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ABSTRACT ‘
. N

\ .
This thesis preser;ts a ilew method for aytomatic generation of three-dimen-
sional tetrahedral-finite-element meshes within objects. This method is especially .
useful when the object ta be modelled has a highly . irregular shape. The base
geometric model used is a set of serial cross-sections of the object. These sections .
are first triangulated on a grid of nodes. The obJect is then divided into slices, i
each two consecutive cross-sections const.ltutmg a shce, and each slice is meshed
separately. For each slice, nodes on the top~and bottém surface triangulations are '
- joined to form a central mesh of pentahedral prisms. These prisms are in turn
shredded into three tetrahedra each to form the core of the tetrahedral mesh. The
—remaining outer layer of the slice is then assembled into a polyhedral structure and
. meshed using four operators that work on the, topology of ‘the polyhedron by cutting
tetrahedra from it. The meshed slices are finally merged to form the global mesh.
_ The shapes of the elements in this mesh are improved by rela.xxng the internal mesh
nodes to an equilibrium position where each node is at the c&nter of gravity of the
other nodes attached to it. .
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o . Cette these présente une méthode nouvelle pour la production automatique
* Me malllages tri-dimensionnels dans un objet, pour la méthode d’éléments: finis. ’
Cette méthode est partxcullerement utile quand l'objet étudié a une forme trés
irreguliere. Le modéle géométrique de base utilisé est une série de contours de
sections de l'objet étudié. Ces sections sont d’abqrd triangulées sur une grille de -
points, puis l'objet est divisé en tranches, chaque tranche étant déterminée par
deux sections comsécutives. Chaque tranche ‘est ensuite maillée individuellement.
Pour chaque tranthe, des points sur les surfaces supérieures et inférieures sont
- joints, formant un maillage central de prismes. Ces prismes sont & leur tour divisés
' en’trois tétraédres chacun, complétant. le maillage central. La couche extérieure
restante est ensuite assemblée en une structure polyédrale et maillée & 'aide de ]
_quatre opérateurs agissant sur la topologie du polyédre en coupant des tétraédres. )
Les tranches maillées sont ensuite assemblées pour former le maillage final. Les °
formes des éléments dans ee maillage sont améliorées par une méthode de relaxation
des ‘points aboutissant & une position d’ equxhbre ou chaque point.est situé au centre
"de gravité de tous les autre points qui lui sont attachés. o . —
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CHAPTER 1

Introduction

1.1 The Finite-Element Method, ) \

- R N
¥ . >~ o

Solutions to a large class of problems in engineering analysis consist of solv-

- <

ing a set of governing differential equations,or minimizing an energy functxon.al'over
a domain, given some boundary cohditions Anal}{tical methods provide exact solu-
.ons to some simple classes of differential equations, but for many interesting two-
and three-dimensional problems, exact solutions are 1mp?ssible to a.c‘hieve. This can
be due to ther complexity of the equations in question, t:iie-.’complexity of tiu\} domain,
or both. The finite-element method has proven to be an excellent computational
tlool for arriving 4t numerical solutions to such complex proP]ems {Gallagher 1975,
Silveste® & Ferrari 1983, Stasa 1985? Strang & Fix 1973, Zienkiewicz 1977}, . \

o

In the finite-element method, the problem domain is first discretized into a
finite number of simpler sub-domains, or elements. A solution-is then approximated

over each of these elements individually, in terms of the boundary conditions on the
e

element. For each element, the local equations are put in matrix form and used
to construct a global system matrix, using the fact that the element boundary
conditions are identical at each element-to-element interface. ’%is final maﬂx

defines a set of simultaneous equations that are solved for the global salution.

The method was originally extensively used in two-dimensional problems.
o

‘ However, advances in computer technology in the form of faster machines and better




¢

[ 4

algorithms are making the solutions of three—dimensionl and larger two-dimen-

. . sional problems possible. These include problems in stress analysis and structural

s

design [Bathe et al. 1973, Zienkiewicz et al. 1970], fluid mechanics and heat transfer
L ]
[Baker 1983,%&ng 19751, electromagnetics.[Chari 1980, Silvester & Ferrari 1983,
|

Zienkiewicz 1980|, and recently in biomedical engineering [Funnell & Laszlo 1978,

Little et al. 1986, Murai & Kagawa 1985, Yamashita & Takahashi 1984|. s

1.2 The Finite-Element Mesh

- v

The degomposition of an .V-dimensional domain into finite elements s called
an N-dimensional finite-elément mesh, and has to -satisfy two main comditions.
(1) The union of all the elements i1n the domain i1s the domain itself; and (2) The
intersection of any two elements is either null or a full :-dimensional face. where
0 <i: < N. Thus for a three-dimensional mesh, any intersection is either hull, a
point, a full edge or a full face Furthermore, and as a softer,req.ulr_ement. torproduce
optlmal results, the -mesh elements must be as equllateral as possible avoiding i in-
ternal angles that are too large or too small Babuska & Az1z 1976, Hermeline 1982,

beson 1978.. : { ~ i

Clearly, the size and shape of the elements affects ‘the complexity of the

solution and the accuracy of the resuks and several element shapes have been de-
- n

