscously in time:

W=W∞+∑
i=1

N

W i . (3–21)

Each  i=1,...,N represents a different relaxation mechanism in the material. The crucial idea is to use

internal variables to represent the nonequilibrium stresses associated with these mechanisms. Thus, the

stress response for a QLVH constitutive model is given by

S( t)=2
dW∞

dC
(t)+∑

i=1

N

Qi
(t) (3–22)

where Qi
(t ),u=1,2,... ,N , are internal variables governed by the evolution equations: 

Q̇i
(t )+1/ τ iQ

i
(t)=

d
d t

[2
∂W i

∂C
]

lim
t→∞

Qi
(t)=0

(3–23)

These relations can be expressed in convolution form as

Qi
( t )=∫

−∞

t

exp[−(t−s)/ τi]
d
d s

[2
∂W i

∂C
]d s . (3–24)

In addition to this stress convolution model for finite-deformation viscoelasticity, the multiplicative

decomposition model is very suitable for many materials undergoing large deformations or changes in

their properties under deformations. In these NLVH models, the deformation gradient is divided into an

elastic time-independent deformation gradient  Fe  and a viscous time-dependent deformation gradient

Fv:

F=F e F v

(3–25)

This hypothesis is combined with the assumption of a viscoelastic potential to give a model similar to

associative elasto-plasticity (Govindjee & Reese, 1997). The energetic contribution of each mechanism

is assumed to depend on F i
e  through C i

e
=[F i

e
]
T F i

e  such that the overall strain energy of the material
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can be expressed as:

W (C ,F i
v)=W ∞(C )+∑

i=1

N

W i(C i
e) . (3–26)

Note that W k  depends on C i
e  rather than C  as one would expect from a physical point of view since

the “elastic” deformation associated with each mechanism should not be part of the total deformation

of  the  material  but  only  the  driving  force.  In  this  model,  the  stress  is  also  decomposed  into  an

equilibrium and a nonequilibrium contribution: 

S=2
d W ∞

dC
+∑

i=1

N

2(F i
v
)
−1 ∂W i

∂C i
e (Fi

v
)
−T . (3–27)

The evolution equations for the internal viscous part of the deformation must satisfy the following

dissipation inequality for each relaxation mechanism independent of the others:

∂W i

∂F i
v :(Ḟi

v
)⩾0 (i=0,. .., N ) (3–28)

The elastic  behaviour of the response is  specified using the hyperelastic  material  model  while  the

viscous behaviour has different forms depending on the creep law chosen. NLVH models can predict

complex behaviour of materials. Unlike LV and QLVH models, they can be shown to always satisfy the

Second Law of Thermodynamics. Furthermore, they provide evolution equations that are valid far from

elastic equilibrium, and thus are not restricted to strain states near the elastic equilibrium.

3.3.2.4 Viscoelasticity and nonlinearity in the middle ear 

The  TM  is  a  complex  structure  composed  of  multiple  layers  (section  2.3.1).  It  is  also  an

inhomogeneous  structure  with  anisotropy  in  the  radial,  circumferential  and  through-thickness

directions. 

In vitro measurements of the mechanical properties of the TM have been reported in the literature.

von Békésy (1960) estimated the Young’s modulus of the human TM to be 20 MPa using bending tests
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on dissected human TM strips. Kirkae (1960) measured the Young’s modulus to be 40 MPa based on a

longitudinal dynamic test on strips of fresh human TM. Decraemer et al. (1980) reported results for a

uniaxial tension test of strips of human TM and proposed nonlinear elastic and nonlinear viscoelastic

structural models. At the large strains, a Young’s modulus of 23 MPa was found. 

Fay et al. (2005) applied three different methods to estimate the elastic properties of the TM. First, a

constitutive model was used to estimate the properties of the cat TM based on known stiffness values of

collagen and on observed fibre densities. Second, both bending and tensile loading tests for the TM

were reinterpreted using composite laminate theory to find the range of elastic modulus values for the

fibre layers. Third, the dynamic displacement of the TM was measured as a function of frequency. A

wave-number vs. frequency relationship was determined which represents a fundamental property of

the TM’s mechanical structure. From these three different methods, they reported a range of elastic

moduli for the human TM ranging between 0.1 GPa and 0.3 GPa, which is significantly higher than

values reported elsewhere. The high Young’s modulus in Fay’s study is, at least in part, because they

use  a  much  smaller  thickness  for  their  specimens,  corresponding  to  only  the  fibre  layers.  These

variations in measurements between different groups may also be due to the fact that the Young’s

modulus of the TM is frequency dependent,  and all  the previous measurements were performed at

different frequencies. 

In normal hearing the middle ear behaves linearly, but it becomes nonlinear in response to high

sound pressures,  to  blast  and  explosions,  and to  the  large  quasi-static  pressures  involved in  large

changes of altitude and in clinical tympanometry. In these scenarios, soft tissue in the middle-ear (e.g.,

the TM and the ligaments) shows typically time-dependent behaviour, and also elastic deformations

that can reach large values. 

In  the  middle-ear,  the  TM  functions  over  a  broad  frequency  range.  By  measuring  surface

displacement of the TM as a function of frequency as when it is acoustically driven, Fay et al. (2005)
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demonstrated that, like many other soft biological tissues, the TM exhibits viscoelastic behaviour upon

deformation. Different formulations have been introduced to derive the constitutive equations of the

TM (e.g., Motallebzadeh et al., 2013).

Fung (1993) discussed the viscoelasticity of soft tissue in the light of two important features of the

loading and unloading curves: hysteresis and preconditioning. In response to cyclic loading, the stress-

strain  curve  in  the  unloading  process  is  different  from that  in  the  loading  process.  This  dynamic

phenomenon is  called hysteresis and is often approximately independent of frequency over a wide

range of frequencies (Fung, 2013, p. 289). Successive loading and unloading changes the stress-strain

curves from cycle to cycle until it reaches a steady state after a few cycles, and this is referred to as

preconditioning. 

Chang et al.  (2007) reported a series of mechanical measurements on strips of the human TM to

characterize its viscoelastic properties. They performed uniaxial tensile, stress relaxation, and failure

tests, on specimens taken from human cadaver eardrums, under quasi-static loading conditions. They

cut  11  rectangular  strips  from the  posterior  side  of  the  eardrum,  clamped them at  both  ends  and

mounted them in the material-testing system. The maximum strain was 15%. Curves of  stress  vs.

stretch ratio for one eardrum specimen are shown in Fig. 3–5. The preconditioning is observed in

Fig. 3–5a with curves decreasing during repeated loading-unloading curves until they reach a steady

state after the third cycle. The hysteresis phenomenon was also observed, with the unloading curve

being lower than the loading curve. Based on these stress-stretch data, Cheng et al. identified Ogden

model parameters to model the nonlinear elastic properties of the TM for different stress ranges. The

stress-relaxation behaviour of the TM for 9 specimens was also reported. The stress decreases with

time and reaches a relatively stable level after 120 s. At 1 s, 10% of the stress is relaxed; at 5 s, 20% of

the stress is relaxed; at 50 s, 35% of the stress is relaxed. The viscoelastic properties of the TM were

described but not modelled. 
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Fig. 3–5: Experimental measurements on TM specimens. a: Load-displacement curves for three cycles
obtained from uniaxial tensile tests for one TM specimen. b: Curves of stress vs. stretch ratio for the

same TM specimen after steady state (Source:Cheng et al., 2007)

The above-mentioned methods for measuring TM mechanical properties using tensile and bending

tests characterize the TM modulus as homogenized or averaged values over the portion of the sample

consisting of a portion of a TM. Nanoindentation, on the other hand, measures local properties and

allows the mapping of TM properties over its entire surface. Huang et al. (2008) established methods

for measuring linear viscoelastic properties of human TM using nanoindentation to characterize the

viscoelastic relaxation modulus in both in-plane and out-of-plane directions. Results were reported for

relaxation moduli of the TM for very small strain rates. The applied deformations and resultant strains

were small  and linear.  Measurements of viscoelastic properties of human TM in the posterior  and

anterior regions were presented. The shear relaxation modulus was given in terms of the generalized

Maxwell model (described in section 3.3.2.3), and three time constants (1 s,10 s and 100 s) were used

to describe the viscoelastic behaviour in the through-thickness direction while two time constants (10 s

and 100 s) were enough to represent the viscoelastic behaviour in the in-plane direction. Daphalapurkar

et al.  (2009) also measured the time-dependent Young’s modulus of the human TM in two different

directions (e.g., in-plane and through-thickness) by nanoindentation. The Young’s relaxation modulus

was reported for the four quadrants of the TM. Both in-plane and out-of-plane Young’s relaxation
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moduli  exhibited  pronounced  viscoelastic  effects.  The  in-plane  steady-state  Young’s  relaxation

modulus did not show much variation across the four quadrants of each TM. The values obtained, 25.7

to 37.8 MPa (in-plane) and 2 to 15 Mpa (out-of-plane) are close to the values (40 MPa) reported by

Békésy (1960), Kirikae (1960) and Decraemer et al. (1980) the value (20 MPa) reported by von Békésy

(1960). In general, the out-of-plane Young’s relaxation modulus is considerably lower than the in-plane

modulus.  On average,  the out-of-plane relaxation Young’s modulus  decreased by 50% from 1 s to

100 s.  At  the  steady-state,  the  out-of-plane  Young’s  relaxation  modulus  varied  considerably,  from

2 MPa to 15 MPa, over the TM surface. 

 In the experiments described above, the properties of the TM were measured at very low strain

rates.  Luo  et  al.  (2009a,  2009b) used  a  split-Hopkinson  pressure  bar  to  measure  the  strain-rate-

dependent behaviour of the normal and diseased human TM at higher strain rates, from 300 to 2000 s−1,

in  both the radial  and circumferential  directions.  They found little  difference between the Young’s

moduli  in  the radial  (45.3-58.9 Mpa)  and circumferential  (34.1-56.8 MPa) directions,  indicating an

isotropic behaviour even at high stain rates. At higher strain rates (1000-2000 s-1), the reported stress-

strain curves  are  linear  except  in  the vicinity  of  failure strains,  indicating nearly linear  behaviour.

Furthermore, they observed an increase in the Young’s modulus with increasing strain rate, indicating

that the viscoelastic behaviour of the TM is dependent on strain rate.

Zhang and Gan  (2010) conducted dynamic tests on  the human TM up to 8000 Hz using a laser

Doppler vibrometer.  The complex modulus was obtained by fitting the experimental measurements

using a FE model. In a later study, Zhang and Gan (2013) extended their results to higher than previous

quasi-static  frequencies  using  frequency-temperature  superposition  (FTS).  The basic  theory  of  this

empirical method considers the viscoelastic behaviour of some materials as a function of two principle

variables:  frequency  and  temperature  (e.g.,  Ferry,  1980;  Landel  &  Nielsen,  1993).  The  effects  of

temperature changes on the viscoelastic properties of the material are assumed to be equivalent to those
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of frequency changes. Their measurements were conducted at different temperatures in the frequency

range 1 to 40 Hz and extended to at about 7840 Hz using the FTS principle. The complex modulus of

the TM was found to generally increase with frequency. The largest slopes were observed below 10 Hz

and between 1000 and 3800 Hz. The change in slope at these frequencies relates to two time constants

used to fit the experimental data, with mean values of 5.14 ms and 78.6 μs. The mean storage and loss

moduli found in this study were lower than those found in the previous studies by Luo et al.  (2009a,

2009b) and showed lower slopes as functions of frequency. Possible causes identified by Zhang and

Gan for these differences include cross-subject variability, the physiological condition of the TM and

its moisture level, or perhaps inadequacy of the FTS principle.

The measurements discussed above were all done on the human TM. Our study focuses on the gerbil

TM and  measurements  for  this  species  are  very  limited.  Aernouts  and Dirckx  (2012) studied  the

mechanical behaviour of the gerbil TM under both quasi-static and dynamic loading conditions through

in situ indentation. The frequency-dependent Young’s modulus of each specimen was then estimated by

an inverse analysis.  They reported Young’s moduli  between 71 and 106 MPa at 0.2 Hz indentation

frequency. 

Few  measurements  have  been  made  of  the  material  properties  of  the  gerbil  PF.  The  PF  is  a

continuation of the external ear canal skin (Lim, 1968), so its material properties may be close to those

of skin. Agache et al.  (1980) estimated the Young’s modulus of the human forearm skin in vivo to be

0.42 MPa in their younger subjects and 0.85 MPa in subjects more than 30 years old. Geerligs et al.

(2011) performed  in  vitro indentation  measurements  on  human  abdominal  skin  and  estimated  the

Young’s modulus of the skin to be between 1 and 2 MPa. Due to the relatively simple geometry of the

PF, its behaviour can be approximated by that of a circular disk. Such numerical models have been used

in  attempts  to  infer  its  material  properties  from experimentally  measured  large  quasi-static

deformations but  the estimated Veronda-Westmann parameters were inconsistent  (Decraemer et  al.,
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2010; Aernouts and Dircks, 2011). 

Similar  to  the  TM,  ligaments also  exhibit  nonlinear  viscoelastic  behaviour.  For  example,

Bonifasi-Lista et al. (2005) and Vena et al. (2006) found that human medial collateral ligaments exhibit

a clear nonlinear viscoelastic response. They found that the creep rate depends on the applied stress and

that  the  relaxation  rate  depends  on  the  applied  stretch.  The stretch-dependent  and  time-dependent

behaviour of some ligaments in the middle ear has been investigated experimentally. Cheng and Gan

(2008) reported the mechanical properties of the anterior mallear ligament (AML) through uniaxial

tensile,  stress-relaxation and failure tests.  A nonlinear hyperelastic model was used to describe the

nonlinear behaviour of the AML. Unlike the isotropic model for the TM  (Cheng et al., 2007), local

responses of fibres in the middle portion of the AML were used to describe the mechanical properties

of  the  ligament.  The  transverse  effects  of  fibres  were  accounted  for  in  the  Ogden  model  by  an

I4- reinforced  term  in  the  equation  that  corresponds  to  the  square  of  material  stretch  in  the  fibre

direction.  It  was concluded that  the stress distribution in  the AML is much more complicated and

requires a more accurate description of its microstructure. The stress relaxation curve showed a stable

stress after 120 s. The material behaviour of fibrous soft tissues in general presumably depends on fibre

properties,  matrix  properties,  fibre-matrix  interactions  and fibre-fibre  interactions.  Thus,  multiaxial

tests (e.g., shear, transverse and longitudinal directions) are required to fully characterize the three-

dimensional material behaviour of ligaments in the middle ear. To the best of our knowledge, these

types of experiments on middle-ear ligaments are nonexistent. 

3.3.3 Finite-element models of the ear

The first mathematical models of the middle ear included lumped-parameter models where each

middle-ear structure is lumped as an equivalent electrical circuit element  (e.g., Zwislocki, 1957). In

these models, variables are only dependent on time and not on space. To address this issue, analytical
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(Wada & Kobayashi,  1990) or semi-analytical models  (Rabbitt  & Holmes,  1986) were formulated.

However, these simplified models of the middle ear do not actually capture its complex 3D geometry

containing many interconnected, highly irregular, asymmetrical and non-uniform parts. On the other

hand,  the  FE method  offers  the  possibility  of  modelling  such  a  complex  system and  obtaining  a

quantitative understanding of its function. In FE models, dependent variables are functions of both time

and  spatial  coordinates  and  can  be  connected  to  physiological  characteristics  of  the  middle-ear

structures. Here, only a brief review of previous FE models of the middle ear is provided. For a more

complete review of different approaches to modelling the middle ear, refer to Funnell et al. (2012).

Funnell and Laszlo (1978) presented the first FE model of the middle ear and investigated the low-

frequency behaviour of the cat TM within the range of linear vibration amplitudes. To represent the

three-dimensional curved conical shape of the TM, the curvature was represented by circular arcs. A

fixed axis of rotation running from the anterior mallear process to the posterior incudal process was

assumed, and stiff triangular elements connected the axis to the manubrium. The combined ossicular

and  cochlear  load  was  represented  at  the  axis  of  rotation  by  a  frequency-independent  rotational

stiffness.  Funnell  (1983) extended this  model  to  higher  frequencies.  The dynamic  response of  the

model  to  a  uniform sound pressure was analyzed,  and natural  frequencies  and mode shapes  were

measured.  Results  from  the  model  were  qualitatively  similar  to  the  experimental  observations  of

Khanna and Tonndorf (1972) obtained in cat by time-averaged laser holography. Funnell et al. (1987)

added consideration of the inertial  and damping effects  in the cat TM model.  The damping of the

system was represented by mass-proportional Rayleigh damping. Numerical results from the FE model

agreed quite  well  with laser  interferometric  point  measurements  on the cat  TM  (Decraemer et  al.,

1989). 

Lesser and Williams (1988) and Williams and Lesser (1990) presented linear dynamic FE models of

the human TM and ossicles in 2-D. However, it was known from previous studies that 3-D geometry
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has an important effect on the behaviour of the middle ear. Wada et al.  (1992) made the first 3-D FE

model of the human middle ear. It was a linear dynamic model that included the TM and ossicles.

Vibration patterns of the eardrum and ossicles  were in agreement with the experimental results  of

Khanna and Tonndorf (1972). 

The mechanical  behaviour  of  the  eardrum depends  heavily  on  its  shape,  so  accurate  geometric

modelling  techniques  for  reconstructing  the  TM (and also  other  structures  of  the  middle  ear)  are

essential for a good FE model. Funnell and Decraemer  (1996) used phase-shift moiré topography to

accurately measure the shape of the cat TM and incorporated that shape in their FE model. They used

large  static  pressures  to  facilitate  the  determination  of  the  boundaries  of  PF,  PT and  manubrium.

Prendergast et al.  (1999) used nuclear magnetic resonance (NMR) spectroscopy images (of very low

resolution) to reconstruct the outer-ear and middle-ear geometry. Van Wijhe et al. (2000) segmented the

middle ear of the moustached bat from a magnetic-resonance microscopy (MRM) data set. Daniel et al.

(2001) used the moiré shape measurements for the TM shape in a FE model of the human middle-ear.