\\relopedﬁanfi used “for different environments‘ and purposes Argyris 1965, Argyri‘s’
1968, Clough 1969, Hughes & Allik 1969!. However, the most widely used ele-
ments have been the triangle and qua'dril_a.teral in two-dimensional analysis. and
the' tetrahedrén, wedge (pentahedron) and brick (hexahedron) _in’three dimensions.
In addit‘ion, the edges of these elements.rileed not be straight, and curved elements

o

having second ‘order (quadratic) or higher order edges can also be used.- Arguments

- § -

have been’ proposed as to the superiority -of one shape or the other. but usually op-

U RERT R,
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timalify is dictated by several factors, ingluding the desired precisipn of the results,

the size and speed of the computer being used, the geometry of the problem and

the cost limit of the analysis.

Tetrahedra will be used in this work for several reasons. Tetrahedral elements
are three-dimensional simplices and thus have the smallest number of nodes, faces
and edges of all three-dimensional.elementss This makes them simpler to manipulate
before, during agd after the analysis (préprocessmg, processing and postprocessing)
They are also compatible with most finite-element solver software ;:ackages so that

- the output of a tetrahedral mesh generator can be readily used. In addition, the
topological three-dimensional simplex properties of tetrahedra make them ideal for
meshing irregularly shaped three-dlmer;smnal objects, since any polyhearal object

can be described as the union of a set of tetrahedra Alexandroff 1961 .

1.3 Thesis Outline —

This thesis proposes an automatic mesh generatioﬁ method thattcan be used
éto mesh arbitrarily shaped objects. This is particularly important in the biomedical
field where such shapes abound. The method takes advantage of an easily available

data representation by using serial sections of an object as a geometric model.

3
1 S

Chapter 2 provides a $urvey of the literature on three-dimensional mesh
[+]

generation techniques with a desgription of the diffefent methods‘and comments on
the pros and cons of each. It also presents the motivation for this work along with

a brief overview of the proposed method.

¥
Chapter 3 introduces the concept of serial sections as a geometric model of
the object being’ analyzéa. The data acquisition meshod is described and the two-

dimensional triangular meshing technique that provides a basis for the proposed

. 1 o
A

e

»
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three-dimensional method is discussed and its purpose éxplained.

~

L

In Chapter 4 a high-speed method for meshing the core of an object, based on

.

the two-dimensional technique, is presented. This involves creating a regular mesh

v

ot trh\ngular prisms and shredding it into tetrahedra. Two theorems on shredding

pentahedral prisms are given and proven. .

el ’ ; -

’

3

Chapter 5 is concerned with assemtbling the remaining outer layer of the
object and checking its topological consiStency. A description of the data structure

employed will also be given.

[n Chapter 6 Eulerian mesh operators are introduced, and_the topological
~ mesh generation technique is described. Previous attempts at providing a com-
pleté set of operators will be shown to.be lacking and a more complete set will be

presented. Three classes of irréducible polyhedra will be introduced and discussed.

o

/ ‘/,,) A.method to measure the quality of the generated mesh and a way to improve
[4 . l A .
the shape of the elements through node relaxation will be proposed in Chapter 7. ™-.

B ‘ -~ @ °

The results of the mesh generation and relaxation are presented in Chapter 8.

Finally, Chapter 9 ctt)ntains an evaluation of the method and‘comparisons‘ to

a B . . . " '
other methods, along with some further considerations and possible developments. .

Y

The reader unfamiliar with topological concepts or the notation used is re-

ferred to the Appendix, where a short review of the essential geometric and algebraic

’

topblogy concepts is presented. - .
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CHAPTER 2 K ,

. Three-dimensional mesh generation methods

2.1 Introduction

= In the finite-element analysis of three-dimensional problems, a major stum-
bling block has always been that of proBlem. description to the computer. This
includes the.generation of the three—din';ensiona.l finite-element mesh to span the
problem domain. Since manual mesh generation is very error prone and tiI.I;é con-
suming, designers have been seeking t‘o automate the mesh generation procedure

as much as possible. ~Generating two-dimensional meshes automatically is now

+ 3 [

common practice and done using any one of several methods [Heighway & Biddle-

combe 1982, Kamel & Eisenstein 1970, Thacker et al. 1980, Watson & Philip 1984,
1\ a o
Zienkiewicz & Phillips 1971]. In three dimensions, on the otlier hand, automatic,

or even interactive mesh generation is not so simple. Due to the importance of

o

the problem in design analysis, quite a few mesh generators exist today, and they
. N
can be loosely grouped in four major classes. This chapter will review .the different
techniques used in three-dimensional mesh generation, and present the motivation
* p)

for the new method proposed in this thesis, along with a brief description of the

’
@

method.

“~
2.2 Interactive Graphics

¢ ¢ R

-
2

This form of mesh generation |Biffle & Sumlin 1977, Bryant & Freeman

3
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31984,,>Kame1'& Shafita 1974, Kirchh;ff 1974, Eferlmchio‘ et al. 1982, Thornton 1978
is the closest to mi;nual mesh generation in that all the aspects of the procedure are |
controlled by the user. The main difference lies in avoiding manual entry of r;oda}
coordinates. Instead, the computer is used to visualize the mesh as it is created,
and graphic input efdeviccnes are used to define coordinates. Compared to manual
mesh generation methods, this reduces the poisibility of errpr and saves time in
generating the mesh. The main problem here lies in the two-dimensional nature of
the traditional graphics devices making the proper entry and:viewing of ‘thfee-di-
mensipnal data very difficult for anythi}lg but very simple shapes. Three-dimen-
sional ‘view'ing devices ‘Fajans 1979, 'HarrYs et al. 1986, Jansson et l. 1979, Of oshi
1980, Stover 1981! being still too exper{sive for widespread use, several methods
for improving the two-dimensional displa); of three-dirr&ens}ongl models have been
tried. Some, .for example, use projective views of the object being meshed to help
the user locate and define nodes in space. Typically, a node is defined by pointmg at
two different ;;rojections in two windows and thehthree-dimensional cogrdinates are V
reconstituted accordingly from the projections. Other methods rely onl perspective
views, hidden-line removal, real-time rotation of the object or any combinatlon, of
these to create the same effect. In addition, such utilities as DELETE, MERGE.

.IOIN etc. are prowded to famhtate certain aspects of the mesh generation, so that .

complex objects can be divided into simpler modules that are meshed individually

and_joined later. These generators are usuall); highly interactive and demand a

large amount of work from the user. They are also very impractical for large or

complicated objects, and cannot be used in batch mode to save on processing costs. -

On the other hand, they provide a latcge aQ)unt of control and- flexibility in creating
‘ \ ’ “the mesh, areteasier to implement and require less memory,-a fact that can become

important where smaller machines are concerned. .
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2.3 Mapping Techniques
L 2 : _ °

The term 'mapp.ing is used in this context to include both interpolation
mappings [Cook 1974, Haugerud 1978, Imafuku et al. 1980} and deformation map-
pings [Coulomb et al. 1b84, Pissaitetzky 1981, methods that have their roots in

_two-dimensional mesh generation mapping techniques [Kamel&-ﬂ}s@nstein 1970,

Zienkiewicz & Phillips 1971}, and are by far the most prevalent today. In three-di- 2’
. & v
mensional interpolation methods, the object is defined by a set of cross-sectional

‘

curves matching its surface at a number of cptting planes, and by a set of corre-
N ; cpd o o

sponding interpolatjon functions between the cross-sections. The same mfm.ber of
. .
nodes is generated-and joined inside each cross-section, forming a two-dimensional

mesh at each level. ‘Corresponding nodes on consecutive sections are then joined by

interpolating between them. The resulting three-dimensional elements depend on® °

-

the nature of the two-dimensional meshing at the cross-section level. Thus brick el-
ements are formed if the_cross-sections/)are divided into quadrilaterals (Figure 2.1.a)

and wedge elements are formed where trial\‘lﬁular elements are used (Figure 2.1.b).

Deformation methods on the other hand start with an-existing topologically
correct regular mesh in a parametric space. This parametric mesh is then deformed

& .
into the real object space so that the nodes on its surface are relocated to lie on

the surface of the object being meshed. This can’either be done interactively- or by

’

choosing some suitable functions that map the parametric coordinates of the object

.

into. Euclidian space (Figure 2.2).- ‘ & - .

These methods give excellent results for regular shapes possessing some form . ,
’ . -
of cress-sectional symmetry and where the shape of consecutive cross-sections does

o

not change drastically, but present a few problems in other gec_)metries. For exam--

ple, since the same number of nodes is distributed inside each cross-section, nodes

i
£

. —xw v

Q - .
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Figure 2.1
Bricks and wetﬁes. \
.. a) Quadrilaterals lead to brick-shaped elements.
b) Triangles lead to wedge-shaped elements.

c(1,0,1)
A'=P(00,0)=F(A)
© B'=F(1,0,0)=F(B) ..
® C'=F(1,0,1)=F(£) L] .
AN i et
- ' ' , ~
. 8(1,0,0)

A(0,0,0)

Figure 2.2

Mapping between spaces. -
TR The function F maps the parametric unit brick into Euclidian space.
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-
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‘ . in inclr_qasingly narrowing cross-sections become uselessly cramped in t}}e smaller . -
. cross-section, resulting in an increase in the numt;er of ‘nodes. used to solve the, . -

problem, and ﬁhe production of badly shaped, narrow ele\nienﬁs. Another problem,

is encountered when meshing highly irreegular shapt;,'s. )I_n these ,i;stances 'mterpo-x

lations from one grpss-section to the next often result in bad element shapes in

interpolation rnethf')_ds, and a proper 'ma.pping function is extremely hard to find

for deformation methods. Although requiring some initial directions from the uéer,

mapping methods can be set up for batch processing and can be relatively inexpen-

\

sive computationally.