In Daniel et al. (2001) the ossicles and ligaments were reconstructed from histological sections and

high-resolution MRM data. Sun et al. (2002) used histological sections to reconstruct the TM geometry

where  the  distinction  between  PF  and  PT can  be  hard  to  detect.  Decraemer  et  al.  (2003) used

microscale  X-ray  computed  tomography  (μCT)  imaging  data  to  reconstruct  the  ossicle  and  TM

geometries. MRM and μCT imaging techniques allow the orientation and geometry of the TM to be

observed clearly, but cannot produce a detailed thickness distribution of the TM. Kuypers et al. (2005,

2006) used confocal microscopy and Van der Jeught et al.  (2013) used optical coherence tomography

for full-field high-resolution thickness distribution maps and shape data of the TM. , For a thorough

review of  image-segmentation  methods  used  for  3-D reconstruction  of  the  ear,  see  Ferreira  et  al.

(2014). 

In FE models of the middle ear,  a variety of constitutive models have been applied to different
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components based on their mechanical behaviours. The simplest constitutive model is linear isotropic

elasticity, which can only simulate the behaviour of the middle ear in response to low pressures (e.g.

acoustic stimuli in the range of normal hearing). Funnell et al.  (1987) modelled the TM by a single

layer of isotropic material, and Wada et al. (1992) modelled the ossicles as isotropic elastic materials.

Maftoon et al.  (2015) developed a FE model of the gerbil middle ear with isotropic elastic properties

for the TM, the ossicles and the joints. 

Orthotropic  elastic  models  have  also  been  applied  to  the  TM to  account  for  the  orientation  of

collagen fibres in the radial and circumferential directions (e.g., Gan et al., 2006; Wang et al., 2007).

Multilayered models of the TM have also been developed to consider the different layers of the TM

(e.g., Fay et al., 2006; Tuck-Lee et al., 2008). 

Viscous and nonlinear behaviour of the TM has also been taken into account in some FE models of

the middle ear or its components. Ladak et al. (2006) modelled nonlinear deformations of the cat TM

by considering only the geometric nonlinearity. The effects of large static pressures within the range of

pressures used in clinical tympanometry were investigated. Their simulation results agreed with their

experimental shape and displacement patterns measured using phase-shift shadow moiré topography

(Ladak et al., 2004). They found that the location of the maximum displacement changes when the

pressures are varied, and concluded that geometric nonlinearity of the TM must be considered at high

pressures.  However,  material  nonlinearity  may become more important  at  high pressures.  Qi et  al.

(2006) modelled the dynamic response of the newborn ear canal while including both geometric and

material nonlinearities using a nonlinear hyperelastic constitutive law. They later used the same method

to model the newborn middle ear  (Qi et al., 2008). Wang et al.  (2007) studied middle-ear pressure

effects on the static and dynamic behaviour of the adult human ear. The static behaviour of the human

middle  ear  under  various  air  pressures  was  investigated  using  a  hyperelastic  model.  The  static

deformation field then provided nodal displacements of the TM and middle-ear ligaments that were
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used to update the model mesh for dynamic analysis. The latter was linear with material properties that

were adjusted for different stress ranges. The TM and stapes-footplate vibrations under various middle-

ear pressures were reported from the dynamic analysis. They concluded that reductions of the TM and

footplate vibration magnitudes under positive middle-ear pressures were mainly caused by nonlinear

material properties, but that the reductions under negative pressures were caused by both the geometric

and material nonlinearities. Rather than using true nonlinear material properties, Homma et al. (2010)

modelled the effects of large static pressures by empirically altering the linear material properties for

the different pressures. In a quasi-static model, Motallebzadeh et al. (2013) combined modelling of the

nonlinear and viscoelastic effects of strips of the TM for the first time. Their model could reproduce

both the relaxation and hysteresis curves of Cheng et al. (2007), which was “an important step toward

understanding the viscoelastic phenomena of the eardrum under conditions that are comparable to those

involved in tympanometry”.

In early FE models, the cochlear damping was not modelled explicitly and its effect was included in

the damping of the TM and ossicles (e.g., Funnell et al., 1987; Ladak & Funnell, 1996). Koike et al.

(2002) represented the cochlear damping in their middle-ear models by one dashpot connected to the

footplate of the stapes, based on experimental observations that the cochlear impedance is primarily

damping. Sun et al. (2002) modelled the cochlear load with 49 spring-dashpot elements oriented in the

direction normal to the footplate plane. Fluid models of the cochlea have also been incorporated in FE

models (e.g., Kim et al., 2011). 

Although most  middle-ear  FE models have been developed for human,  strong validation of  FE

models requires data that can only collected, or can be collected with a higher quality, in experimental

animals. There have been some models for non-human middle ears. Models for the cat middle ear were

at one time extensively developed (e.g., Funnell & Laszlo, 1978; Funnell et al., 1987; Tuck-Lee et al.,

2008).  Aernouts  et  al.  (2010) created  a  FE model  for  the  rabbit,  and  Ghadarghadar  et  al.  (2013)
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published a model for the rat. The gerbil is currently perhaps the most popular species for experimental

middle-ear research, and models of the gerbil middle ear have been developed  (e.g.,  Funnell et al.,

2000; Elkhouri et al., 2006; Buytaert et al., 2011; Maftoon et al., 2015).

Daniel et al. (2001) discussed the clinical applications of FE modelling of the human middle ear. FE

models have been applied to study middle-ear pathologies (e.g., Dai et al., 2007; Gan & Wang, 2007),

middle-ear prostheses (e.g., Williams et al., 1995), middle-ear surgical repair procedures (e.g., Lee et

al.,  2006),  ear  protection  systems  (e.g.,  James,  2006),  and  clinical  tests  (e.g.,  Wang  et  al.,  2007;

Motallebzadeh et al., 2017). 

3.4 Experimental measurements 
A variety of experimental measurement techniques have been used to study middle-ear mechanics both

post mortem and in vivo and in different species. Our research focuses on the response of the gerbil TM

to sound stimuli and static pressures. A review of previous studies pertinent to our research is presented

in this section. A review of human studies and other non-gerbil studies is presented in section 3.4.1.

Then, a review of experimental studies conducted on the gerbil middle ear using only sound stimuli is

presented in section 3.4.2. Studies that include quasi-static pressures only are highlighted in section

3.4.3.  A review  of  studies  involving  both  sound  stimuli  and  quasi-static  pressures  is  included  in

section 3.4.4. 

3.4.1 Measurements of non-gerbil tympanic-membrane vibrations 

Early experimental measurements of TM vibrations were reviewed by Funnell and Laszlo (1982). The

review includes work as far back as 1874. Here, we only discuss some of the key studies mentioned in

the review and present studies that were done after the publication of that article.

After non-electronic observations by Kessel (1874) and Dahmann (1929), von Békésy (1941) used a

capacitive probe to measure TM vibration. He described the TM motion as a rotation of a stiff surface
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about an axis superior to the TM at low frequencies (up to 2 kHz), and concluded that, because of the

rotation, the maximum vibration magnitude occurs inferior to the manubrium. He also qualitatively

described the motion of the TM for frequencies above 2.4 kHz, reporting that the conical shape of the

TM becomes less stiff and that the manubrium lags behind the PT portions near the manubrium. 

Manley and Johnstone  (1974) measured the velocity and displacement at various locations on the

guinea-pig TM over a broad range of frequencies (up to 25 kHz) using the Mössbauer technique with a

very small gamma-ray source. Since then, optical interferometric techniques have become very popular

and the primary means of investigating TM vibration patterns. Tonndorf and Khanna (1972) used time-

averaged laser holography to visualize and quantify the vibration patterns of the TM in cat and in

cadaveric human ears. They observed iso-amplitude contours on the vibrating TM. They showed that

even at  low frequencies  the  TM does  not  move as  a  stiff  surface as  von Békésy described.  They

identified regions of higher displacement magnitudes in the posterior and anterior regions of the PT,

with a maximum on the posterior side. This pattern remained almost the same up to about 2 kHz. At

about  3 kHz,  the vibration  patterns  appeared to  break up and became much more  complex as  the

frequency increased. Funnell and Laszlo (1978) discussed possible causes of the discrepancy between

von Békésy’s  observations  and those of  Tonndorf  and Khanna.  Decraemer  et  al.  (1989) utilized a

homodyne laser interferometer and reported phase and magnitude for a wide frequency range (130 Hz

to 20 kHz) for a few points on the cat PT and manubrium, using reflective objects to increase the

signal-to-noise ratio. They observed that up to 1 kHz all points on the PT moved almost in phase, but

beyond that frequency the phase differences increased and for frequencies above 5 kHz each point

moved  very  differently.  Time-averaged  holographic  techniques  provide  full-field  observations  of

sound-induced  motions  of  the  TM  surface,  but  point-by-point  laser  interferometry  provides  more

precise  magnitude  and  phase  information.  This  technique  also  has  a  finer  frequency  resolution.

Tonndorf and Khanna (1968) developed a laser interferometer and studied vibrations in the cat at the
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umbo. Buunen and Vlaming (1981) used a laser Doppler vibrometer (LDV) to measure the magnitude

and phase of the umbo vibrations in the cat. LDV measures vibration velocity over a broad range of

frequencies by computing the Doppler frequency shift of the light that is being scattered. Konrádsson et

al. (1987) studied vibrations of the human TM in vitro using a scanning LDV and presented data at 578,

3107 and 3113 Hz. The observations were consistent with earlier studies. Decraemer et al. (1989) used

an improved interferometer that did not require reflective objects, allowing them to obtain vibration

measurements  with  higher  spatial  resolution.  They  concluded  that  the  motion  “looks  more  like  a

traveling wave than like a standing wave”. 

 Akache et al.  (2007) in our lab performed post mortem LDV measurements on the rat TM. They

used microbeads to enhance the signal quality and reported displacement magnitudes in the frequency

range of 1 to 10 kHz. They observed no break-up in the simple TM vibration pattern up to 10 kHz,

which may have been due to drying of the middle-ear structures in their post mortem measurements. 

In a series of in vivo studies in healthy and pathological human ears, the potential clinical diagnostic

utility of LDV measurements at the umbo has been evaluated. Huber et al. (2001) used scanning LDV

on TMs from subjects with normal hearing and from subjects with conductive or sensorineural hearing

loss. Based on the umbo response, they suggested that scanning LDV can detect conductive hearing

loss and can distinguish among a few middle-ear conditions. Rosowski et al. (2008) demonstrated that

LDV can be used for diagnosis and differentiation of various ossicular disorders through a series of

measurements near the umbo in live human subjects and patients. 

Recent  advances  in  software  and  hardware  have  enabled  the  development  of  modern  TM

holographic  measurements  and  enabled  measuring  at  higher  frequencies.  Rosowski  et  al.  (2009)

performed computer-assisted time-averaged holographic measurements in ears of cadaveric chinchillas,

cats and humans and in a live chinchilla. Based on their observations, they classified the TM motions

into three regimes. At the lowest frequencies, the displacement patterns are fairly simple, with one to

45



three displacement maxima. At 4 kHz in the cat and human and 1 kHz in the chinchilla, they observed

more complex patterns composed of areas of concentric rings of high-magnitude motions separated by

rings of low-magnitude motions. This regime was named ‘complex pattern’ and had been described in

previous studies (e.g., Khanna & Tonndorf, 1972) as the breakup of the simple low-frequency motion.

At higher frequencies, above 8 kHz in the cat and human and above 4 kHz in the chinchilla,  they

observed another regime of vibration pattern that they named ‘ordered pattern’. In this regime, a large

number of displacement maxima are arranged in an orderly fashion in the radial and circumferential

directions, and they alternate with displacement minima. The same group later integrated stroboscopy

in their holographic setup to measure phase of the motion as well Cheng et al. (2010). They concluded

that  the  TM  motion  is  a  combination  of  standing  waves  and  “some  smaller  traveling-wave  like

components”. Later, the group used the same setup with two laser wavelengths (Rosowski et al., 2013)

to  also  compute  the  3D-shape of  the  chinchilla  TM. The in-plane  TM motions  were  found to  be

significantly smaller in magnitude than the out-of-plane motions, which is consistent with the thin-shell

theory of mechanics. 

3.4.2 Unpressurized vibration measurements in gerbils

Some groups (e.g., Ravicz et al., 1992; Ravicz & Rosowski, 1997; Teoh et al., 1997) have investigated

the input admittance of the gerbil TM in response to acoustic stimuli at different frequencies as an

indirect measure of middle-ear vibration responses to sound. Although admittance is easy to measure, it

does not provide information about the spatial vibration patterns of the TM, which are important to

gain a better understanding of middle-ear mechanics and for diagnostic purposes. 

Studies of the vibration patterns of the gerbil TM in response to sound pressure are very scarce. De

La Rochefoucauld and Olson (2010) measured the vibration of the gerbil TM at a few points on the PT

near the umbo as well as along the manubrium. Aside from these measurements, only our group has
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published studies that investigate the vibration pattern of the gerbil TM. Ellaham et al. (2007) reported

LDV measurements at multiple points in five post mortem gerbils. Magnitudes of displacement were

measured at points along the manubrium as well as on the PT over a frequency range from 0.15 to

10 kHz. The study provided a detailed longitudinal tracking of the effect of the drying of middle-ear

structures on vibration measurements. Nambiar (2010) performed post mortem studies similar to those

of Ellaham et al. but with much better hydration of the middle-ear structures, to try to avoid the post

mortem effects of drying. Matoon et al. (2012) reported our first in vivo TM vibration patterns and He

(2012) devised an experimental approach to widely expose the TM more widely. In a more recent study

in our group, Maftoon et al. (2013, 2014) used LDV to perform in vivo vibration measurements of the

gerbil TM at several points on the PT, along the manubrium and on the PF. The response of the TM to

audio-frequency chirps in  the ear  canal  was reported.  Data were presented for  two PF conditions:

naturally flat, and retracted into the middle-ear cavity. At low frequencies, they reported a minimum

and a shallow maximum in the magnitude responses of the manubrium caused by resonance of the PF

when  in  its  flat  condition.  On  the  other  hand,  a  retracted  PF  resulted  in  reduced  displacement

magnitudes and no effects on the responses of the manubrium and PT. They reported that the break-up

of  the  simple  low-frequency pattern  occurs  between 1.8 and 2.8 kHz for  all  PT points.  At  higher

frequencies, they observed more complex vibration patterns on the PT and a roll-off of the magnitude

responses on the manubrium, including the umbo, with substantial irregularities.

3.4.3 Static pressure deformations

Apart from acoustic pressures, the middle ear is also subject to very slow quasi-static pressures due to

changes in ambient pressures and to mechanisms of gas exchange  (Dirckx et al., 2001). Changes in

static pressure are also involved in tympanometry, a useful clinical diagnostic tool for assessing the

condition of the middle ear. Static pressures change the stiffness of the middle-ear system and alter its
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acoustic transfer function. 

Quasi-static deformation of the gerbil TM under static pressure has been measured in several studies

by the group of Decraemer and Dirckx in Antwerp. To start with, Von Unge et al. (1993) studied gerbil

PT  deformations  under  static  pressure  using  real-time  differential  moiré  topography.  Their

measurements  showed hysteresis  between the  loading  and unloading  cycles  and convergence  to  a

preconditioned state after the second cycle. Two areas of maximum magnitude were observed, one on

the anterior side and one on the posterior side of the PT, at approximately the same level. The locations

of the areas remained constant as the pressure increased. Dirckx et al. (1997, 1998) studied gerbil PF

deformation under positive and negative static pressures varying from −2 kPa to +2 kPa using moiré

topography with very high resolution. They found that the PF can be approximated by a spherical cap

with high accuracy. Hysteresis was again found between loading and unloading. They also reported that

much of the PF deformation takes place in response to small pressure changes of a few hundred Pa.

 Dirckx and Decraemer (2001) studied the effects of removing different gerbil middle-ear structures

on the displacement pattern of the TM under static pressure with high-resolution moiré topography.

Each pressurized measurement was preceded by a preconditioning process consisting of the pressure

cycle 0 Pa, −1 kPa, −2 kPa, −1 kPa, 0 kPa, +1 kPa, +2 kPa, +1 kPa and 0 kPa, repeated five times. Each

pressure value was maintained for 1 s. Then, the middle ear was loaded with a pressure cycle of larger

pressure steps for higher pressure values and lower pressure steps for lower pressure values: 0 Pa,

±0.1 kPa, ±0.2 kPa, ±0.3 kPa, ±0.4 kPa, ±0.6 kPa, ±0.8 kPa, ±1.2 kPa, ±1.6 kPa and ±2 kPa, with each

pressure value maintained for 2 s. Measurements at various stages of dissection were compared with

measurements in the intact middle ear. Fig. 3–6 shows the mean deformation as a function of pressure

for an intact ear (stage 0) and an ear without the cochlea (stage 1). The curves for both stages are very

similar over the whole pressure range; only at negative pressures is there a small difference. The same

is  observed  for  most  other  dissection  stages.  They  concluded  that  the  cochlea,  stapes  and  tensor
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tympani have little or no influence on static TM deformations, but that for pressures between 0 and

400 Pa the ossicles  strongly influence  the  TM deformation,  and at  0 Pa the  anterior  mallear  bony

connection influences the shape of the TM.

Gea et al. (2010) used X-ray microscopic computed tomography in the human and gerbil middle-ear

while static pressure was applied to the ear canal. Boundary deformations were carefully observed to

fully understand the boundary conditions required in realistic three-dimensional models of the middle

ear. 

Quasi-static deformation of the human TM under static pressure was investigated in several studies as

well. Dirckx and Decraemer (1991) studied the effect of static pressure on the shape of the human TM.

Multiple  measurements  were  taken  for  positive  and  negative  middle-ear  pressures  ranging  from

−1.6 kPa to +1.6 kPa. They determined the umbo displacement as a function of the applied middle-ear

pressure and found that their measurements were in agreement with point displacements presented by

Hüttenbrink (1988). 
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Fig. 3–6:Mean deformation as function of pressure for an intact ear (stage 0) and ear without a
cochlea (stage 1) (Dirckx and Decraemer, 2001)



 The same group has also evaluated the response of the cat TM to static pressures. Funnell and

Decraemer  (1996) measured the shape of the cat TM under static pressures as high as ±2.2 kPa to

clearly determine the boundaries of the PT, manubrium and PF. Although the unloading curves were

not  actually  measured,  they  observed  the  effect  of  hysteresis  and  suggested  the  presence  of

preconditioning. Dirckx and Decraemer (2001) also investigated the effect of static pressure on the cat

TM and reported the full loading and unloading curves. Ladak et al. (2004) measured the shape of the

cat  TM  with  a  normal  mobile  manubrium and  with  a  fixed  manubrium as  it  was  pressurized  to

±2.5 kPa. In response to negative pressures the TM displayed erratic results, which was hypothesized to

be due to “snap-through” buckling. This is a form of instability involving a local reversal in the TM

curvature  due  to  a  sudden  jump  from  one  equilibrium  configuration  to  a  different  equilibrium

configuration.