! N /
2.4 Filling Techniques

-

" These methods are generally used to produce meshes of tetrahedral elements.
They consist of generating nodes inside the object to’be meshed and filling it with

‘ elements by generating tetrahedra to surround the nodes. The most widely used \

method to achieve this is that of Delaunay triangulations 'Brostow et al. 1979,

<

Cavendish et -al. 1985, Hermeline 1982; Watson 1981]. For a set of n nodes, a

. o
e Voronoi polyhedron V, associated with a node p, is defined as the set of péints that

LY

are closer to_p. than any other node:

° V,={z; V1 #1, 1< j.<n, d(z,p) < d(z,p))}

- : This definition impliés a partition)of the domain into distinct polyhedra. Joining
> neighbouring nodes h.e. nodes whose corresponding Voronoi polyhedra are adja-

cent) produces the dual of this partition, the Delaunay triangulation, which is a

valid tetrahedral meshilng of the domain, except for some special cases which can

be detected and remedied. The two-dimensional case is shown in Figure 2.3.”
v )
" A A
Other interesting techniques have also been proposed. In ,Nguyen-Van-Phai

‘ 1982] for example, an edge joining two vertices in the set is selected and surrounded i
) . . ’ &
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Figure 2.3 2

. 2-D Delaunay triangulation
A partition of the plane, by a set of points p;, ...p3

into 13 Voronoi polygons, and the corresponding De-
launay triangulation. .

10 -



' 2.5 Cutting Techniques /

‘ith tetrahedra defined by nearby vertices. This procedure is repeated for all the

generated édge§, making sure that the newly formed tetrahedra do not intersect’
[ 4

alrgady existing ones.

All these methods have similar problems. The first one is that for any non-

simple shape, generating the nodes inside the region is not a trivial ope{ation.
x-

Second, the resulting mesh is a three-dimensional triangulation of the contex hull

of the generated nodes, irrespective of the actual shape of the object. A substantial

-

.amount of additional work is then required to take care of holes and concavities.

Third, these methods can be computationally expensive for large systems of nodes.

The main advantage of node-insertion methods like the Delaunay triangulation is

"that they” are naturally suited to adaptive mesh refinement techniques, where a

coarse mesh 1s first constructed and subsequently refined by inserting nodes-in the

2

locations of greatest error ;Cendes & Shenton 1985].

More recently, topology and topological operations have taken a more promi-
nent’m-l’e in three-dimensional mesh generation [Ewing et al. 1970, Mantyld 1983,
Woo & Thomasma 1984, Wérdenweber 1984], @ some perceived deficiencies
in the traditional approaches. Topological metfgds‘ invo.lv’e cutting off tetrahedra
from an object, as opposod to filling its volume with tegrahedro as in the previous
method. The object is usually defined as a polyhedron with lists of faces, edggsz -and
vertices, along with pointers defining their topological relationships. "The cutsQ are
done a.ccordlng to rules ensuring the topological con51stency of the resulting mesh,
without generating any new nodes. -‘The two main operators are common+to all the

\ a
methods, however, and are the a.ctual cutting operators. They act on a strugture

by removing a tetrahedron identified by a vertex or an edge, respectively. Agaia, .

-~

&

11
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-

these techniques are used to produce tetrahedral ‘element meshet, and at least two

methods have already been proposed using very similar operators. It will be shown

-

in this thesis, however, that these operators aé‘e incomplete, fz:.iling on a large class 7
of p_olyhedra, and a more complete set @ o"peratox:s ‘will be introduc¢ed. Gentirally
these methods lend themselves well to automatic mesh ge;leration and produce con-
sistent meshes, e‘;én for a;‘bitrary shapes. They are, however, relatively slow and
require a polygonal surface descriptfon of the object, wh‘i.ch can be hard t6 produce

Y

for non-simple shapes. -
>

2.6 Still, Another Method?

o »

» It must l;e clear by now that there is a wide variety off three-dime}lsional
mesh génerators that are capable of ‘meshing well ‘behaved shapes. On the other
hand, these miesh generators are not well suited for meshing irre'gularly shaped

# objects. Recently, however, scientists; have been interested in three-dimensional
finite-element analysis in fields where the obJ:egts under gtudy can take on very
irregular shapes and are very difficult to mesh properly. The lack ofsappropriate

mesh generators in these cases is apparent. The main objective of this work was

thus to develop a fully automatic mesh generator to be used for such shapes.