Charlebois et al.  (2004), in an investigation of the nonlinear tensile properties of bovine articular

cartilage, performed a series of uniaxial tension tests on fresh bovine articular cartilage slices. They

found that viscoelastic behaviour of the soft tissue was still present even a few hours after each large

static-pressure application. This finding suggests that in the short intervals of the pressurization cycle

of Decraemer’s protocol (10 to 20 s), the possible viscoelastic effects may not dissipate between the

application  of  the  static  pressure  and  the  start  of  a  measurement.  These  possible  effects  must  be

considered when interpreting pressurized vibration results. 

The Antwerp group (e.g., Dirckx et al., 2006; Salih et al., 2016) has also studied the effects of the

rate and direction of pressure change on the displacement response of the middle ear to static pressure.

Dirckx et  al.  (2006) investigated the response of  the rabbit  middle ear  (with removed cochlea)  to

varying pressures with amplitudes up to ±2.5 kPa and five different linear pressure rates: 0.2, 0.3, 0.5,

1  and 1.5 kPa/s.  They measured  the  displacement  of  the  umbo and the  stapes  with  a  heterodyne

interferometer  with  a  position  decoder.  Displacement  vs.  pressure  curves  were  reported  at  all
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pressure-change rates. Stapes displacements were highly nonlinear for pressures of ±1 kPa, but showed

no hysteresis, which demonstrates that the annular ligament has little viscoelasticity. With increasing

pressure  change  rate,  the  umbo  peak-to-peak  displacement  decreases.  The  umbo  motion  shows

significant hysteresis that increases with decreasing pressure change rate, as shown in Fig. 3–7.  This

observation will be discussed further in section 5.3.3. 

Recently, Salih et al. (2016) measured the 3D motion in both gerbil and rabbit middle ear using a

novel X-ray stereoscopy technique by placing beads on the manubrium and stapes. The middle-ear was

subjected to sinusoidal pressure signals at amplitudes ±0.5 kPa and ±1 kPa for frequencies of 0.5, 5, 10

and 50 Hz. They reported the displacement of gerbil and rabbit umbos as functions of frequency as
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Fig. 3–7:Umbo displacement as a function of pressure at different ultra-low frequencies obtained in
one ear (Dirckx et al., 2006)



shown in Fig 3–8. Similar to the earlier experiment performed by the same group (i.e., Dirckx et al.,

2006), strong nonlinearity in the stapes motion was obtained, and asymmetry in both umbo and stapes

displacement was obtained with higher displacements for positive pressures. Unlike the  case in the

earlier  experiment,  both  umbo  and  stapes  peak-to-peak  displacements  increased  as  a  function  of

frequency. The umbo and stapes were reported to move in opposite directions, but no explanation of

this strange behaviour was suggested. Hysteresis was not reported because “the current experimental

setup does not not currently allow the measurement of displacement direction”. 

3.4.4 Pressurized TM vibrations 

3.4.4.1 Tympanometric measurements 

Tympanometry  is  well  established  and  widely  used  to  assess  middle-ear  function  in  clinical  and

scientific studies. From early work  (e.g., Decraemer et al., 1984; Shanks & Wilson, 1986), it is well

known  that  the  direction  of  the  pressure  sweep  affects  the  admittance  measures.  In  bidirectional

tympanometry,  two  different  peak  pressures  are  found corresponding  to  the  negative  and positive

directions of pressure change. The difference between the peaks obtained during the increasing and

decreasing part of the pressure cycle is defined as the peak pressure difference. There are discrepancies

between different studies about how the pressure-change rate affects the pressure peak difference and
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Fig. 3–8: Displacement of (a) gerbil umbos and (b) rabbit umbos at frequencies of 0.5, 5, 10, and
50 Hz (Salih et al., 2016)



what is the cause of the separation between the peaks. Osguthorpe and Lam (1981) studied the effects

of  the  rate  and  direction  of  pressure  change  on  tympanometry  in  cats.  They  measured  both  the

susceptance  and conductance  components  of  admittance.  Ascending  and  descending  pressure  runs

between +3.9 and −5.9 kPa were compared, with rates of pressure change of 100 and 500 Pa/sec. They

observed that the tympanograms for descending runs were simple and single peak, while the ascending

runs produced notched tympanograms. Lower admittance values were obtained with decreasing rates of

pressure change for both ascending and descending runs.  Osguthorpe & Lam also  investigated the

stability  of  tympanograms in response  to  repetitive  testing,  in  both  cats  and human subjects.  The

resulting susceptance and conductance tympanograms of the first, third and tenth descending runs in a

typical  human  subject  were  different  and  did  not  seem  to  reach  a  steady  state.  Gaihede  (1996)

investigated the effects of the rate of pressure change on the increased compliance that occurs as a

result of repetitive loading-unloading experiments  (e.g., Osguthorpe & Lam, 1981). He performed 9

tympanometric measurements in healthy adults with different rates of ear-canal pressure change: 500,

1000, 2000 and 4000 Pa/s. For each group he observed that compliance increases in each trial until it

reaches a steady preconditioned state for later trials. He also observed that tympanometric admittance

increased with increasing rates of pressure change. In a more recent article using a modern high-speed

tympanometer (Therkildsen & Gaihede, 2005), no significant effect of pressure change rate was found

on the  peak pressure  differences  for  pressure change rates  ranging from 500 Pa/s  to  4000 Pa/s.  A

constant peak pressure difference of 120 Pa was found for all pressure change rates. Therkildsen and

Gaihede  (2005) attributed  it  to  hysteresis  in  the  ear  and  attributed  earlier  observations  of  rate

dependence to phase delay in the older instruments. 

3.4.4.2 Laser Doppler vibrometry measurements 

Lee and Rosowski (2001) used LDV to analyze the acoustic behaviour of the PT and PF of the gerbil in
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response to middle-ear static pressure sweeps that mimic pressure changes in normal tympanometry.

They measured sound-induced umbo velocity in live gerbils at different levels of static pressure in the

±3 kPa range. Negative middle-ear pressures reduced the velocity magnitude of the TM more than

positive pressures did. This asymmetry between negative pressures and positive pressures is consistent

with other studies  (e.g.,  Dirckx & Decraemer,  2001; Dirckx et  al.,  2006; Salih et  al.,  2016).  They

reported  a  dependence  of  the  velocity  measurements  on  the  direction  of  the pressure  sweep  and

attributed it to hysteresis. They also highlighted  the  frequency dependence of both the umbo and PF

transfer functions. Umbo velocity increased with the frequency of the sound stimulus from 250 Hz up

to  2.5 kHz  and  then  decreased at  higher  frequencies for  both  positive  and  negative  quasi-static

pressures. However, the magnitude of the effect varied with the sign of the static pressure, decreasing

more for negative pressures than for positive pressures for frequencies less than 2.5 kHz. 

Gan  et  al.  (2006) used  two  laser  vibrometers  to  simultaneously  measure  the  umbo and  stapes

vibrations in human temporal bones with intact and removed cochlea and a step-wise variation of

middle-ear pressures. They reported displacement responses of the umbo from seven temporal bones,

recorded over the frequency range from 0.2 to 8 kHz in response to positive and negative middle-ear

pressures in the  range ±2 kPa and with an acoustic stimulus of 90 dB. They found that positive and

negative pressures in the middle-ear reduced the displacement of the umbo and footplate at frequencies

less  than  1500 Hz,  while  no  effect  was  observed  at  higher  frequencies.  This  reduction  in  umbo

displacement for frequencies lower than 1500 Hz is consistent with data reported by Lee and Rosowski

(2001) except that the latter  study found that the umbo velocity decreases at  frequencies less than

2500 Hz. No asymmetry was detected in the umbo displacement  for the intact cochlea,  unlike the

results of Lee and Rosowski  (2001).  These differences between the two studies may be due to the

difference in species as well as to different techniques for measuring vibrations. 

In our group, Shapiro (2014) performed preliminary post mortem LDV multiple-point measurements
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on the pressurized gerbil middle-ear in response to a chirp over the range of 0.2 to 11 kHz. Quasi-static

pressure was varied in both positive and negative directions in a stepwise fashion with measurements

taken  at  0,  ±0.25,  ±0.5,  ±1,  ±2  and  ±2.5 kPa,  with  each  step  maintained  for  20 s.  The  vibration

responses  of  the  TM  to  pressurization  were  reported  for  different  locations  on  the  PT,  PF  and

manubrium. Pressurized responses exhibited magnitude reductions at lower frequencies, then rose to a

peak and exhibited sharp features at higher frequencies. As pressure increased, magnitudes decreased

and the peak was shifted to higher frequencies. With regard to hysteresis and cycle-to-cycle changes,

these preliminary results were not repeatable. Kose et al.  (2017) extended this work and presented

preliminary results from similar experiments on  in vivo gerbils. Vibration  responses were similar to

those of Shapiro. 

Investigating the presence of hysteresis and the effects of pressure-change rate is ongoing work to

provide a better understanding of the effect of static pressurization on the response of the middle ear. 
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Chapter 4: Methods

4.1 Introduction
Details  regarding  the  FE modelling  are  presented  in  this  chapter.  It  includes  a  description  of  the

geometry,  model  components  and  mesh  in  section 4.2.  The  boundary  conditions  are  defined  in

section 4.3. Material properties of the components of the model are presented in section 4.4. Loading

conditions  and  the  time-step  analysis  are  summarized  in  section 4.5,  and  the  mesh-convergence

analysis is presented in section 4.6.

4.2 Geometry, model components and mesh
The 3D geometry of the model is a simplification of the one used by Maftoon et al. (2015), which was

a refinement of the ones used by Elkhouri et al. (2006) and Decraemer et al.  (2011). The model of

Maftoon et al. has a fine mesh composed of about 50000 second-order solid elements. Using this mesh

in a dynamic nonlinear viscoelastic analysis is computationally very expensive.  Quasi-static pressure

sweeps  in  clinical  tympanometry  over  a  couple  of  cycles  may  last  a  few  seconds.  For  research

tympanometry, an exploration of conditioning effects at low pump speeds results in a set of several

cycles that may last a few minutes. The acoustic stimulus applied as pure tones or chirps may have

frequencies as high as 8 kHz. The time step in simulations of tympanometry should be on the order of

10−5 s to adequately model the response to the acoustic stimulus of frequency 8 kHz (see section 4.5).

Considering this small time step and the long duration of quasi-static pressure sweeps, millions of time

steps are required for these simulations. Thus, for a preliminary study of the response of the middle ear

to conditions similar to tympanometry, we decided to simplify the model and include only the parts that

we expect to contribute the most to the middle-ear response. 

The geometry of the model of Maftoon et al. was based on segmentation of a microCT dataset,

supplemented by histological images. The model here includes the PT and PF, the manubrium, and a
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crude representation of the ossicular chain with a fixed axis of rotation and the cochlear load. The FE

model used in this study is shown in Fig. 4–1. In-house FE preprocessing software, Fie, Tr3 and Fad,

was used by Elkhouri et al. and Maftoon et al. to perform image segmentation and surface tesselation

and to prepare  surface meshes  for  volume mesh generation  using  the open-source  software  Gmsh

(Geuzaine & Remacle, 2009). Fad was then used to export the 3D mesh to text files that can be read by

two  open-source  software  packages,  Salome-Meca  (2016)  and  Preview  (version  1.20.4),  the

preprocessors for the FE solvers Code_Aster (version 12.7) and FEBio (version 2.6.4), respectively.

We decided to use these two FE solvers because they are open-source and free/libre software; they

are  powerful  and  well  supported;  and  our  group  has  previously  used  them  in  several  studies

(Code_Aster: e.g., Maftoon et al., 2015, and Motallebzadeh et al., 2017; FEBio: e.g., Motallebzadeh et

al., 2013, and Soleimani & Funnell, 2016). Our previous simulations using Code_Aster were either

static or dynamic, while all our previous FEBio studies were static. Furthermore, the only viscoelastic

nonlinear model study in our group was performed using FEBio and was static ( Motallebzadeh et al.,

2013). Thus, despite our experience with these solvers, we have not tested  the performance of either

one for the new combination of dynamics, nonlinearity and viscoelasticity required for this study. We

therefore  decided  to  create  the  model  for  both  solvers,  and  to  compare  the  responses  for  model

verification. 
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Fig. 4–1:3D FE model of gerbil middle ear. A: components of the model. B: Mesh of the model is
shown.



As discussed in section 3.3.2.4, the TM is a complex structure composed of multiple layers. It is an

inhomogeneous  structure  with  anisotropy  in  the  radial,  circumferential  and  through-thickness

directions. However, in this study we assume the TM to be homogeneous and isotropic. This has been

done in many other middle-ear modelling studies, including Maftoon et al. (2015), and has been quite

successful. 

In  the  model  of  Maftoon  et  al.  (2015),  the  TM was  modelled  using  Code_Aster’s  seven-node

second-order TRIA7 COQUE_3D shell elements. The PT had a variable thickness calculated using an

interpolation  algorithm  developed  to  reconstruct  a  thickness  map  based  on  the  measurements  of

Kuypers er al.  (2005), who reported thicknesses along four lines across the PT and eight lines across

the PF in the gerbil, as shown in Fig. 4–2. For simplicity, in our model we used a constant thickness of

15.78 μm (calculated by us to be the mean) for the PT and 23.5 μm (their reported mean) for the PF.

These mean values for the thicknesses of the PT and PF are similar to the measurements of Teoh et al.

(1997) who obtained a mean value of 19.1 μm (SD=3.2) for the PT and a mean of 32.2 μm (SD=12.7)

for the PF based on a histological study on five gerbils.
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Fig. 4–2: Contour plots of the thickness distribution of a gerbil TM. A: PT; B: PF (Source: Kuypers et
al., 2005) 



In the model of Maftoon et al. (2015), in order to ensure correct coupling between the shell elements of

the TM and the 3D solid elements of the malleus, the PT was continued over the lateral surface of the

manubrium and nodes were shared between the two structures. This surface was thus modelled with

second-order TRIA7 COQUE_3D shell elements and assigned a thickness of 40 μm. COQUE_3D shell

elements in Code_Aster support nonlinear geometry (large displacements and large rotations) but they

do  not  support  material  nonlinearity.  Furthermore,  testing  shell  elements  in  FEBio  with  simple

geometries  (e.g.,  clamped  square  plates)  for  which  we  have  analytical  solutions  showed  no

convergence to the analytical solution in static analysis and showed abnormal behaviour in dynamic

analysis. On the other hand, solid elements in both FEBio and Code_Aster concur well with analytical

solutions, show normal dynamic behaviour with simple geometries, and support material nonlinearity.

We therefore modelled the manubrium with solid elements. We assigned it a larger thickness of 80 μm

that ensured its rigidity under both quasi-static and acoustic pressures, consistent with the model of

Maftoon et al. (2015) and their experimental observations at frequencies below 1600 Hz (e.g., Maftoon

et  al.,  2013,  2014).  In  Code_Aster,  we  use  the  CREA_MAILLAGE module  with  its  subfunction

COQU_VOLU to build volume meshes for the TM and manubrium from the data of the surface mesh

by extrusion along the normals of the elements. The PT was extruded in one layer, the PF in two layers

and the manubrium in three layers. This operation applies only to first-order meshes, so the second-

order shell elements of the TM and the manubrium were converted to first-order elements before the

extrusion. The resulting solid mesh for the TM and the manubrium was made of first-order PENTA6

3D pentahedral elements. Each node of this type of element possesses three translational degrees of

freedom and no rotational degrees of freedom. Higher-order solid elements are less stiff than first-order

solid elements, give better displacement predictions and have better convergence rates (e.g., Cifuentes

& Kalbag, 1992). The first-order pentahedral elements in Code_Aster can be converted to higher-order

pentahedral elements PENTA15 and PENTA18. On the other hand, FEBio has higher-order hexahedral
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and tetrahedral elements but supports only first-order pentahedral elements. To have a working model

in both FEBio and Code_Aster, the Code_Aster solid model was converted into a triangulated surface

in  Salome_Meca.  Then,  MATLAB  code  was  written  to  convert  the  3D  surface  information

corresponding to the solid model of the TM and manubrium to a file type readable by Fad, which in

turn produced a file readable by Gmsh. Using Gmsh, we converted the surface meshes to volume

meshes made of tetrahedral elements. Consequently, a model of the TM and manubrium made of ten-

node  second-order  tetrahedral  solid  elements  is  available  for  both  FEBio  (tet10) and  Code_Aster

(TETRA10). 

The effect of the number of layers in the PT, PF and manubrium was tested. To ensure the continuity

of the layers across the boundaries of these three components, when  the PT (which has the smallest

thickness) was extruded to a certain thickness, all other components were extruded by the same amount

as well. Then, when we extruded PF (which has a thickness higher than the PT but lower than the

manubrium) to its required thickness, the manubrium was also extruded by the same amount. Finally,

the manubrium (which has the greatest thickness) was extruded to its required thickness. We evaluated

different configurations for the number of layers, with a maximum of 4 layers for the PT, 5 layers for

the PF  and  6  layers  for  the manubrium.  We  found  that  with  second-order  elements  all  of  the

configurations produced very similar results.