E- 3

As for any mesh generation method, this method_starts with a geometric
model of the object under study. The geomet‘tic model in this case consists; of a
set of serial sections, as desg‘ri'bed above for the interpolation technbques. Serial *

‘ sections have been éxtensively_used in several areas like anatomy and geology to
scribe geomnetrical properties of objects and sha.;;es, mostly for fxurface and volur;
lleconstruction 'Fuchs et al. 1977, Gaunt 1971, Kepﬁel 1975, Tipper 1976, Veen &

—-Peachey 1977". In some instances, serial sections are the only available represena~

tion of the object under study, Since serial sections are often aiready available for

12 /J ‘




P TR ¥l
‘.

objects in the life sciences and can be easily producied in other engineering appliga—

tions, a mesh generat& that takes advantage of this fact would greatly reduce the

v

amount of time required for modelling the object prior to meshing it, while at the

same time simplifying a large portion of the meshing procedure. * ®

2.7 The Proposed Me_thod

s ]

Serial cross-sections 7thro‘ugh an object logically dividé it into slices of finite
thickness, with each two consecutive sections taken to define the to'p and bottom
surfaces of a slice. Although not a requirement, we are assuming here that the
cutting planes are parallel. r-I‘he cross-sectional surfaces are each triangulated on
a grid plane, using ghe same gr_xd for all the sections. This will cause each two -
consecutive se.ctions, whose: projections on the grid plane will usually overlap, to

\
‘contain identical nodes and triangles within the interlap area. At this pointefpach

slice is processed individually.

First :central core of pentahedralvf)lrisms is geﬁerated by pairing up matching
triangles Erom the upper and lower triangulations, and the prisms are ;hredded
into tetrahedra. Tke -rernaining portion of the slice, usu;ally a torgs-‘ﬁ'l%e structure
surrounding the core, is assembled into lists of related triangular faces, edges and
vertices, then meshed using a set.of four topological operators. When all the slices
ha.ve been processsd, they are put back together to formthe whole three-dimen-
sional mesh. T}lis can be easily done because the slices interface exactly at nodes,
edges and faces, since, for any two consecutive slices, the top section of the lower

slice and the bottom section of the upper one are identical. Finally, the internal

nodes are relaxed to improve the shape of the mesh elements. .

'l

- ~

-~




5 R P & % 1 3 B \( * ;I,rl\?‘ Sl :"”-’}‘ 4
> [ “_ - . N -
| ; . S
o 4
8§ \ -
. o . Tt
0 . ~N % ]
o— v - 5 -
~ . - . 2 =
» e < -
== CHAPTER 3 . .
| \ ' p
. Setting up the cross-sections
3.1 Introduction . ) -
v - “ f‘)
. The need to describe the problem geometry to the computer is a problem in
. - 4

i itself, since mesh generators u‘sually require a georn;etric model of the obj;,ct to be
shredded. This problem is usually solved through the use of a geometric mod;elle;
\avhicil, from some user-provided input data, produces a geometrical description
of the object, compatible with the apalysis program that will be making use of
it. A standard specification for geometric models has been developea [Smith et

T al. 1983|, and Several geometric modellers are in ukse today [Baeret al. 1979|, the

main requirement being that the -geometric properties of the modelled objett be

described to a certain’degree of accuracy. Serial sections of an object certainly
deﬁ'ne the outside shape of the object with an accu:'acy proportional to the slicing
resolution (the distance betwéen two consecutive slicing planes) and can thus be
used, in digitized form compatible with processing on a computer, as a geometric

- model. In this chaptei, the acquisition and digitization of the serial sections will
> — be covered, and the two-dimensional triangular mesh generation method. used to

generate the two-dimensional contour meshes that are the base of the three-dimen-

- , sional mesh, will be described.

- A
[

»
[
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3.2 The Serial Sections

- Serial sections consist of a set of two-dimensional cross-sectional contours
of the object, usually parallel and taken at tegular depth intervals. They can be
obtained by one of several methodé, depending on the nature of the object Bi-
ological sections are, for exa.;nple, taken either by actually sl;.él;xg the object qnd
presérvmg the slice, by computed tomography (CT), or by using a élcannlng mi-
croscope, i;djustmg the focus at different depth levels and photographing the focus‘
plane. The cross-sections can be taken in any direction, but’ the node coordunates
are adjusted so that the X-Y plane 1s parallel to the slicing planes and the Z axis
paréllel to the slicing direction (normal to the slicing planes) This convention ’Js

i

easy to implement and greatly fécilitates the modelling.

3 3 The Serial Contours

0

- The geometric data file conta.inm\g the geometric model of an object 1s next
°

generated from these cross-sections by storing the X-Y coordina;cesn of points on each
of the co%to(xrs. alonguwmh a distinct 1dentifier corresponding to the Z coordinate
of that contour To do that. the origin and X-Y .axes have tb be identified on
each shce, ang defined on the digitizing plate. This insures that all contours are
digitized on the same frame of ref_erence, therefore- correctly describing the object.
’i‘he axes on the digitizer and on ,_each contour are then superimposed and the
contour followed on the plate with a g;aphic input device such as a_stylus Points
on the contour afr‘e selected, digitized and sent to the file. Due to the amount of data
that can be generated this way, a data organization scheme is usually necessary at
this point. The recorded points need not be equidistant on the _sectlﬁon contour, nor

constrained in any other way. except for being consecutive in one direction on,the

oriented contour. Since each slice lies at a different depth, the depth value (the Z