The effective load exerted on the eardrum by the ossicular chain has been modelled by considering a

fixed axis of rotation. Its position was defined by two points corresponding to the most anterior point

on the anterior mallear process and the most posterior point on the posterior incudal process. Stiff

tetrahedral elements, forming what we call the “wedge”, connect the axis of rotation to the upper end of

the manubrium. An additional block of tetrahedral elements is added on top of the wedge to represent

the  stiffening  effects  of  the  ossicles  and  middle-ear  ligaments.  Funnell  and  Laszlo  (1975,  1978)

attempted to estimate the mechanical properties of the ossicles and middle-ear ligaments of the cat
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based on their geometries. An alternative approach to that a priori parameter estimation is to estimate

the cochlear and ossicular load by fitting to either experimental or model results. Here, the mechanical

properties of the wedge and block were estimated by fitting to the umbo displacements obtained from

the model of Maftoon et al. (2015). A more detailed description will be provided in sections 4.4.2 and

4.4.3. The assumption of rigid-body motion about a fixed axis of rotation is valid up to about 1600 Hz

according to the experimental observations by Maftoon et al. (2013, 2014). For higher frequencies, they

found that the position of the axis of rotation shifts and the manubrium seems to be bending, which is

also consistent with measurements by de La Rochefoucauld and Olson (2010) and Decraemer et al.

(2011). Thus, the findings of our model at higher frequencies may not properly reflect the mechanisms

involved in the gerbil middle ear. 

4.3 Boundary conditions 
Three  constraint  representations  have  been  implemented  in  the  literature  in  order  describe  the

boundaries of the PT and PF: (1) a fully clamped (i.e, all of the three translational and three rotational

degrees of freedom are set to zero) or simply supported (i.e, the three translational degrees of freedom

are set to zero but the rotational degrees of freedom are not) periphery (e.g., Elkhouri et al., 2006;

Maftoon et al., 2014); (2) representation of the tympanic annulus as a shell or a solid structure  (e.g.,

Van Wijhe et al., 2000); or a spring restraint at the periphery of the TM (e.g., Koike et al., 2002; Kelly

et al., 2003). The choice of considering the whole TM to be firmly anchored to the bony tympanic

annulus around its entire circumference represents an approximation of the TM anatomy. In fact, the

TM thickens around the periphery of the PT, forming the fibrocartilaginous ring.  This structure is

firmly attached to a sulcus in the bony tympanic annulus except superiorly between the PT and PF

(e.g., Gea et al., 2010; Aernouts & Dirckx, 2011). Gea et al. (2010) demonstrated that the boundaries of

the PT and PF are neither simply supported nor fully clamped, suggesting that the fibrocartilaginous
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ring should be modelled. However, for simplicity, in this model, the PT and PF were considered to be

fully clamped around their peripheries except at their interface. For the superior edge of the wedge, all

three translational degrees of freedom were also set to zero to define a fixed axis of rotation (Fig. 4–3).

The upper face of the block was also clamped. 

4.4 Material Properties
Because of the scarcity of data in the literature about the material properties of the gerbil middle ear, all

of the parameters describing the material properties of the components were estimated. To define the

baseline parameters, we evaluated the dynamic response of the model to a unit-step sound pressure,

computed frequency responses, and compared them with those from the linear FE model of the gerbil

middle ear of Maftoon et al. (2015). That model  generated frequency responses that were similar to

responses measured in vivo using multi-point vibrometry by the same authors (2013, 2014) and to those

measured by other groups (e.g., Lee & Rosowski, 2001) as shown in section 5.2.2.

4.4.1 Tympanic membrane 

4.4.1.1 Governing equations 

Different approaches have been used in the literature to derive the constitutive equations for nonlinear

viscoelastic materials. In this study, we use a model similar to that of Motallabzadeh (2013) and assume

linear  viscosity  and  nonlinear  elasticity  (hyperelasticity).  The  stress  response  of  the  material  is
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Fig. 4–3: Illustration of the boundary conditions at the wedge and block.



formulated in terms of a convolution of a time-dependent component and an elastic component, similar

to what is done for small-strain viscoelasticity (linear viscoelasticity). We refer here to this model as a

quasi-linear visco-hyperelastic (QLVH) model. The total second Piola-Kirchhof stress tensor  S(t) is

calculated  by  convolving  a  normalized  relaxation  function  G(t) with  the  derivative  of  an  elastic

response function Se:

S (t )=∫
0

t

G( t−u)(
d S e

d u
)d u (4–1)

where t is time and u is a dummy variable. A Prony (exponential) series representation is used for G(t).

This formulation can interconvert the viscoelastic functions between the time and frequency domains,

and also allows a simple discretization procedure for numerical implementation (e.g., Park & Schapery,

1999). Depending on whether  Se represents the instantaneous or long-term elastic response,  G(t) is

given by either

 G(t)=1−∑
i=1

N

gi(1−exp(−t / τi)) (4–2)

or 

G(t)=1+∑
i=1

N

g iexp (−t / τ i) (4–3)

respectively.  In  both  equations,  gi  (relaxation  coefficients)  and  τi (time  constants)  are  material

parameters and N is the number of exponential terms. 

Among  the  many  constitutive  models  that  have  been  proposed  for  hyperelastic  materials,  the

Mooney-Rivlin method has been widely used to simulate deformations in nearly incompressible soft

tissues (e.g., Martins et al., 2006) such as the TM (e.g., Wang et al., 2007). According to this model, a

strain energy W composed of deviatoric and volumetric energies (i.e., energies due to distortion and to

change of volume, respectively) is defined by 

 W=C10( Ī 1−3)+C01( Ī 2−3)+W vol (J ) (4–4)
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where Ī1  and Ī2  are the invariants of the deviatoric part of the right Cauchy-Green deformation tensor

and are related to the strain invariants as follows:

 Ī1=J
−2

3 I1

Ī2=J
−4

3 I2

. (4–5)

C10 and C01 are material coefficients; and Wvol(J) is the volumetric part of the energy function with this

form in our model: 

 W vol=K ( ln J )2 (4–6)

where J = λ1λ2λ3 is the determinant of the elastic deformation gradient; the λi are the stretches; and K is

the bulk modulus. Soft tissue is generally assumed to be nearly incompressible (e.g., Humphrey, 2003).

Thus, volume change is negligible, and the bulk modulus is set high enough to make Wvol very small.

Material  parameters for a hyperelastic material  can be determined by performing an unconfined

tensile or compression test (to determine the deviatoric properties) and a confined compression test (to

determine the volumetric part of the strain energy function). Under small strains, the Young’s modulus

of the material may be written as follows:

 E=4 (C10+C 01)(1+ν) , (4–7)

where ν  is Poisson’s ratio and the bulk modulus is defined as 

 K=
4 (C10+C01)(1+ν)

3 (1−2 ν)
. (4–8)

In the Mooney-Rivlin model, the bulk modulus can be given by (Delalleau et al., 2008)

 K=
4 (C10+C01)

3(1−2ν)
(4–9)

In the case of quasi-incompressibility, the effect of the bulk modulus is insignificant. 

This QLVH model is readily available in FEBio but is not implemented in Code_Aster. It is possible

to  add  it,  however,  using  MFront  (http://tfel.sourceforge.net/),  a  constitutive  law  generator  which

comes in the form of a software library that provides interfaces to several mechanical solvers, including
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Code_Aster.  MFront (version 2.3) makes it possible to define a constitutive law without having to

worry about the solution methods. It converts domain-specific languages into C++ and offers three

kinds of material knowledge: (1) material properties (e.g., the Young’s modulus, Poisson’s ratio, bulk

modulus, etc.); (2) mechanical behaviours (e.g., Ogden model, Chaboche model, etc.); and (3) simple

point-wise models  (e.g.,  material  swelling used in  fuel  performance codes).  The coupling between

Code_Aster and MFront has been extensively tested and its effectiveness demonstrated for many laws.

The implementation of different mechanical behaviours is compatible with solid, shell, plate and joint

elements.  MFront  is  adapted  to  both  implicit  and explicit  temporal  schemes.  For  finite  strains,  it

suffices to define the stress tensor and the consistent tangent operator. The latter is a term introduced by

Simo and Taylor  (1986) and plays an important role in the nonlinear FE method. It is defined as the

ratio of the stress tensor to the strain tensor and is a fourth-order tensor: 

 D=
∂ S
∂ E

=2
∂S
∂C

(4–10)

where S is the second Piola-Kirchhoff stress; and C is the right Cauchy-Green tensor. 

For the numerical solution of QLVH problems with the use of the Newton-Raphson method, it is

necessary to determine the consistent tangent operator at each integration point.  This allows one  to

obtain a quadratic rate of asymptotic convergence when using the Newton-Raphson method (Simo &

Hughes,  2006). For  relatively  simple  models,  such  as  a  Mooney-Rivlin  model,  it  is  possible  to

determine it analytically. However, in the case of more complex models such as a QLVH model, it is

necessary to use an approximation. 

The numerical approximation consists of transforming the convolution representation presented in

equation 4–1 and discussed in section 3.3.2.3 into a two-step recurrence formula involving internal

variables stored at the quadrature points of elements. This method was first suggested by Hermann and

Petterson  (1968) and Taylor et al.  (1970). This approximation is only valid for a particular class of
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relaxation functions consisting of a linear combination in time like the one we are using (i.e., Prony

series, equation 4–3). For a detailed overview of the recursive procedure for updating the Cauchy stress

tensor and consistent tangent operator, refer to the work of Simo and Hughes (2006, p. 372). 

Code_Aster  provides  two  different  finite-strain  formulations  (1) SIMO_MIEHE  and

(2) GROT_GDEP, where the principal of virtual work is expressed in the current configuration and in

the reference configuration, respectively, and the Cauchy stress and second Piola-Kirchhoff stress are

the respective outputs. The GROT_GDEP formulation is also called “total Lagrangian” in the literature

(Belytschko et al., 2013).  When using MFront,  finite-strain behaviours must use the  SIMO_MIEHE

finite-strain formulation. Thus, in MFront, both the stress and the consistent tangent operator must be

provided in the current configuration. MFront has intrinsic functions to transform tensors from one

configuration to another, such as  convertSecondPiolaKirchhoffStressToCauchyStress for stress-tensor

transformation  and  pull_back for  transformation  of  the  consistent  tangent  operator  to  the  current

configuration. 

4.4.1.2 Viscoelastic parameters 

The acoustic stimulus in wideband tympanometry and LDV experiments is usually within the range

150 to 8000 Hz. The linear change rate of the quasi-static pressure in tympanometry and in sweep

pressurization  experiments  on  the  middle-ear  vary  from  50 Pa/s  to  4000 Pa/s.  A  50 Pa/s

pressure-change rate in a triangular pressure signal between +2.5 kPa and −2.5 kPa corresponds to a

frequency of 5 mHz (200 sbeing the time it takes for the signal to pass from −2.5 kPa to +2.5 kPa and

back again in a triangular pressure signal . The period of the signal is thus 200 s and the frequency is

1/200 s=5 mHz) while a rate of 4000 Pa/s for the same pressure range corresponds to a frequency of

400 mHz. In this study, we only examine the response of the middle ear to pressure change rates from

±200 Pa/s (20 mHz) to ±1500 Pa/s (150 mHz). 
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To cover the range from the ultra-low frequencies of the quasi-static pressure variations to the high

frequencies of the acoustic stimulus, for both the PT and the PF we predefine six time constants that

cover the range of 3 mHz to 16 kHz. A common practice is to take one time constant per decade in the

time domain (e.g., Knauss & Zhao, 2007). This also corresponds to one time constant per decade in the

frequency  domain  (e.g.,  Fung,  2013;  Charlebois  et  al.,  2013).  The  inverse  of  each  time  constant

corresponds  to  an  angular  frequency  (ωi=1/τi=2πfi)  for  which  the damping  represented  by  the

coefficient (gi) is maximum. Since we limit the number of time constants to six (due to a restriction in

FEBio),  we  use  time  constants  ranging  from 10 µs(=100000 rad/s  ≈16 kHz) to  52 s  (=0.019 rad/s

≈3 mHz)  that  are  approximately  equally  logarithmically  spaced  to  cover  the  frequency  range  of

interest. In this case, we end up having about one time constant per two decades: τ1=10 µs, τ2=220 µs,

τ3=5 ms, τ4=0.11 s, τ5=2.3 s and τ6=52 s. 

Each term in a  Prony series  involves  the two parameters  gi (relaxation coefficient)  and τi  (time

constant), resulting in two degrees of freedom (DOFs). The relaxation coefficient represents the amount

of damping at the frequency corresponding to the time constant. As discussed in section 3.3.2.3, for an

n-term series, the sum of the  n relaxation coefficients needs to be less than or equal to 1  (Simo &

Hughes, 2006, p. 349). A common characteristic of the hysteresis of soft tissues is its insensitivity to

frequency,  with  a  continuous  relaxation  spectrum  over  a  wide  range  of  frequencies  as  shown  in

Fig. 4–4.  This  suggests  that  one  should  consider  equal  relaxation  coefficients  for  all  of  the  time

constants. Thus, taking into account the constraint on the sum of the relaxation coefficients (Eq 3–19),

each of the six equal coefficients must be greater than 0 and less than or equal to 1/6 ≈0.167). A We

evaluated the dynamic response of the model to sound pressure using these parameters and compared it

to the results from the linear FE model of the gerbil middle ear of Maftoon et al. (2015). We compared

our model results at the umbo, two points in the PT (anterior and posterior) and a centre point in the PF

to results from the model of Maftoon et al. (2015). We found that the a coefficient 0.07 for all time
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constants produced enough damping in the PT without suppressing the complex displacement patterns

at higher frequencies. The relaxation coefficient related to the time constant 220 µs for the PT was

adjusted to be 0.4 to better represent the damping present in Maftoon’s model at the centre point of the

PF. In this case, the sum of the time constants for the PF becomes 0.75, still respecting the constraint

that the sum should be less than or equal to 1 as discussed above.

4.4.1.3 Hyperelastic parameters 

As  explained  in  section 4.4.1.1,  there  are  two  possibilities  for  characterizing  the  elastic  part  in

equation 4–1:  the  instantaneous  response  or  the  infinite-time  response  (equations 4–2  and  4–3,

respectively). In those two limiting conditions, the viscosity of the material does not contribute to its

response.  However,  it  is  not  possible  to  directly  measure either  the  instantaneous  response  or  the

infinite-time response of a material due to practical limitations  (e.g., Wu et al., 2003).  For example,

loading tests on the TM  (e.g.,  Cheng et al.,  2010) are not fast enough to provide an instantaneous

response and do not  last  long enough to provide  an infinite-time response.  Therefore,  the viscous

behaviour  of  the  material  contributes  to  the  shapes  of  the  reported  stress-stretch  curves.  If  the

parameters obtained from fitting the Mooney-Rivlin model to the experimental data were used as the

instantaneous response of the hyperelastic part of  the QLVH model, the resultant stress-stretch curve

would be lower than the experimental data. On the other hand, if the fitted hyperelastic parameters

were used as the long-term response, then the resultant stress-stretch curve would be higher than  the

experimental data. In either case,  the Mooney-Rivlin parameters must be adjusted to reproduce the
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curves correspond to the contributions of one Prony series term (gi, τi). The sum is almost flat over a

wide range of frequencies. (Source: Fung, 2013, p. 288)



experimental curves (e.g., Motallebzadeh et al., 2013). We have chosen to take the elastic part of the

model to be the instantaneous elastic response and the Prony series of equation 4–3 is therefore used as

the time-dependent part.

The parameters in Table 4–1 were obtained by matching the responses at the umbo and at the centre

of  the PF from the model  of Maftoon et  al.  (2015).  For the PT,  these Mooney-Rivlin coefficients

correspond  to  a  small-displacement  Young’s  modulus  (obtained  from  equation 4–7)  of  9.9 MPa,

compared with 10 MPa as used by Maftoon et al. (2015).  In our model, different ratios of  C10 to  C01

were studied, namely, 1:0, 1:1,0:1, 1:2, 2:1, 1:3 and 3:1, while keeping the sum of C10 and C01 constant

at 1.6787 MPa. The model responses to both sound pressures and quasi-static pressures were found to

be insensitive to the C10:C01 ratio when the sum of C10 and C01 remains constant. This is consistent with

the results of Qi et al.  (2008) who used the Mooney-Rivlin model for the soft tissue in a newborn

middle-ear model and found that the different combinations of  C10 and  C01 had little effect on model

displacements in response to static pressures of ±3 kPa. Thus, for the PT, we select a C10:C01 ratio equal

to 3:1 as an arbitrary choice. 

The density of the PT was initially defined to be 1100 kg/m3  as in the model of Maftoon et  al.

(2015), the value having been chosen as being between the density of water (1000 kg/m3) and that of

undehydrated collagen (1200 kg/m3)  (Funnell & Laszlo,  1978). It  was then changed to be equal to

1300 kg/m3  in order to match the resonance frequency obtained by Maftoon et al. (2015) at the umbo

and at  points  on the anterior  and posterior  PT.  Alternatively,  we could have reduced the effective

Young’s modulus by reducing the sum of the Mooney-Rivlin coefficients. In that case we would have

had to adjust the ossicular load to stiffen the response at the lower frequencies. 

For the PF, we defined the density to be 1100 kg/m3 and adjusted the Mooney-Rivlin coefficients to

match  the  model  response  of  Maftoon  et  al.  (2015)  at  the  centre  of  the PF.  The  Mooney-Rivlin

coefficients for the PF were taken to be C10=81.2 kPa and C01=40.6 kPa, which correspond to a small-
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displacement  Young’s  modulus  of  0.74 MPa,  compared  to  2 MPa as  used  by  Maftoon  et  al.  The

difference  between  the  two Young’s  moduli  is  attributed  to  the  difference  in  boundary  conditions

between the two models. The PF was clamped in our model and simply supported in the model of

Maftoon et al. (2015). At a low frequency (200 Hz), Maftoon et al. (2013) measured a displacement

magnitude of 1.5 μm/Pa near the centre of the PF. If we assume the PF to be a circular disk with a

radius of 0.7 mm and a constant thickness of 23.5 μm, with a Poisson’s ratio of 0.49, subjected to a

uniform  static  pressure  and  simply  supported  all  around  its  periphery,  the  centre  deformation  of

1.5 μm/Pa measured experimentally by Maftoon et al. leads to a Young’s modulus of 6.4 MPa. The

corresponding Young’s modulus is reduced to 1.7 MPa when the disk is considered to be fully clamped

around  its  periphery.  The  change  of  boundary  condition  from simply  supported  to  fully  clamped

reduces the Young’s modulus by a factor of about  3.8. Our Young’s modulus of 0.7 is smaller by a

factor of about 2.9 than the Young’s modulus in the model of Maftoon et al. (2013). 

To  determine  what  bulk  modulus  is  required  to  approximate  incompressibility, we  apply

equation 4–9 with a Poisson’s ratio equal to 0.49. The values of the bulk modulus obtained for the PT

and PF are shown in Table 4–2. Changing the bulk modulus by decreasing the Poison’s ratio to 0.45

does not have a noticeable effect on the model’s frequency response. 

Table 4–1: Estimated parameters for the Mooney-Rivlin model 

Estimated parameters

Component C10 (MPa) C01 (MPa) K (MPa)

PT 1.0708 0.6071 167.785

PF 0.0812 0.0406 12.18

4.4.2 Manubrium, wedge and block

The manubrium and wedge were modelled as linear viscoelastic materials with governing equations

similar to what was defined in section 4.4.1.1 except that the elastic part is represented by the linear

isotropic elastic model instead of the Mooney-Rivlin model. The block was initially also modelled as a
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linear viscoelastic material. However, due to its small dimensions, its viscoelasticity contributed very

little to the overall viscoelasticity of the model so we decided to simply model it as isotropic elastic.

The manubrium, wedge and block represent the ossicular load. 

The time-dependent response of the manubrium and wedge was modelled with six time constants

defined to be the same as the ones used for the TM, and the initial relaxation coefficients were again all

set to be 0.07. The density of the manubrium, wedge and block was set to be 1100 kg/m3 for simplicity

although higher densities were used in the model of Maftoon et al. (2015) for the ossicles (1918. 1855

and  1565  kg/m3 for  the  malleus,  incus  and  stapes  respectively).  Those  densities  were  based  on

experimental measurements of the volumes and masses of the ossicles in gerbil  (e.g., Cohen et al.,

1992; Nummela, 1995), but we do not actually model the volumes of the ossicles. 

The manubrium is modelled with a Poisson’s ratio of 0.49 and the wedge and block were modelled

with a Poisson’s ratio of 0.3. We assumed the manubrium, wedge and block to all  have the same

Young’s  modulus,  and by trial  and error  found that  a  Young’s  modulus  of  14.5 GPa ensures  their

rigidity and adequately represents the stiffness of the umbo at low frequencies as modelled by Maftoon

and al. (2015). 

4.4.3 Cochlear load 

Measurements in the gerbil ear (Decraemer et al., 2007; Ravicz et al., 2008; de La Rochefoucauld et

al., 2008) suggest that the cochlear load generates purely viscous damping over most of the frequency

range  from 0.2  to  20 kHz.  De La  Rochefoucauld  et  al.  (2008)  derived  an  average  cochlear  input

impedance of about 4×1010 Pa·s/m3 for frequencies less than 30 kHz using a stapes footplate area of

0.62 mm2.  This  corresponds  to  a  viscous  damping  coefficient  of  15.4×10-3 N·s/m3.  Maftoon  et

al. (2015)  uniformly  distributed  this  value  to  four  dashpots  perpendicularly  attached  to  the  stapes

footplate to represent the cochlear load. 
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In Maftoon's model, cochlear damping was modelling by placing four dashpots perpendicular to the

stapes footplate. The total viscous damping coefficients was equal to 15.4×10-3 N·s/m3. Following the

same  approach,  in  our  model  in  Code_Aster,  the  cochlear  load  was  modelled  by  a  dashpot

perpendicularly attached to the inferior part of the manubrium near the umbo, with a viscous damping

coefficient of 2.04×10-3 N-s/m3. This is smaller than the value of 15.4×10-3 N·s/m3 used in Maftoon’s

model because the damper is attached to the manubrium instead of to the stapes footplate, resulting in a

stronger effect on the TM vibration patterns. This is smaller than the value of 15.4×10-3 N·s/m3 used in

Maftoon’s model because the damper is attached to the manubrium instead of to the stapes footplate,

resulting  in  a  stronger  effect  on  the  TM vibration  patterns.  In  our  model  in  FEBio,  the  cochlear

damping was represented in both the manubrium and wedge by a very high relaxation coefficient equal

to 16 for the time constant 10 µs. This violates the two constraints on the Prony-series coefficients

discussed in section 3.2.3.3, but it can thought of as following the common practice of representing the

cochlea by a first-order mass-spring-dashpot system, where the damping coefficient is set to be higher

than  1  for  an  overdamped  system.  Implementing  this  approach  in  Code_Aster  let  to  numerical

convergence problems. On the other hand, using discrete dampers in FEBio was not possible because

their dampers are restricted to connecting two rigid bodies. Although the manubrium is assumed to be

rigid,  the other end of the damper is  a node that does not belong to a rigid body. Introducing an

artificial rigid body to allow the implementation of the damper led to abnormal behaviours. In any case,

even though the two models use different representations of cochlear damping  they produce similar

results, as will be shown in section 5.2.

4.5 Loading conditions and time-step analysis 
We  evaluated  the  response  of  our  gerbil  middle-ear  model  to  different  loading  conditions.  As

mentioned in section 4.4, to evaluate the material properties, we applied a unit-step sound pressure of
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1 Pa on the TM surface and performed transient FE analyses. Simulations were continued for 25 ms

after the onset of the unit-step sound-pressure function. By 25 ms, the velocity magnitudes at different

locations of the TM and manubrium had reached almost zero. Frequency responses were obtained by

differentiating  the  displacement  responses  and  then  computing  the  fast  Fourier  transforms  of  the

resulting velocity responses. The response of our model was compared to the model of Maftoon et al.

(2015). A doubling of the time span of the simulation (from 25 to 50 ms) changed the responses by less

than 0.03 dB, so the time span of 25 ms was used in order to reduce computation time. The selected

time span provided a frequency resolution of 12 Hz.

For the acoustic stimulus, the choice of the time step is crucial  and is controlled by its highest

frequency content.  Fig.  4–5  shows the  effect  of  the  size  of  the time step on the umbo frequency

response,  with time steps of 75,  50,  30,  15,  10 and 5 μs.  For time steps between 5 and 30 μs,  an

increase of less than 15 nm/Pa in magnitude was observed as the time step increased.  Above 4 kHz,

compared  with  the  results  for  the  smallest  time  step  (5 μs),  the  two  largest  time  steps  displayed

discrepancies of up to 3.5 dB followed by dramatic roll-offs above 4 and 8 kHz, respectively. As a

trade-off between accuracy and length of computation time, we chose a time step of 10 μs for our

simulations for this loading condition. 
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We also studied the response of the middle ear to quasi-static triangular pressure stimuli at linear rates

between 200 Pa/s and 1.5 kPa/s with an amplitude of  ±2.5 kPa as done in a study by Dirckx et al.

(2006).  To  obtain  stable  results,  we  simulated  at  least  3  cycles  of  each  pressure-change  rate.

Furthermore, in some runs at a pressure-change rate 1.5 kPa/s, a small sinusoidal acoustic stimulus of

1 Pa amplitude was added to the quasi-static pressure for about 0.3 s near the 0 Pa pressure value on

both the ascending (from −2.5 kPa to +2.5 kPa) and descending (from +2.5 kPa to −2.5 kPa) branches

(see Fig. 4–6) to study how the peak pressure (i.e., the static pressure at which the vibration amplitude

is maximal, analogous to the tympanometric peak pressure discussed in section 3.2.1) changes between

the two branches as a function of the pressure-change rate.
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Fig. 4–6: Illustration of the loading condition for quasi-static pressure-change rate at 1.5 kPa/s with a
superimposed pure tone of 226 Hz. A: Pressure as a function of time with magnification of the acoustic

stimulus (a factor of 100 was applied on the acoustic stimulus for better visualization). B: A closer
view of the left-hand rectangle in A. C: A closer view of the right-hand rectangle in A.

For this loading condition without the acoustic stimulus, the largest acceptable time step was equal to

0.05 s and a smaller time step equal to 0.1 ms wasneeded for the faster pump speeds and for modelling

buckling. Thus, the time step was set to vary between 0.05 s and 0.1 ms. When an acoustic stimulus is

applied in addition to the quasi-static pressure, a constant time step of 10 μs was used.

We  also  studied  the  response  of  the  middle  ear  to  a  quasi-static  sinusoidal  pressure  signal  at

75



frequencies of 0.5, 5, 10 and 50 Hz as done in a study by Salih et al. (2016).  We simulated at least

about  5  cycles  of  each  frequency.  We  used  the  times  steps  1 ms  and  100,  50 and  10 μs  for  the

frequencies 0.5, 5, 10 and 50 Hz, respectively, to provide adequate representations of the sinusoids.

We also evaluated the response of our model to a sudden increase in static pressure followed by an

acoustical signal. The pressure was increased linearly from zero to 250 Pa in 1 ms and then maintained.

After 25 ms an acoustical pressure of 94 dB (2 Pa peak to peak) was applied as either a sinusoidal wave

at 226 Hz or a 50 ms chirp with frequency changing linearly from 0.12 to 3 kHz (see Fig. 5–21 and

Fig. 5–22). This loading condition was considered mainly to evaluate the capabilities of the model to

simulate conditions present in step-wise pressurization cycles in LDV experiments (e.g., Shapiro, 2014;

Kose et al., 2017). For these loading condition, a constant time step equal to 10 μs was used to simulate

the vibrations due to pure tone and chirp. 

Since the main purpose of this study was to evaluate the response of the gerbil middle ear at specific

locations  and  to  validate  the  model  results  against  the  multi-point  experimental  data  of  previous

studies, we chose to extract the displacement values for only a limited set of nodes instead of for all of

the  ~28,000  nodes  in  the  model.  We  considered  only two  nodes  on  the  manubrium (d  and  e  in

Fig. 4–7), a node on the posterior PT (g), a node on the anterior PT (k) and a node at the centre of the

PF (a).
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Fig. 4–7: A schematic of the general layout of eighteen micro-beads on a right gerbil TM; the shaded
area represents the remaining hidden region of the PT. (Source: He, 2012)



4.6 Mesh convergence 

The original mesh for the TM and manubrium that resulted from conversion of shell elements into a

volume  mesh  contained  about  14600  tetrahedral  elements  and  about  28000  nodes.  The  model  of

Maftoon et  al.  (2015) had around 80000 nodes. Simplification of the model provides a significant

reduction in the computational cost. To test whether the mesh was fine enough, we used Code_Aster’s

Homard utility (Nicolas & Fouquet, 2013) to refine the mesh by dividing each tetrahedral element into

eight smaller tetrahedral elements. Two iterations of refinement were performed to define two refined

meshes. The first refined mesh resulted in only a 1.4 % increase in the umbo displacement magnitude

in response to sound pressure at the lowest frequency (200 Hz). The second mesh resulted in a further

0.35 % increase in the umbo displacement magnitude. For frequencies between 20 and 2000 Hz, the

first refined mesh resulted in an increase of less than 3% in the umbo displacement magnitude, and for

higher frequencies the difference remained less than 5.3 %. The second refined mesh resulted in a

further 1.8 % increase in the umbo displacement magnitude for frequencies between 200 and 2000 Hz

and an increase of less than 3.2 %for higher frequencies. Based on these results, we chose to perform

this study with the original mesh. The wedge and block meshes were made very coarse (52 tetrahedral

elements in total) because their shapes are not intended to be realistic. 

Simulations were done on the supercomputer Guillimin of McGill University. Guillimin is a cluster

of Intel Westmere EP Xeon X5650 and Intel Sandy Bridge EP E5-2670 processors running under the

CentOS 6 Linux distribution. Code_Aster studies were performed using one processor and 4 GB of

RAM. Each simulation for one set of parameters and 2500 time steps lasted about 24 hours. Although a

parallel  version  of  Code_Aster  was  successfully  installed  and  tested  on  a  lab  computer,  its

implementation in Guillimin faced some difficulties and was not further investigated.  Furthermore,

running parallel Code_Aster on a standard computer is very expensive in terms of memory and disk

space. Thus, we were limited to using a single processor with Code_Aster.  FEBio uses OpenMP to
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parallelize the FE calculations. Parallelism improves the performance considerably. After testing with

up to 16 processors, an increase in the number of processors beyond four showed no improvement. In

fact, using a higher number of processors actually decreased performance. A simulation in FEBio for

one set of parameters and 2500 time steps lasts for about 2 hours with 4 processors, as opposed to

8 hours when using one processor. 
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Chapter 5: Results

5.1 Introduction
In this chapter, we present the responses of our FE model of the gerbil middle ear to the different

loading conditions described in the previous chapter. In section 5.2, we present the response of the

model to low-amplitude sound pressures. We compare results from the two FE solvers and the results

from the model of Maftoon et al. (2015). In section 5.3, we report the response of the model to high

quasi-static pressures in the form of triangular and sinusoidal signals and in different frequency ranges

as well as the combination of high-static pressures with a low-amplitude pure tone. Simulation results

are  compared to  experimental  measurements  from previous  studies.  In  section 5.4,  we present  the

response  of  the  model  to  a  linearly  increasing  static  pressure  followed  by  low-amplitude  sound

pressures, including a pure tone and a chirp.

5.2 Unpressurized vibrations 
In this section we first present a model verification in which we compare the FEBio and Code_Aster

models in response to sound pressure. Then, we present the frequency responses of our FEBio model at

the umbo and at  two nodes on the manubrium, two nodes on the PT and one node on the PF (as

discussed in section 4.5) and compare them with responses of the model of Maftoon et al. (2015) and

previous experimental results.

5.2.1 Comparison of FEBio and Code_Aster

As mentioned in section 4.2, two models of the gerbil middle ear were created, for two different FE

solvers, FEBio and Code_Aster, for model verification. This step ensures that FEBio and Code_Aster

provide the same results for the same material properties and loading conditions to evaluate whether

the  model  implements  our  assumptions  correctly  and  to  check  the  consistency  of  our  dynamic

quasi-linear viscoelastic model across different solvers.
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Fig.  5–1 shows model  velocity  responses in  the time domain for the umbo in both  FEBio and

Code_Aster in response to a step of sound pressure. The two FE solvers produce very similar responses

in the z direction (i.e., at right angles to the plane of the annulus of the TM) and in total magnitude.

Ignoring the first three cycles where differences are the largest due to transient effects, we see changes

of less than 3% in velocity magnitude between the two solvers. The responses at other nodes of the

model also show very similar results. Fig. 5–2 shows model responses in the frequency domain, and it

can be seen that the two solvers match very well, and a change of less than 0.05 dB in magnitude was

found for all frequencies between 0.2 and 10 kHz. In terms of computational cost, for the same analysis

and using the same resources (a single processor), an FEBio simulation takes about 8 hours while a

Code_Aster  simulation  requires  about  24  hours  for  2500  time  steps.  Since  we  gained  a  certain

confidence in the performance of FEBio for dynamic viscoelastic models, and because of the ease of

implementation of computational parallelism in FEBio (with OpenMP, see section 4.6), most of the

subsequent simulations were conducted in FEBio unless stated otherwise. Even though both solvers

produced almost identical results for this set of parameters and loading conditions, a thorough model

verification would require testing with both solvers every time a modification is made to either material

properties or loading conditions. However, due to the high computational costs of nonlinear dynamic

analysis in Code_Aster, this thorough comparison of the two solvers was not performed. This can be

done later, once the code in Code_Aster is modified for parallel computations for better performance. 
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Fig. 5–1: Comparison of umbo velocity in FEBio and Code_Aster. A: Comparison of velocity in z
direction . B: Comparison of magnitude velocity. The red lines almost completely obscure the blue

lines.
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5.2.2 Umbo and pars-flaccida responses 

As mentioned in section 4.4, the material properties of the components of our model were determined

based on matching the umbo response to that of Maftoon’s model. In earlier experimental studies (e.g.,

Lee and Rosowski, 2001; Rosowski and Lee, 2002; Maftoon et al., 2013; Maftoon et al., 2014), it was

observed that the vibrations of the PF affect responses measured at the umbo. In this section we present

these responses together. 

5.2.2.1 Low frequencies 

Fig. 5–3 shows that the umbo response from the present model is very similar to that from Maftoon’s

model in the low-frequency range (up to about 1 kHz) except around the resonance frequency of the PF
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Fig. 5–2: Comparison of frequency responses of umbo in FEBio and Code_Aster. The red lines almost
completely obscure the blue lines. 



near  800 Hz.  The  magnitude  and  phase  of  the  umbo at  the  lowest  frequency  in  the  model  were

382.7 nm/Pa  and  −5.4°,  compared  with  381.4 nm/Pa  and  −4°  in  Maftoon’s  model,  resulting  in  a

difference of 0.34% for magnitude and −1.4° for phase. The phase at low frequency is very close to

zero as observed in experimental results.

Fig. 5–4 shows simulated responses at the centre of the PF from our model compared to those from

Maftoon’s  model.  The  small-amplitude  stiffness  of  the  PF  was  selected  to  exactly  match  the

low-frequency response of Maftoon’s model at the centre of the PF. As mentioned in section 4.3, this

step was necessary to account for the difference in boundary conditions for the PF in the two models

(i.e, fully clamped for the solid elements in our model and simply supported for the shell elements in

Maftoon’s  model).  The  selected  Young’s  modulus  and predefined  density  of  the  PF  resulted  in  a
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resonance  frequency  similar  to  the  one  obtained  in  the  model  of  Maftoon  et  al.  The  width  and

magnitude of the centre of the PF resonance were matched to Maftoon’s model by adjusting the Prony

series  coefficient  at  220 μs  as  previously  described in  section 4.4.1.2.  At  the lowest  frequency the

centre of the PF in our model has a magnitude of 2.6 μm/Pa and a phase of −4.4° compared to a

magnitude of 2.4 μm/Pa and a phase of −1.9°. The difference in magnitude is about 8% for magnitude

and 2.5° for phase. Once again, our model produces a slightly more negative phase. 

Fig. 5–5 shows a magnified region of the umbo response from 0.2 to 2 kHz, emphasizing the feature

related to the PF. The PF shows a resonance at about 820 Hz in both our model and Maftoon’s model.

Between about 700 and 950 Hz, the umbo response from our model shows a feature that includes a

shallow maximum (at 790 Hz) followed by a shallow minimum (at 865 Hz) in the magnitude, and a

local  minimum (at  840 Hz) in  the phase.  By comparison,  in  Maftoon’s  model  the feature is  more

pronounced, with a magnitude maximum (at 780 Hz) followed by a minimum (at 880 Hz) and a phase

minimum  (at  840 Hz).  According  to  Maftoon  et  al.  (2013),  this  feature  in  the  umbo  response

corresponds to the resonance of a flat PF and they refer to its role in shunting low-frequency sound.