‘-

o
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coordinate of the slicing plane) has to be input separately along with each slice. .The

distance between successive Z coordinate levels determines the standard measure.
4

that will be used as a unit step throughout the remaining procedures

A / .
3.4 The Uniform Grid Method
Q
o
. Qnce the contours are dbtained, the first step in the mesh generation algo-

”

rlithm 1s started [ts purpose i1s to generate loosely matching triangular meshes on
consecutive sections In such a way that as many of_tix;’lr nodes as possible can be
joined by vertical edges to form pentahedral prisms from patrs of triangles (Figure
3.1). This 1s acc:ompllshed by constraining all the !rlanﬁy.mnn\ to be performed

on the same grid of nodes, following the procedure outhned below  Fuannell 1983

o

1 Define the grid plane and generate the grid nodes  Thy grid plane s spanned

[+4
' by two oblique integer coordinate axes. the [ and J fixes. iving at 60 with

respect to each other This angle has been chosen in order to obtain . mesh

of equifateral triangles whgn the grid pointsare jomed tagether (Figure 3 2)

f, The grid lattice 1s bourrded by the parallelogram enclosing all of the contour-,
A

and whose lower and left sides are the [ and J axes, respectivels The [ axas s

determined by the global minimum.}Y coordinate in the node coordinates hile

The J axis 1s determined bv the mtersection point of 4 shding hne, fornng
o
a 60~ angle with the [ axis, and the union of the contours  The ongin i«

obviously at the intersection of the two axes The umt distance on the axes

is taken to be the slicing resolution measure as defined in section 3.1 Nodes

on the plane are identified by their /-J coordinates on the two-dimensional
-]
’ M

lattice -

.

2 Project the contour to be triangulated onto the grid plane generated in atep |

>

16




Top Trisngle

_ <\ ‘0 .

Bottom Trisngle

. Figure 3.1

Pentahedral prism.
Construction of a pentahedrai prism by joining two triangles.
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Figure 3.2

. The grid of nodes.
J01mmng the grid points gives a mesh of equilateral triangles,
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o Since the object has already been aligned with the Z axis. and“the grid plane

is assumed to be the X-Y plane, the projection can simply be done by setting
\

the Z coordinates \fthe contour nodes to zero.-

3. The contour is redivided into new equal segments as close to unit step length

as possible, generating a new set of equidistant boundary nodes and edges

-

. of equal length. This is done by calculating the perimeter of_t.he contour,

dividing this number by the unit step length and truncating the result to

S determine the number of nodes that should be fitted on the contour. These
P . .

‘nodes are then uniformly distributed on the perimeter of the contour. gen-

: erating the new segments along the wa¥. The suze of these segments will

N

N . an integer number of steps. This step can be explicitly overridden by the

«

-]
user when the specified contour nodes should not be moved. as in the case
. P

LR

B e

. . v .
. where they define a naturally occurring boundary on the object surface, for

o

¢

example.

i

. >
from the boundary (Figure 33) The tolerance s used to elimimate nodes
. i .
. that are too close to the boundary and that could cause narrow triangles to

be generated. According to the Jordan curve theorem Courant & Robbins

o < »
1941, a point lies inside a closed curve if any path emanating from that
N ‘ , ¢
point intersects the curve in an odd number of places. This Fheorem 1y used

’

here by checking, for each node. the number of contour cdges that intersect a

/ .
horizontal half-line originating at that node The node is inside the contour

if the half-line intersects an odd number of contour edges

% 5. Join marked neighbouring nodes to form a triangular mesh of equilateral

Y

I8

- P ¢

generally be different from the umit step, unless the perimeter happens to be .

4. Mark the nodes that le inside the contour. to within a4 given tolerance away -

A\



Figure 3.3

Flagging internal nodes.
Nodes that are inside the contour. but not

too close to the bdundary, are flagged.

Figure 3.4
Making the equilateral mesh.
The internal nodes are joined to ,make an
equilateral mesh inside the contour:

°
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“

o ‘ . triangles inside the contour (Figure 3.4).

* 6. Determine the boundary nodes and edges of this mesh.

a Q‘ .
7. Join the boundary nodes of the internal mesh to the external contour hound-

ary nodes, surrounding the interngl mesh ‘'with a boundary la}er of triangles

and completing the mesh (Figure 3.5). The method used 'Fuchs et al. 1977,
Funnell 1984 relies on joining neighbouring nodes on the two boundaries to

form triangles by optimizing a cost function. Any one of several cost func-
7

\ tions can be used, including the area and the narrowness of the triangles.

-
- 1

Repeat steps 2-7 for all contours. s

3
o

r ' .
3.5 Conclusion
- F

E . . QAlthough some other methods. not necessarily generating equilateral trian-
e gles, could have been used to the same effect. the most important resuit- of the
triangulation described = this chapter s the production of a large set of identical
triangles ‘inside the two-dimensional meshes of (onsecutive ~cctions  This result
\;ill be used «in the next step of the algorithm to generate the pentahedral prisms
forming the core of the three-dimensional mesh. It should be noted here th;‘u this
particular rnethod,‘of triangulating the cross-sections results 'n? a different number
of nodes being generated at each level, according. to the size of the cross-section,
eliminating the node cramping problem that could be encountered otherwise. Now

o

that the triangular meshes inside the contours have heen generated. they will be

used to form tetrahedral eléments in two cbnsecutive steps. First, corresponding

nodes on each layer will be joined to form a mesh of pnisms and the prisms shredded
into tetrahedra. The core that forms a large part of the bulk of the object, is thus

@ cheaply meshed, and a more expensive topological method will then be ljl;ﬁd on the

]
-

20




Figure 3.5 .

v ' Completing the mesh.
The boundary of the internal mesh is joined

to the boundary of the contour.




LY
remaining portions:
- ,."
. .

R 3
. 0

-

Q
§
$
’ [

L d

«
. .
o
L3
.
oy
!

22




Fi

A

CHAPTER 4

N\

4.1 Introduction . . .

The 3-D mesh core

Pure topological shredding techniques are very slow, and not worth using on
a wholg slice of the object. Instead, shredding by interpolatio” or using a look-up
table will be used‘a's0 much as possible Corresponding nodes on different levels will
be joined in this step to form prism elements. Due to the use of the grid in the
triangulation, these nodes can be joined 'directly by straight line segments without
the need for interpolation functions. The resulting pentahedral mesh will be refined
into a tetrahedral one by using a look-up table to divide each prism into three

-]

tetrahedra. | ) ’
4.2 Building Prisms

Each grid node in the grid plane has been permanently aséigned a pair of
integer grid coordina.r,esj([ -J coordinates). These coordinates remain with the node
and are stored in the node array of the two-dimensional triangulation of that partic-
ular contour. Nodes on two consecutive sections having the same grid cob)rd'&nates
correspond to the same position on the grid plane. They consequently lie exactly
‘abov‘e’“ each o‘ther in the slice and can be joined by a vertical line segment.’ If three

such pairs of corresponding nodes, belonging to a pair of corresponding triangles,

are joined, they form a pentahedral prism. If all such corresponding triangles are




.2

¢

3

)
-

joined, a mesh of pentahedral elements can be constructed. Going through the/fist
of trianguli.a.r elements‘for the top and bott'om two-dimensional contour triar;gu-
lations, points forming pairs of corresponding nodes are flagged. Triangles whos_e
three nodes are each part of a-gorresponding pair are then joined to form elements

in the core mesh of pentahedral prisms. o

&

4.3 Shredding a Prism

-8 _

The set of prisms obtained constitutes the core of the final three-dnmenﬁonal
finite-element mesh, According to mesh’rules, it is a topologically correct mesh and
could be used in finite-element computations if prism elements are to be used. This

Q

not being the case however, it is clear then that this mesh would have to be refined

to a tetrahedral one by shredding the prisms into*tetrahedra.

This shredding has to be done while conserving the integrity of the mesh. It
can easily be shown that, when no extra nodes are to be generated, a prism can
be divided into three tetrahedra according to two different configurations. To show
this, we first need to define the 'pl&nar graph equivalent of a polyhedron. A\ planar
graph is a set of co-planar nodes connected by a set of arcs in the plane, such that
no two arcs intersect. Any three-dimensional polyhedron can be r'epro;s_grlmd by a
planar graph 'Preiss 1981:. Planar graphs representing a prisin and a tetrahedron
are shown in Figure 4.1. Shredding a prism into tetrahedra can be re@uced to
finding an appropriate triangulation of its three quadrilateral sides (Figure t.2)-.
Three distinct triangulations T, T, and :I';; are possible, but it is easily seen that
shreddings are possible only along T\ and T». We shall denote the triangulated

sides on T and T, by
2 T, =(4 B () '

T:=(DEEF) . -

‘ ’
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N Prism Tetrshedron o

' Figure 4.1
” Planar graphs. 4
Planar graphs of a prism and a tetrahedron.
The planar graphs are topologically equiva-

lent to their corresponding polyhedra. .
- ’
»

Figure 4.2 )

Possible triangulations of a prism. ‘
The three possible triangulation configura-

“ . tions for a planar graph of a pentahedral . -
prism. : '
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as shown in Figure 4.2. The corresponding shreddings are shown in Figure 4.3.

4.4 Shredding a Mesh of Prisms .

L

To have a sound mesh shredding, the t;trahe'dra. created by shredding the

prisms must meet the two mesh requirements specified in 1.2. Most importantly

here, they can only intersect along a full face, a full edge or a vertex. To achieve

this, each side of a triangulated prism has to be matched to the adjoining side on a
. Py .

‘neighbouring prism. Ideally, %ne would like to choose one shredding configuration.

T, say, and convert™all the prisrhs. in the mesh accordingly. This, however, is not

possible, as will be shown below.
’

" Theorem 4.1 A mesh of pentahedral elements cannot be shredded into a

mesh of tetrahedral elements using a single shredding configuration.