Rosowski et al. (1997) also observed that a flat PF has larger displacements than the umbo, and also

showed  that  it  has  larger  displacements  than  the  PT in  this  low  frequency  range.  Although  the

magnitude of the simulated response at the centre of the PF at resonance (800 Hz) is 16 μm/Pa in both

our model and Maftoon’s model, its effect on the umbo response is less in our model. The reason for

these differences will be discussed in section 5.2.4. 
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Fig. 5–4:Comparison of our gerbil PF model response with Maftoon’s model response.
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Fig. 5–5: A magnified view of part of Fig 5–3 to clearly show the effect of the flat PF on the umbo
response, namely, a maximum and minimum and in the displacement magnitude that corresponds to the

resonance frequency of the PF. 

5.2.2.2 Mid and high frequencies

The simulated umbo response in Fig. 5–3 shows a rather broad resonance with a peak of 599 nm/Pa at

1.62 kHz, close to what was obtained with Maftoon’s model with a peak of 605 nm/Pa at 1.60 kHz. The

difference in peak magnitude is less than 1%. The width of the resonance and its magnitude are mainly

controlled by the PT Prony series coefficients and time constants as well as the Prony series coefficient

at the highest frequency for the manubrium and wedge (which represents the cochlear damping). The

location of the resonance frequency of the umbo is mainly controlled by the elastic material properties

of the PT and its density, which were selected to match Maftoon’s model.
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For both models, the umbo response shows a roll-off with substantial irregularities, with magnitude

changes of a few decibels and phase changes of a few tens of degrees. For frequencies above the

resonance frequency, our simulated umbo responses are different in detail from those from Maftoon’s

model. The differences between the two models increase with increasing frequency, with our model

having mainly lower magnitudes. The slope of the roll-off from 2.5 kHz to 5 kHz is about 7 dB/octave

in our model and 5 dB/octave in Maftoon’s model. At higher frequencies the vibrations of the ossicles

become  more  complex  and  the  axis  of  rotation  of  the  middle  ear  no  longer  corresponds  to  the

anatomical  axis (e.g.,  Maftoon et  al.,  2015).  Since our model  doesn’t  include the geometry of the

ossicles, and the location of the axis of rotation is fixed, it is to be expected that the response of our

model to high frequencies is different from that of Maftoon’s model. 

For the PF, the slope of the roll-off from 1 kHz to 2 kHz is equal to 8.7 dB/octave in our model

compared with 9.5 dB in Maftoon’s model. While the magnitude of the PF displacement in Maftoon’s

model keeps decreasing after 2 kHz, our PF model response at higher frequencies shows many more

irregularities  than  Maftoon’s  model  does.  Above  2 kHz,  there  are  regions  where  the  vibration

magnitude of the PF increases suddenly and then decreases, which indicates that the motion of the PF is

not as damped at high frequencies as it should be. Increasing the Prony series coefficient for 10 μs for

the  PF  (rather  than  assuming  that  it  is  the  same  as  for  the  PT)  could  effectively  smooth  the

displacement of the PF at the higher frequencies.

 Fig.  5–6 shows the umbo responses of our model with and without the cochlear damping and

compares them with Maftoon’s model.  It  is  clear that  the cochlear  damping plays a  major role in

flattening the resonance of the umbo. It is also clear that the damping in the TM and the manubrium

modelled  by  Prony  series  in  our  model  is  less  than  the  mass-proportional  Rayleigh  damping  in

Maftoon’s  model.  Whether  we  underestimated  the  TM  damping  and  overestimated  the  cochlear

damping, or Maftoon did the opposite, is not very clear, and cannot be easily determined due to an
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inherent lack of knowledge of both the TM damping and the cochlear impedance in gerbils. However,

our use of a Prony series is a more realistic representation of the damping in soft tissues and represents

damping in separate frequency ranges, as opposed to the Rayleigh damping in Maftoon’s model that

affects all frequencies with a single parameter. We have initially assumed an internal damping of the

TM that is equal across all frequencies but it is not really clear whether this is actually the case. 

Fig. 5–6: Comparison of our model umbo response with that of Maftoon’s model with cochlear
damping (CD) and with no cochlear damping (No CD).

The results from Fig. 5–3 to Fig. 5–6 were obtained from our FEBio model. The Code_Aster model,

with the cochlear  impedance modelled by a single dashpot  as described in  section 4.4.3,  produced

results  very similar to those of the  FEBio model except for a small  magnitude minimum at about

2.8 kHz and some small differences above 7 kHz, as shown in Fig. 5–7.
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Fig. 5–7: Comparison of the umbo response of FEBio and Code_Aster models with the umbo response
of Maftoon’s model.

5.2.3 Manubrial response

Fig. 5–8  shows  the  responses  for  our  model  at  three  points  along  the  manubrium.  Similar  to

experimental  observations by Maftoon et  al.  (2014) and to the behaviour  of Maftoon’s model,  the

magnitude increases toward the umbo (from green to blue to red), and all points along the manubrium

move almost exactly in phase with each other up to very high frequencies. This pattern in the responses

is consistent with the fact that in our model the malleus is assumed to rotate around a fixed axis of

rotation. Thus, the displacement along the manubrium is proportional to its distance from the axis of

rotation.  At  the resonance  peak,  the  umbo-to-mid-manubrium displacement  magnitude ratio  in  our

model is 2.1, higher than the ratio 1.6 obtained with Maftoon’s model.
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Fig. 5–8:Model responses at three locations along the manubrium. The colours of the curves
correspond to the colours of the dots in the inset. 

Fig. 5–9 shows the responses of our model at the umbo and also mid-manubrium, compared with those

from Maftoon’s model. The umbo displacement magnitudes at resonance are almost the same but the

mid-manubrium displacement magnitude in our model is about 100 nm/Pa lower than that in Maftoon’s

model. This indicates that the manubrium in our case rotates about an axis of rotation whose position is

different from that in Maftoon’s model. Maftoon et al. (2015) measured the location of their axis of

rotation for different frequencies. The found that at frequencies between 200 Hz and 1.5 kHz (i.e., the

resonance peak), the manubrium rotates as a rigid body around a fixed axis of rotation whose location

is close to but not the same as that of the anatomical axis defined to run from the anterior mallear

process to the posterior incudal process, as assumed in our model (see section 4.2). Above 1.8 kHz, the

position of the axis of rotation in Maftoon’s model started to shift. In our model, however, we assumed
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a fixed location for the axis that is independent of frequency. 

Fig. 5–9: Comparison of our gerbil model response with Maftoon’s model at umbo and at mid-
manubrium. 

5.2.4 Pars-tensa response 

Fig. 5–10 shows our model responses for two PT points at the level of the middle of the manubrium

and compares them to responses from Maftoon’s model. Both points vibrate in phase for frequencies up

to about 2 kHz in our model, similar to what was seen in Maftoon’s model. At these frequencies, the PT

points exhibit a simple motion pattern. They also show the same PF feature as seen at the umbo, but it

is smaller. As observed in gerbil ears experimentally, in both models the point on the posterior side

shows larger displacements than the one on the anterior side. Even though the response in our model is

lower in magnitude than the response in Maftoon’s model, the displacement patterns at low frequencies

91



are within the range of the patterns observed experimentally. The PT in our model is somewhat stiffer

than the one in Maftoon’s model due to its uniform thickness and our corresponding choice of material

properties. 

The resonance has a similar shape in both models. The simple in-phase motion breaks up at higher

frequencies, with each point showing different frequency-dependent magnitudes and phases. As done

by Maftoon et  al.  (2013),  we define  the  break-up frequency as  the  frequency at  which  the  phase

divergence of the points on the PT is more than 15°. The break-up frequency for the PT points in our

model is 2.9 kHz. This is higher than the 2.2 kHz seen in Maftoon’s model (consistent with the higher

stiffness of our PT) but still  close to the range of 1.8 to 2.8 kHz observed experimentally. The PT

magnitude responses from our model are within the range seen in the experimental responses (Maftoon

et al. 2014).

Figs. 5–5 and 5–10 indicate that the shunting of low frequencies by our PF and its effect on umbo

and PT is less than in Maftoon’s model. This effect of the PF is strongly affected by the size of the

middle-ear cavity (e.g., Rosowski et al., 1997; Maftoon et al., 2014). Smaller cavity sizes result in a

stronger effect of the PF on the response of the umbo and PT. Thus, with an open middle-ear cavity, the

PF has a very small effects on the motion of the PT and umbo, as seen in our model and Maftoon’s

model. In the open-cavity configuration, the effect may be strongly modulated by the coupling of the

PF with the manubrium and PT. The PT thickness in Maftoon’s model was variable, while in our case it

has  a  constant  thickness of 15.8 µm, and this  thickness  along with the defined material  properties

resulted in a stiffer PT in our model. This could affect the coupling between PT and PF, making the

effect of the PF on the PT much smaller. Furthermore, the coupling between manubrium and PT is

affected by the position of the axis of rotation, which is different than in Maftoon’s model. This also

might alter the effect of the PF on the umbo. Such speculations about the coupling between different

structures of the middle ear could be verified by modelling different configurations: changing the axis
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of rotation, varying the PT thickness and material properties, etc. 

Fig. 5–10: Comparison of our gerbil model response with Maftoon’s model (2015) response at a point
in anterior PT and a point in posterior PT

5.3 Pressurized vibrations

5.3.1 Triangular quasi-static pressure signals

5.3.1.1 Displacement versus quasi-static pressure 

In this section we report the response of our model to slowly varying triangular pressure waves with

amplitude ±2.5 kPa and linear pressure-change rates between 200 Pa/s and 1.5 kPa/s, as was measured

experimentally at the umbo in the rabbit middle ear by Dirckx et al. (2006). The cochlear damping was

not included in the model. As some of the components of our gerbil middle-ear model are viscoelastic,

repeated pressurization cycles can give different results. To obtain stable responses, we simulated the

motion of different points on the TM and manurbrium at all pressure-change rates for about 5 to 6
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cycles and examined how the response varied from one cycle to  another.  Fig. 5–11A shows umbo

displacement at 200 Pa/s as a function of pressure for 6 cycles. No significant change in the umbo

displacement is seen after the first cycle. Overall, the changes during the preconditioning were very

small  for this  low rate of pressure change and the curves nearly coincide,  which was also clearly

observed in the measurements by Dirckx et al. This was also the case for the other pressure-change

rates. For subsequent simulations in this section, we report the displacement results of the third cycle. 

Fig. 5–12 shows the simulated displacement of a point on the anterior PT. Near 0 Pa pressure, some

local buckling happens, as highlighted by circles in the figure. The instability of the TM is manifested

by  sharp  ‘kinks’ as  shown  in  Fig. 5–12A.  Each  kink  has  a  local  minimum  followed  by  a  local

maximum in the ascending branch and vice versa in the descending branch. The inflection point at the
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Fig. 5–11: Simulated umbo response to about 6 cycles of triangular waves of pressure for a pressure-
change rate of 200 Pa/s. A: Umbo displacement as a function of time. B: Umbo displacement as a

function of pressure for all cycles.



middle  of  the  kink  is  at  about  150 Pa  pressure  in  the  ascending  branch  and  about  300 Pa  in  the

descending  branch.  In Fig. 5–12B,  the  buckling  is  manifested  as  a  transient  decrease  of  the

displacement as pressure increases during loading, and as a transient increase of the displacement as the

pressure decreases during unloading. At positive pressures, the anterior PT flips over from a slightly

convex shape to a slightly concave shape during loading (and vice versa during unloading), without

ever becoming perfectly flat. This instability, with the TM jumping from one equilibrium configuration

to a very different equilibrium configuration, has been reported experimentally by other groups as well

(e.g., Dirckx et al., 1998; Ladak et al., 2004), but never simulated to the best of our knowledge. In this

pressure range, very fine time steps are required for numerical convergence. It becomes even more

challenging to model as the degree of buckling increases. 

Fig. 5–12: Simulated anterior PT response to about 6 cycles of triangular waves of pressure for a
pressure-change rate of 200 Pa/s. A:Displacement as a function of time. B: Displacement as a function

of pressure for all cycles. Circles highlight some regions of buckling. C: Magnified view of the left
circle in A. D: Magnified view of the right circle in A. 

Fig. 5–13A shows our simulated umbo motion for different linear pressure-change rates ranging from
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200 Pa/s to 1500 Pa/s (corresponding to frequencies ranging from 20 mHz to 150 mHz). We see that

the umbo motion is strongly nonlinear. For pressures beyond +1 kPa, for all frequencies the changes of

the  umbo displacement  are  relatively  small.  For  pressures  beyond  –1 kPa,  however,  the  slope  for

displacement versus pressure is still  quite steep. Fig. 5–13B shows the experimental umbo motions

measured by Dirckx et al. (2006) for the rabbit middle ear for different pressure-change rates. The axis

have been reversed horizontally and vertically from what was presented in their paper because their

pressures were applied in the middle-ear cavity rather than on the ear-canal side of the TM as in our

model.  The  experimental  displacement  curves  are  very  different  from  ours.  Dirckx  et  al.  (2006)

reported that  umbo displacement  changes by only a few micrometers  beyond  ±2 kPa in the rabbit

middle-ear. They observed that at these high pressures a wrinkle appeared in the TM around the umbo

and  the  umbo  displacement  decreased  slightly  as  the  pressure  magnitude  continued  to  increase,

especially at low pressure-change rates. This effect in the rabbit middle ear was not seen for our model

of the gerbil middle ear. 

From Fig. 5–13A we can see that amplitudes at negative ear-canal pressures are always significantly

larger than amplitudes at equal positive pressures. This asymmetry is less pronounced but still present

in the rabbit as shown in Fig. 5–13B. We calculated the ratio of the maximal amplitudes at +2.5 and

−2.5 kPa for all  pressure-change rates. For our model, the ratio of maximal displacement amplitudes

changed from 4.72 at 200 Pa/s to 4.69 at 1500 Pa/s, while in the rabbit experiment the ratio changed

from 2.21 at 200 Pa/s to 2.45 at 1500 Pa/s. In both cases the change was quite small. The actual ratios,

however, were smaller for the experimental rabbit data: averaged over pressure-change rates, the ratio

is  4.72  for  the  simulated  gerbil  umbo displacement  but  only  2.34  for  the  measured  rabbit  umbo

displacement.  The  displacements  themselves  were  also  smaller  for  the  rabbit:  the  model  umbo

peak-to-peak displacement at 200 Pa/s is 790 µm, compared with an umbo displacement of 165 µm at

the same pressure-change rate for the rabbit.
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Fig. 5–13: Umbo displacement vs. pressure for various pressure-change rates. A: Model umbo
displacement. B: Experimental umbo displacement (Dirckx et al., 2006).C: Magnified view of panel A

from −2.0 kPa to −2.5 kPa. D: Magnified view of panel A from +2.0 kPa to +2.5 kPa.
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Figs. 5–13C and 5–13D show magnified views of the two rectangles in Fig. 5–14A, to show how the

model umbo displacement varies as a function of pressure-change rate at −2.5 kPa and +2.5 kPa. We

see that increasing the  pressure-change rate makes the umbo displacement slightly less negative at

−2.5 kPa  and  slightly  less  positive  at  +2.5 kPa.  Thus,  the  simulated  gerbil  peak-to-peak  umbo

displacement  decreases  slightly  as  a  function  of  increasing  pressure-change  rate:  it  changed  from

790 µm  at  200 Pa/s  to  776 µm  at  1.5 kPa/s.  Dirckx  et  al.  (2006)  reported  a  dependence  of  the

peak-to-peak umbo displacement on the pressure-change rate that was in the same direction but much

more pronounced, decreasing from 165 µm (SD=19) at 200 Pa/s to 118 µm (SD=15) at 1.5 kPa/s,for 10

rabbits. 

Fig. 5–13A shows approximately the same amount of hysteresis at all pressure-change rates. On the

other hand, the experimental measurements on the rabbit middle ear in Fig. 5–13B show a hysteresis

that decreases with increasing pressure-change rate: at 200 Pa/s the hysteresis, computed as the surface

area enclosed by the displacement vs. pressure curve, is more than double the hysteresis at 1.5 kPa/s. 

To evaluate the effects of the Prony series parameters on hysteresis, we increased (one at a time) the

coefficient of each of the six time constants of the PT (see section 4.4.12), manubrium and wedge from

0.07 to 0.6 while keeping all other parameters the same. This increase in the Prony-series coefficients

still  satisfies  the  constraint  that  the  sum  of  the  coefficients  should  be  less  than  1  (refer  to

section 3.3.2.3).  Fig. 5–14  shows  the  hysteresis  at  pressure-change  rates  ranging  from 0.2 Pa/s  to

1.5 kPa/s when the coefficient for time constant 2.3 s (corresponding to ≈70 mHz or 700 Pa/s) has been

increased from 0.07 to 0.6. This will  be referred to as gerbil  model 2 while the original model is

referred to as gerbil model 1. Fig. 5–14 shows that the hysteresis in gerbil model 2 is much greater than

that in gerbil model 1 (Fig. 5–13A). In Fig. 5–14, the most hysteresis is observed at 30 mHz (300 Pa/s),

with slightly less at 200 Pa/s, and the smallest hysteresis is obtained with 150 mHz (1500 Pa/s). For

pressure-change  rates  300 Pa/s,  500 Pa/s,  1000 Pa/s  and  1500 Pa/s,  a  complete  closed  loop  for
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hysteresis could not be obtained because the FE solver  failed to  converge in  the buckling region.

Increasing  the  coefficient  of  the  Prony  series  to  a  very  high  value  leads  to  a  more  pronounced

instability on the PT.

Fig. 5–14: Model umbo displacement as function of pressure at different ultra-low frequencies when
the coefficient of the time constant 2.3 s is increased from 0.07 to 0.6. 

To compare the hysteresis in the two models and with experimental measurements, the usual measure

would be the surface area enclosed by the displacement-versus-pressure curve.  However,  since for

gerbil  model  2  the curves  do  not  form  a  closed  loop,  we  decided  to  measure  the  displacement

difference  between  the  loading  and  unloading  curves  at  −1000 Pa,  where  the  hysteresis  is  most

pronounced for all models. Fig. 5–15 shows the displacement difference for both of our gerbil models

and  for  the  rabbit  experimental  measurements  of  (Dirckx  et  al.,  2006).  The  amount  of  hysteresis

remains almost unchanged for all pressure-change rates for gerbil model 1, in which the coefficients of
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the Prony series are the same in PT, manubrium and wedge. The amount of hysteresis in model 1 is

very similar to that in the experimental data at pressure-change rates of 0.5, 1.0 and 1.5 kPa/s. At lower

rates (300 and 200 Pa/s) the experimental hysteresis increases by 20 to 25% while the model hysteresis

decreases  slightly.  For  model  2,  we  were  able  to  obtain  hysteresis  measures  for  only  three

pressure-change rates: 200 Pa/s, 300 Pa/s and 1500 Pa/s. The amount of hysteresis is about five times

higher than for model 1 and the experimental data. The most hysteresis in the model is obtained with a

pressure-change rate of 300 Pa/s; there is about the same amount (11% less) at 200 Pa/s and much less

(34% less) at  1500 Pa/s. The trends are similar for the experimental data,  with a small change (an

increase of 7%) from 300 Pa/s to 200 Pa/s and a large reduction (52%) from 300 Pa/s to 1500 Pa/s.

This modelling shows that, by changing the viscoelastic parameters, we can control the amount of

hysteresis at different frequencies. On the one hand, in gerbil model 1 where the coefficients of the

Prony series are equal, hysteresis was almost constant for all pressure-change rates. On the other hand,

in  gerbil  model  2  where  the  Prony-series  coefficient  corresponding  to  a  frequency  of  70 mHz

(corresponding  to  a  pressure-change  rate  of  700 Pa/s)  was  greater  than  for  the  other  coefficients,

hysteresis at the nearby pressure-change rates (30 mHz and 300 Pa/s) increased the most. Although we

could not measure the hysteresis at 500 Pa/s (50 mHz) and 1000 Pa/s (1000 mHz), we expect that the

hysteresis  at  500 Pa/s would be even greater than the hysteresis  at  300 Pa/s.  When we change the

coefficients for time constants 10 µs (≈16 kHz), 220 µs (≈724 Hz), 5 ms (≈32 Hz), 110 ms (≈15 Hz)

and 52 s (≈3 mHz), outside the range of time constants corresponding to the pressure-change rates 300

to 1500 Pa/s (20 mHz to 150 mHz), the model hysteresis remains unchanged. 
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Fig. 5–15: Umbo hysteresis as a function of pressure-change rate, measured in the two gerbil models
and in the experiment by Dirckx et al. (2006).

Motallebzadeh  et  al.  (2013) computed  the  lost-energy  spectra  (using  the  method  described  by

Charlebois et al.  (2013)) for one-term, two-term and three-term Prony series to study the individual

effect of each time constant and its corresponding coefficient. They found that each term has a peak at

an angular frequency corresponding to the inverse of its time constant. The height of each peak depends

on the value of the associated coefficient. The influence of each term spans about one decade before

and one decade after its peak with decreasing effect.  Thus, in model 2, it  makes sense to see that

changing  the  coefficient  of  the  time  constant  corresponding  to  the  frequency  70 mHz  affects  all

pressure-change rates (20-150 mHz), and that the effect gets smaller as we move further from that

frequency. 
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5.3.1.2 Vibration amplitude versus quasi-static pressure

To relate the results we obtained in section 5.2.1.1 to tympanometry, with our gerbil model 1 we apply

a pure tone of 226 Hz for 300 ms around zero pressure on both the ascending and descending branches

of  the pressure  sweep with a  pressure-change rate  of  1500 Pa/s.  The acoustical  stimulus  of  ±1 Pa

amplitude (equivalent to 94 dB SPL) is first applied from 6.53 s to 6.83 s, to cover a range of static

pressure from −225 Pa to +225 Pa. It is then also applied from 9.91 s to 10.21 s, to cover a range of

static  pressure  from +165 Pa  and −285 Pa.  The acoustic  stimulus  was applied  for  these  two short

periods, instead of for the entire loading and unloading branches as done in tympanometry, to reduce

the computation time. In both cases we pass through zero static pressure. Fig. 5–16A shows the umbo

displacement  as  a  function  of  time  in  response  to  the  quasi-static  pressure  and  sound  stimulus.

Fig. 5–16B is a magnified view of the left rectangle in Fig. 5–16A and shows the small displacements

resulting from the application of the pure tone during the ascending branch. 

Fig. 5–17 shows the resulting umbo acoustical response with the quasi-static response subtracted away.
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Fig. 5–16: Response of the model to a 226-Hz pure tone during large sweeps of quasi-static pressure.
A: Model umbo displacement as function of time. Rectangles indicate areas where the acoustic

stimulus was applied. B: Magnified view of the left square in A to highlight the acoustic induced
displacements during the ascending branch. Arrows indicate the start and end of the vibrations. 



As seen in Fig. 5–17A for the ascending branch, as the static pressure increases, the umbo vibration

increases slightly, then starting at time 6.66 s (corresponding to a quasi-static pressure of –28.6 Pa) it

decreases. For the descending branch (Fig. 5–17B), as the static pressure decreases the umbo vibration

increases, and then starting at time 10.067 s (corresponding to a quasi-static pressure of –70.5 Pa) it

decreases slightly. At the onset of the acoustic stimulus in panel A, pronounced transient effects are

observed for the first three cycles. This phenomenon is only observed for the ascending pressure; this

could be due to the fact that, at the onset of the tone on the ascending branch, the acoustical pressure is

moving in the opposite direction as the static-pressure sweep, while it is moving in the same direction

on the descending branch. 

We also observe in both panels that the vibration amplitude appears to be modulated with a period of

4  to  6  cycles.  It  is  not  clear  what  the  origin  of  this  modulation  is.  It  may  be  a  consequence  of

(1) complex interactions between the viscoelastic effects of some components of our model (which are

expressed in terms of six different time constants corresponding to frequencies ranging from 3 mHz

to16 kHz) with the frequencies of the pressure signals; or (2) the numerical integration in the FE solver.

Fig. 5–18 shows a magnified view of the vibration in the descending branch from 10.01 s to 10.06 s.

We can see some irregularities in the vibration, starting from 10.025 s (quasi-static pressure of 7.5 Pa)

and continuing up to around 10.04 s (quasi-static pressure of 30 Pa). We believe that these irregularities

in the vibrations are a consequence of buckling (as described in section 5.3.1.1) since they manifest

during loading and unloading at positive pressures near 0 Pa.
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Fig. 5–17: Model umbo vibration after removing the displacement induced by quasi-static pressure
sweep. A: Umbo vibration in the ascending branch. B: Umbo vibration in the descending branch.
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Fig. 5–18:Magnified view of model umbo vibration in the descending branch (Fig. 5–17B). 

To better understand how the amplitude of the vibration changes as a function of pressure, we extracted

the amplitude envelope by performing a series of FFT’s on the derivative of the displacement (after

removing a few cycles at the onset) with a moving window, with each window covering approximately

5 cycles and with 80% overlap between windows, for a total of 50 windows. Fig. 5–19 shows the

magnitude plotted as a function of static pressure for both the ascending (referred to as the positive

direction) and descending (referred to as the negative direction) branches. The curve is very similar to

the tympanogram that we get from clinical tympanometry except that the vertical axis represents the

displacement magnitude at an individual point on the surface of the TM (in this case the umbo) instead

of admittance (that is, a normalized volume velocity corresponding to the entire TM). 

Fig. 5–19 displays many features observed in clinical tympanometry. As noted in section 5.3.1.1, for
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the same static pressure magnitude, the vibration magnitude is larger for negative pressures. This strong

asymmetry is clearly displayed in Fig. 5–18 for both the positive and negative directions. Fig. 5–19

also demonstrates the dependence of our simulated displacement magnitude on the direction of the

pressure sweep, another feature of clinical tympanometry. The peak magnitude moves further to the left

(i.e., to more negative pressure values) for the negative direction, resulting in a peak pressure difference

(PPD) here equal  to  42.8 Pa.  In addition,  the peak admittance is  reduced slightly for  the negative

direction. This directional dependence is a result of the viscoelasticity of the components of our middle

ear model and is one measure of hysteresis. 

5.3.2 Sinusoidal static pressure signals

In this  section we report  the  response of  our  model  to  sinusoidal  pressure signals  with  amplitude
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Fig. 5–19: Umbo magnitude displacement normalized by sound pressure as function of static pressure
in both directions. PPD refers to the peak pressure difference defined in section 3.3.4.1, that is, the

separation between the two pressure peaks obtained during the increasing and decreasing parts of the
pressure cycle. “+ direction” stands for positive direction (from -2.5 kPa to +2.5 kPa) and

“– direction” is for negative direction (from +2.5 kPa to -2.5 kPa). 



±1 kPa and frequencies 0.5 Hz, 5 Hz, 10 Hz and 50 Hz, as was performed experimentally in gerbil and

rabbit middle ears by Salih et al. (2016). In both model and experiment, pressure is applied to the

middle-ear cavity, so that positive pressures are associated with outward motion of the TM. This is

opposite to our model definition in section 5.3.1. Thus, the axis have been reversed horizontally (i.e.,

pressure) and vertically (i.e., displacement) for our simulations in this section.

The displacement amplitudes of our gerbil umbo as functions of pressure are presented in Fig. 5–20

and are compared with the displacement measured experimentally in 6 gerbils (Salih et al. 2016). The

model  responses  are  quite  similar  to  the  experimental  responses  except  at  high  positive  pressures

greater than 800 Pa. Displacement at positive pressures fails to reach a plateau. At −1 kPa, the average

simulated umbo displacement is –97 µm for all frequencies, very similar to the -98 µm (SD=8) found

for all frequencies and gerbils for the experimental results. At +1 kPa, the average umbo displacement

is 351 µm for all frequencies, somewhat larger than the 286 µm (SD=35) for all frequencies and gerbils

experimentally.  Thus,  we  again  find  the  asymmetry  seen  in  previous  studies  (e.g.,  Dirckx  and

Decraemer,  2001;  Dirckx  et  al.,  2006).  The  simulated  mean  peak-to-peak  displacement  (i.e.,

displacement at +2.5 kPa minus displacement at −2.5 kPa) is equal to 448 μm (SD=10), compared with

an experimental value of 428 μm (SD=26). Overall, the model displacement values are well within the

range of experimental values. 
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Fig. 5–20: Comparison of displacement of gerbil umbo at different frequencies with experimental data
of Salih et al. (2016). (a) 0. 5Hz, (b) 10 Hz , (c) 10 Hz and (d) 50 Hz. 

Next,  we examine  how umbo displacement  varies  as  a  function  of  frequency in  Fig  5–20. For  a

pressure of 2 kPa (peak-to-peak), the model umbo displacement is 461 µm at 0.5 Hz and decreases by

5% to 438 µm at 50 Hz. The experimental gerbil  umbo displacement  increases by 21%, from 354

(SD=42) µm at 0.5 Hz to 428 (SD=26) µm at 50 Hz. The changes are in opposite directions, but in both

cases the change is fairly small.  Salih et  al.  also measured the displacements of rabbit  umbos and

reported an increase of 38 μm, or 29%, when the frequency increased from 0.5 to 50 Hz for the same

pressure amplitude. This trend is opposite to what was seen in the earlier study by the same group

(Dirckx  et  al.,  2006).  The  effect  is  still  fairly  small  and  can  be  controlled  in  our  model  by  the

viscoelasticity  of  the middle ear.  By assigning a  higher  coefficient  to  the time constant  closest  to

0.5 Hz, while keeping the other coefficients the same, the hysteresis will be the highestat this frequency
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and  will  decrease  with  increasing  frequency  while  the  umbo  peak-to-peak  displacement  will  be

smallest at this frequency and will increase with increasing frequencies. 

Salih et  al.  (2016) reported an average umbo peak-to-peak displacement of 175 μm (SD=45) at

0.5 Hz for rabbits, compared with 354 μm (SD=42) at 0.5 Hz for gerbils. This corresponds to a ratio of

peak-to-peak displacement in gerbil to that in rabbit equal to about 2 for 0.5 Hz. In section 5.3.1.1, we

reported an umbo peak-to-peak displacement equal to 776 µm at 1500 Pa/s (150 mHz) in our gerbil

middle-ear model, compared with an experimental peak-to-peak rabbit umbo displacement of 118 μm

(SD=15)  at  1500 Pa/s  (Dirckx  et  al.,  2006)  which  translates  into  a  ratio  of  the  peak-to-peak

displacement in gerbil to that in rabbit of 6.6. This ratio decreases with frequency and is equal to 4.7 at

200 Pa/s (20 mHz). The two sets of experiments (Dirckx et al. 2006 and Salih et al. 2016) cover quite

different  frequency ranges  (20 mHz-150 mHz vs.  0.5-50 Hz) and employ different  pressure signals

(triangular vs. sinusoidal). It is thus not unexpected that the estimated ratio of the umbo peak-to-peak

displacement in gerbil to that in rabbit (6.6 at 150 mHz) would be different than the ratio measured by

Salih et al. (2 at 500 mHz). 

5.3.3 Ramp static pressure signals combined with low-amplitude sound pressures 

In this section we report the response of our model to a quasi-static pressure that is linearly increased

from zero to 250 Pa in 10 ms and then maintained at a constant value. After 15 ms a 50-ms acoustic

stimulus is superimposed on it, either a pure tone with a frequency of 226 Hz (Fig. 5–21 A & B) or a

chirp with constant amplitude and a linear frequency ramp from 0.12 to 3 kHz (Fig. 5–22 A & B). The

umbo displacements as function of time are shown in panels C and D of Figs. 5–21 and 5–22.
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Fig. 5–21:Results for a quasi-static pressure combined with a 226-Hz pure tone using FEBio and
Code_Aster. A: Input pressure signal. B. Magnified view corresponding to the rectangle in A to

show the acoustic stimulus. C: Umbo displacement as a function of time. D: Magnified view
corresponding to the rectangle in C. 

In Figs. 5–21C and 5–21D, we see that  the  umbo displacement  increases  nonlinearly as  the  static

pressure increases linearly for the first 10 ms. The nature of the nonlinearity is very similar in both

Code_Aster and FEBio, and the difference in displacement is less than 2%. Then, when the pressure

stays constant at 250 Pa, the displacement has a slight curvature with displacement increasing from

52.2 µm at 10 ms to 52.9 µm at 25 ms in FEBio. For Code_Aster, the displacement increases from

53.2 µm at 10 ms to 54 µm at 25 ms, corresponding to an increase of 0.8 µm compared with 0.7 µm in

FEBio. Both solvers show a behaviour typical of stress relaxation due to the viscoelasticity of the

system. The displacement resulting from the sinusoidal acoustical stimulus is very close to being a pure

sine  wave of  the  same frequency riding  on top  of  the  slowly  increasing  response  to  the  constant

pressure  in  both  FEBio  and  Code_Aster.  Aside  from  the  transient  effects  seen  at  the  onset,  the
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magnitude of the vibration for the 50 ms duration is about 0.23 µs in both solvers. Since we have time

constants as high as 52 s, this slight increase in displacement due to the quasi-static pressure could last

several tens of seconds before it reaches a plateau. 

Fig. 5–22: Results for a quasi-static pressure combined with a chirp (0.12 to 3 kHz) using FEBio. A:
Input pressure signal. B. Magnified view corresponding to the rectangle in A to show the acoustic
stimulus. C: Umbo displacement as a function of time. D: Magnified view corresponding to the

rectangle in C. 

Fig. 5–22 panels C and D show the umbo displacement when the acoustic stimulus is a chirp rather

than a pure tone. For the first 25 ms, the response is the same as what is shown in Fig. 5–21. Then, the

amplitude of the vibration increases from 25 ms (120 Hz chirp frequency) to 147.6 ms (2762 Hz chirp

frequency), followed by a decrease until the end of the chirp signal.

As  mentioned  in  section 4.5,  these simulations  are  the  first  step  toward  modelling  a  complete

stepwise pressurization cycle where the static pressure is kept constant at a particular value for a few
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seconds while the acoustic stimulus is continuously applied on the eardrum, as done in our group using

LDV measurements (e.g., Shapiro, 2014; Kose et al., 2017). There are not yet any experimental data to

compare with the simulation results. The preliminary measurements by Shapiro (2014) and Kose et al.

(2017) employ a peristaltic pump that cannot yet achieve a pressure rise time as fast as 10 ms, which

prevents us from investigating the short-term viscoelastic effects. 

Furthermore, a serious issue with such simulations is the computational cost.  A time step of 10 µs

was required for a pure-tone  acoustic stimulus.  The preliminary simulations took about 5 hours in

FEBio and about 35 hours in Code_Aster. When the acoustic stimulus was a chirp, the simulations

lasted 12 hours in FEBio. We used 7500 time steps for the pure tone and 15800 time steps for the chirp

for a single quasi-static pressure value, and these numbers will rise quickly when we want to consider a

complete pressurization cycle and higher frequencies (8 or 10 kHz). 

5.3.4 Discussion

Dirckx and Decraemer (2001) showed that quasi-static eardrum displacement remained the same before

and after removing the cochlea. For quasi-static displacements, the presence of the cochlear fluid does

not much impede the motion of the TM due to the high static compliance of the round window, and

little effect is to be expected. The impedance of the cochlea becomes important at acoustic frequencies.

Therefore, even though we removed the cochlear impedance in this model (as mentioned in section

5.3.1.1)to better represent the no-cochlea condition of the rabbit middle ear in the experiment of Dirckx

et al.  (2006), we can still compare our simulations of umbo displacements to results obtained with

intact middle ears.

We simulated the buckling in the PT, but encountered numerical challenges when larger instabilities

were  obtained  with  gerbil  model  2.  Currently,  FEBio  only  supports  the  Newton-Raphson

time-marching scheme, which is  not the most suitable method to simulate mechanical instabilities.
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Code_Aster makes it possible to circumvent some of the numerical difficulties of simulating buckling

by employing the arc-length method (Crisfield, 1981) which is suitable for “soft” snap-backs. For more

“abrupt” snap-backs other methods exist but are not currently available in Code_Aster (e.g., Riks et al.,

1996; Hellweg & Crisfield, 1998). 

For our gerbil model 1, we obtained an umbo peak-to-peak displacement equal to 783 µm averaged

across all pressure-change rates. Ladak et al. (2004) reported umbo peak-to-peak values in cat, which

were around 300 to 600 µm, while Dirckx and Decraemer (2001) reported peak-to-peak values in the

gerbil  middle ear  with  drained  cochlea  of  about  350 µm in  the  region  inferior  to  the  umbo.  The

displacements in the region inferior to the umbo will be bigger than the displacement at the umbo.

Eardrum sizes are comparable between cat and rabbit, but are smaller in gerbil. Furthermore, the gerbil

and cat PTs are thinner than in rabbit and human. The annulus of the rabbit and gerbil PT resembles the

shape in humans more than the cat. The PF’s in gerbil and rabbit are much larger (relative to the PT)

than in either cat or human. In our model (as in tympanometry) we increase the pressure linearly from 0

to 2.5 kPa in seconds, whereas in the moiré measurements the pressure increase was stepwise, with

several minutes of time interval between steps. All of these differences make it difficult to compare our

model results with previous work. 

 The asymmetry  in  our  pressure vs.  displacement  curves  (Fig. 5–13A),  with  negative  pressures

causing higher displacements, has been reported by other studies as well. Dirckx and Decraemer (2001)

also identified this asymmetry and concluded that TM deformation in response to negative pressure is

strongly influenced by ossicular mechanics, while at positive pressures the maximal motion of the TM

is  mainly  determined  by  the  elasticity  of  the  membrane  itself.  Ladak  et  al.  (2004)  attributed  the

asymmetry partially to the conical shape of the TM: due to this shape, the TM can easily balloon at

positive pressure but is stretched at negative pressure. 

For acoustic frequencies below 1 kHz, Rosowski (1994) calculated values of the acoustic stiffness of
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the  TM and  ossicles  on  the  basis  of  acoustic  stiffness  measurements  of  the  total  middle  ear  and

middle-ear air space, and found 360 Pa/mm3 in gerbil, 500 Pa/mm3 in rabbit and 170 Pa/mm3 in human.

Thus, in the low-frequency acoustic range, the rabbit ear was a factor of about 1.5 stiffer than the gerbil

and the gerbil was a factor of 2 stiffer than human. We found a peak-to-peak umbo displacement equal

to  790 µm  in  the  gerbil  at  200 Pa/s  while  Dirckx  et  al.  (2006)  measured  a  peak-to-peak  umbo

displacement equal to 165 µm in the rabbit at 200 Pa/s, which is a factor of 4.8 less. Hüttenbrink (1988)

measured a peak-to-peak umbo displacement of 540 µm at 200 Pa/s for the human ear, which is factor

of 1.5 less than our peak-to-peak gerbil umbo displacement. These factors are different from those

computed from the data of Rosowski (1994). However, the Rosowski data cover audio frequencies as

opposed to the ultra-low quasi-static frequencieckx et al. (2006) conducted their experiments on post

mortem rabbits. Whether the differences in results are due to species differences, to differences in the

freshness of the tissue or to differences in experimental methods is unclear.s covered by our model and

by the experimental data of Dirckx et al. (2006) and Hüttenbrink (1988).

 Dirckx et al. (2006) suggested that the hysteresis trend of their experimental data was not governed

by  viscoelasticity  and  they  proposed  a  mechanism  involving  static  and  dynamic  friction.  They

suggested that “friction can occur between the ossicles and the middle-ear walls and within the ossicle

joints, and that static friction effects take over as the pressure-change rate decreases”. It is not clear to

us where this friction might occur, nor why static friction would be pronounced at 200 Pa/s where the

eardrum is moving substantially.  In any case, results from our gerbil  models 1 and 2 indicate that

hysteresis variation as a function of pressure-change rate can be controlled by the viscoelasticity of the

system.  It  thus  appears  that  the  trend  observed  by  Dirckx  et  al.,  of  greater  hysteresis  at  lower

pressure-change rates, could be a consequence of viscoelasticity of several components of the middle

ear and can be modelled numerically by adjusting the Prony series coefficients in appropriate ranges of

frequency.
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Salih et al. (2016) measured the motion of both gerbil and rabbit middle ears in response to very

low-frequency sinusoidal variations of static pressure, for amplitudes of ±500 Pa and ±1000 Pa and for

frequencies  ranging  from 0.5  to  50 Hz.  In  both  species,  the  umbo displacement  as  a  function  of

frequency increased, as opposed to what is seen in our model and to what was seen experimentally by

the  same  group  (Dirckx  et  al.,  2006).  The  two  sets  of  experiments  used  different  measurement

techniques, covered very different ranges of freckx et al. (2006) conducted their experiments on post

mortem rabbits. Whether the differences in results are due to species differences, to differences in the

freshness of the tissue or to differences in experimental methods is unclear.quencies and used different

pressure signals (triangular vs. sinusoidal). Whether this is enough to explain the different results is not

clear. 

It is hard to determine whether the amount of hysteresis computed for gerbil model 1 (Fig. 5–15) is

comparable  to  what  is  actually  measured in  the  gerbil  middle ear,  given the  lack  of  experimental

measurements of hysteresis. The plots of Dirckx and Decraemer (2001) show hysteresis for the gerbil

but it was not quantified. From their figure (Fig. 3–6 in section 3.4.3 here), one can see, however, that

the  hysteresis  was  considerably  greater  than  the  hysteresis  that  we  observe  with  gerbil  model  1

(Figs. 5–13A and 5–15) and close to the hysteresis obtained with model 2 (Figs. 5–14 and 5–15) at

1500 kPa/s.  The  results  are  not  directly  comparable  because  the  quasi-static  pressure  cycles  were

different (triangular signal of a few seconds vs. stepwise variation with durations of several minutes). 

We found a PPD of 42.8 Pa (Fig. 5–19) for a pressure-change rate of 1000 Pa/s when simulating

umbo vibration  in  the  presence of  quasi-static  pressure  sweeps.  Although we did not  measure  the

variation of the PPD as a function of pressure-change rate, we expect that it will remain constant in our

gerbil model 1. Therkildsen and Gaihede (2005) used a modern high-speed commercial tympanometer

and found that, for pumping speeds ranging from 500 Pa/s to 4000 Pa/s, a constant PPD of 120 Pa was

measured in human ears. They thus concluded that hysteresis is constant, at least for this range of
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pressure-change rates. As discussed in section 5.3.1.1, however, in the rabbit measurements of Dirckx

et al. (2006) the umbo hysteresis was greater at lower  pressure-change rates. We can obtain similar

changes  by manipulating  the  Prony-series  coefficients.  Therkildsen  and Gaihede (2005) performed

their measurements on live humans while Dirckx et al. (2006) conducted their experiments on  post

mortem rabbits. Whether the differences in results are due to species differences, to differences in the

freshness of the tissue or to differences in experimental methods is unclear.
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Chapter 6: Conclusion

6.1 Summary
In this study, a FE model of the gerbil middle ear was developed to study its response under conditions

involved in both clinical and experimental tympanometry, namely, both large quasi-static pressures and

small audio-frequency pressures. We created a FE model of the gerbil middle-ear that included the TM,

the manubrium, and a  simplified representation of the ossicular  chain and cochlear  load with two

components referred to as the wedge and block. A fixed axis of rotation, around which the manubrium

rotates as a rigid body, was defined. We used two different FE solvers, FEBio and Code_Aster, as a

verification technique. 

A quasi-linear viscoelastic model was used to describe the viscoelastic behaviour of the middle ear.

The viscoelastic parameters were defined with six equally spaced Prony-series time constants covering

a frequency range of 3 mHz to 16 kHz, covering the range of pressure-change rates and the frequencies

of acoustical stimulation in tympanometry. Their coefficients were initially assumed to be equal and set

to  a constant  value of 0.07.  The elastic  response of  the TM was described by the Mooney-Rivlin

hyperelastic model while the manubrium, wedge and block were modelled as isotropic elastic. The

elastic properties of the model components were determined by studying the small-amplitude frequency

response of the model and comparing it with the model of Maftoon et al. (2015). To match Maftoon’s

model for different locations on the TM and manubrium, the Prony-series coefficients of the PF were

adjusted.  The  cochlear  load  was  modelled  differently  in  FEBio  and  Code_Aster.  In  FEBio,  the

coefficient of the lowest time constant (10 µs) for the manubrium and wedge were increased to a high

value; in Code_Aster,  a dashpot  perpendicular  to  the manubrium was used.  The two models were

compared and produced very similar results. Overall, the small-amplitude frequency response of our

model matched Maftoon’s model for frequencies up to 3 kHz. At higher frequencies, larger differences
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were seen due to the assumptions made in our model. The PT was somewhat stiffer in our model, and

the  PF effect  on  PT and umbo responses  was  smaller,  but  still  within  the  range  of  experimental

measurements (Maftoon et al., 2013, 2014). 

For comparison with experimental data, we explored the response of our gerbil middle-ear model to

large quasi-static pressures, both triangular sweeps with ultra-low frequencies (as used by Dirckx et al.,

2006, for rabbits), and sinusoidal sweeps with near-acoustic-range frequencies (as used by Salih et al.,

2016, for both rabbits and gerbils).  We reported umbo peak-to-peak displacement as a function of

frequency and also  measured  hysteresis  as  a  function of  the  pressure-change rate  in  the  ultra-low

frequency range. In response to the triangular signal sweeps, we observed asymmetry of the umbo

displacement as a function of pressure. This asymmetry was also reported by Dirckx et al.  (2006).

Umbo displacements at positive pressures were similar to those by measured by Dirckx et al, while

umbo displacements at negative pressures were much larger in our model. This could at least partly be

because we are comparing results from two different species. The discrepancy could be corrected by

adjusting  the  material  nonlinearity  of  our  model  represented  by  the  Mooney-Rivlin  coefficients.

Hysteresis in our initial model was small and constant as function of frequency, while Dirckx et al.

reported an increasing hysteresis with decreasing pressure change rate. We have demonstrated that, by

changing the coefficients of the time constants within the range of the low pressure-change rates, we

can increase hysteresis and also control its variation as a function of frequency.

Exploring the response of our model to pressure sweeps at different locations on the PT indicated

that we were able to simulate TM buckling. This instability is manifested by sharp local kinks at small

positive pressures and was present for both the loading and unloading of the TM. 

In response to sinusoidal pressures, we found that our displacements are in good agreement with the

experimental  data  except  that  once  again  we  may  be  overestimating  the  umbo  displacement  for

negative  pressures  in  the  ear  canal.  The  umbo  peak-to-peak  displacement  increased  slightly  as
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frequency decreased while Salih et al. (2016) reported a slight decrease. This discrepancy also could be

reduced by adjusting the coefficient of the time constant that covers the range of frequencies of interest.

 The model umbo response to low-frequency pure tones applied on top of pressure sweeps at a

pressure-change rate of 1.5 kPa/s was investigated. We reported the vibration magnitude as a function

of pressure for the loading and unloading directions, to relate our results to clinical tympanograms. The

simulated static-pressure-induced variations in displacement of the umbo have features in common

with human tympanograms, including (1) the asymmetrical effects of positive and negative pressures;

and (2) the peak pressure difference and the slight decrease in magnitude from the ascending branch to

the descending branch, both resulting from hysteresis. 

Finally, we studied the response of our model to a rapid pressure increase followed by an acoustic

stimulus consisting of either a pure tone (226 Hz) or a chirp (0.12 to 3 kHz). We applied this loading

condition  to  test  the  capability  of  our  model  to  simulate  conditions  similar  to  LDV experiments

performed in our lab that use a stepwise pressurization protocol adapted from earlier work. In response

to the pure tone,  Code_Aster and FEBio gave similar  results;  the simulation for a  chirp was only

performed in FEBio.  For  both types of  acoustic  stimulus,  we saw that  the viscoelasticity  strongly

affects the TM vibrations. 

6.2 Future work
Despite continuing advances in FE software, the realistic simulation of the middle-ear response under

simultaneous quasi-static and acoustical stimulation continues to be challenging. One reason for this is

the wide range of possible choices that can be made during the definition of a model. Therefore, a

sensitivity analysis is essential to understand the relative influences of some of these choices on the

middle-ear mechanisms under different loading conditions. For example, we should explore the effects

of  the  material  properties;  the  TM curvature,  geometry  and thickness;  the  position  of  the  axis  of

119



rotation; and the boundary conditions 

The generalized Maxwell viscoelastic model coupled with the Mooney-Rivlin hyperelastic model is

quasi-linear and may not reflect the intrinsic mechanical properties of the TM. The value of the viscous

modulus and its variation as a function of frequency are both controlled by the same parameters (gi and

τi). However, actual soft tissues exhibit strong non-inear viscoelasticity as clearly shown in Figs. 5–13B

and 5–14 in section 5.3.1.1 for the TM. For a more accurate representation of the mechanical behaviour

of soft tissues, a nonlinear viscohyperelastic model could be employed  (Charlebois et al.,  2013). It

introduces an additional parameter which allows seperate control of the variations of damping and

stiffness as functions of frequency. 

The present  model  includes  oversimplifications,  and further  improvements of  the model  can be

made by including the ear canal, annulus, ossicles, ligaments and middle-ear cavity, and by taking into

account a realistic thickness map for PT and PF, the anisotropy and multiple layers of the TM, and the

nonlinear viscoelasticity of the ligaments. On the other hand, we realize that more sophisticated models

will require a significantly more computational power and larger effort for their calibration. Thus, to

enable  the  development  of  more  complex  models,  we  first  need  to  explore  tools  to  decrease  the

computational cost of our current model. Each stage of FE modelling (pre-processing, solution and

post-processing) has an inherent parallelism. Here, we are interested in exploiting parallelism in the

solution step. We could first start by optimizing our computations in both Code_Aster  and FEBio by

investigating where they spend time. For a large number of degrees of freedom and slow performance

in calculation of the element matrices, implementing parallel Code_Aster and FEBio in Guillimin can

speed up our computations. FEBio has an implementation of a parallel solver for shared memory that

has been used in this study to decrease computational cost, but does not have an implementation of a

distributed-memory solver. On the other hand, one shared-memory solver (MULTI_FRONT) and two

different  distributed-memory  solvers  (MUMPS  and  PETSC,  which  are  direct  and  iterative,
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respectively)  are  available  for  parallel  computations  in  Code_Aster.  However,  there  may  be  no

significant reduction in computational cost using such parallelism with the large number of time steps

that we are dealing with in our dynamic simulations, in the absence of parallelism in time. 

We  could  alsoexploit  graphical  processing  units  (GPUs)for  the  FE  solvers.  Some  groups  have

implemented an explicit dynamic framework for nonlinear FE analysis using GPU execution, and it has

been shown to be much faster than CPU execution (e.g., Taylor et al., 2009).

Modelling buckling is numerically challenging. We ran into convergence problems in regions of

buckling when we increased the coefficients of some of our time constants. Incorporating different

numerical  schemes  in  FEBio,  and  testing  the  capabilities  of  Code_Aster  for  modelling  such

instabilities,  should  permit  better  modelling  of  buckling.  The TM exhibits  little  plasticity,  and the

buckled deflections are small and buckling loads are below the yield stress. Therefore, linear models of

buckling would be sufficient to model buckling in the TM. Once we develop an appropriate approach

to model buckling, we can incorporate the ossicular joints and model them as nonlinear viscoelastic

structures as done by Soleimani and Funnell (2016). These joints may also be prone to buckling, and by

modelling them we would gain a better understanding of the physical instabilities in the middle ear. 

Not many data are available for the mechanical properties of the components of the gerbil middle

ear. We established estimates of parameters based on comparison with a previously validated linear

model  (Maftoon  et  al.,  2015).  This  approach,  however,  does  not  provide  good  estimates  of  the

nonlinearity  and  viscoelasticty  of  the  gerbil  middle  ear.  However,  our  model  with  its  baseline

parameters can be used to simulate the gerbil middle ear in response to different loading conditions and

compare the results with experimental measurements. We can then adjust our material properties based

on these comparisons. As a first attempt in this experimental direction, in another study in our lab,

Shapiro (2014) performed preliminary post mortem multiple-point measurements on the gerbil TM in

response  to  chirps  in  the  presence  of  step-wise  changes  in  static  pressures  similar  to  those  used
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previously in measurements of TM shape in the gerbil (e.g., Dirckx & Decraemer, 2001). Currently, our

group is extending this work to acquire  in vivo measurements and to extend it to more measurement

points  (Kose  et  al.,  2017).  The  pressurization  introduces  nonlinearities,  and  testing  with  different

pressurization cycles and pumping speeds will allow us to characterize the viscoelastic behaviour of the

gerbil middle ear. Thus, we will be able to obtain more a realistic and accurate numerical model of the

gerbil middle ear. 

6.3 Significance
In general, the results of our study provide insight into the features present in tympanometry in gerbils,

and by extension in clinical tympanometry. To the best of our knowledge, this is the first time that the

response of the middle ear to both quasi-static pressures and acoustic pressures has been modelled,

accounting  for  both  nonlinearity  and viscoelasticity.  The  model  provides  a  tool  to  bridge  the  gap

between quasi-static  and  acoustic  measurements,  and to  explain  the  complex  interactions  between

them, which will enhance our understanding of tympanometry. Although our model is for the gerbil

middle ear, the ultimate goal is to understand clinical tympanometry in humans, and particularly in

newborns. Part of the rationale for studying the gerbil is to build confidence in our ability to explain

and  model  the  behaviour  of  the  middle  ear  by  comparing  the  model  to  existing  and  future

measurements that cannot be done in humans.

Our  study  indicates  that  we  can  model  the  middle  ear  for  conditions  similar  to  those  in

tympanometry (i.e., acoustic stimulus in presence of large pressure sweeps) but more work is needed to

clarify the response of the TM to different pressurization protocols, different frequencies of the acoustic

stimulus, different forms of the acoustic stimulus (i.e., pure tones, chirps or clicks) as well as the roles

of hysteresis, preconditioning and other temporal effects. This will lead to a better understanding of

tympanometry in gerbils and eventually in human newborns. 
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