Proof To prove this theorem, we shall make use of a planar graph represen-
tation of four prisms in the mesh. Figure 4.4 shows a central prism P, surrounded

v — “
by three others (P, P2, and P3). one at each of its three sides.

Assuming that P, is shredded according to T, (Figure 4.5.a}, the adjoining

:sides on the three other prisms have-to be matched symmetrically (Figure 4.5.b).
By identifying each.of thes¢'¥rism shreddings with T, (F‘iguré‘l.s.c.). we can start
assembl{ng arule: - '

LY ( Y ) ”

Face A on P, interfaces with face C on Pj, leading to

. 7
o

1. Every face A matches a face C.

* Face C onP, interfaces with Face A on P, leading to

26




Figure 4.3
. Possible shreddings of'a prism.
The only two physi possible shreddings
of a prism. All oth®*shreddings are. topo-
logically equivalent.

&

Figure 4.4
The mesh of four prisms.
There are four pentahedral prisms in this
mesh, represented by their planar graphs.

[
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2. Every face C matches a face A.

N '
- &

+ A consistent shredding would then require every face B to interface with a

similar face B on another prism. This is however impossible here, since Face B
. l' ’

on P, interfaces with Face A on P, violating the previous statements. Any other

starting combination and matching combination can easily be shown to lead to a.

similar conflict, proving that no single shredding configuration is sufficient to shred

the whole mqsh. .

Theorem 4.2 Two shredding configurations are’ necessary and sufficient

-~

to shred a regular pentahedral mesh into a tetrahedral one.

hl

N

By regular pentahedral mesh it is meant a mesh whose triangular faces are
equila[geral and thus form a regular lattice of triangles at each cross-section level.

By extension, this definition also applies to deformed regular meshes, thus including

meshes where nodes that are not on any boundary curves have a connectivity of six

-]
on their cross-section level, i.e. each such node is connected to exactly six others
- . 'Q -
on its level (Figure 4.6). .

A

Proof This theorem will be proven in two parts. A:gain, the planar graph

;-

representation of four prisms in a mesh will be used. - -
s

First, assume that the central prism P, is shredded according to T). Sirt{ilarly

to the previous proof, each adjoining side is matched symmetrically. This time, by

. . - 1
matching each prism shredding with T, a rule can be induced (Figure 4.7)

»

4
1

-

1. Every face A rriatches a face E. .

2. Every face B matches a fac




&
Figure 4.5

“

Possiable shreddings of the mesh. -

“ a) Shredding the central prism. b} )
b) Matching the nelg}{bourmg sides
¢) Completing the mesh .
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3. Every face C matches a face D

This shows that any T configuration can also ke surrounded by T configu-
rations, and, most importantly, all the T configurations have the same orientation.
Second, assuming that P, i1s shredded using T, and applying the same procedure,

another rule can be induced’ (Figure 4.8)
-1. Every face D ;}1atcheé a face C

2 Every face E matchesa face A
1 ~ ' \

3 Every face F matches a face B '
| , v

+
showing that a T, configuration can also be surrounded by T configurations

having the same orientation >inie the two rufes are consistent with each other,

2 g
it can be concluded that the whole mesh can be shredded bv surrounding each T,
configuration with three T, configurations. and VlC(‘-V(’Qd. in the checkered pat-

tern shown 1n Figure +9 This proves fhe suflicient part of the theorem. and the

\

necessary part follows from the previous theprem

o a
~ T

t5 The Look-up Table
e .

Having determined that two configurations. used in a checkered pattern. will
shred a regular mesh of prisms. the mesh Ch%ﬁ: be shredded accordingly The two

-
configurations are coded into a lovk-up table whih, for each one. outputs a total of

-

12 triangles, four for each of the three teirahedra in the skredding. Ciiven a prism.

[y

defined by its 6 nodes as shown in Figure 4 10, two different. sets of tetrahedra can

be produced: .



o

Figure 4.6
A regular pentahedral mesh.
— ——An example of a regular pentahgdral mesh All the el-
ement tn the mesh are pentahedra. and each internal
nede 1s connected to six other nodes on the same plane

rd

Figure 4.7

t

- ' Possible shredding using two configurations.
’ This is one of the possible shreddings of the example

mesh of four prisms, using the two different configura-
tions. '

e
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Figure 4.8

Reversing the configurations
Shredding of the same mesh by reversing the two shred-

ding configurations

Figure‘ 4.9

(o
.+ The checkered pattern.
The check¥red pattern used to mesh a regular pentahe-

‘dral mesh. The two shredding configurations are noted
by A and B. respectively.

°
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and . >
{(1236), (12586), (14586)}

The appropriate set to use for each prism is determined from its position in

the checkered pattern of the pentahedral mesh.

4.5 Conclusion

»

It has been shown that a regular pentahedral mesh can be shredded into a
sound tetrahedral mesh. This can actually be done by assembling a look-up table
~ r
of the two different cohfigurations, and automatically. generating the appropriate

shredding for each prism depending on 1ts position. 0

w
14

[t is important to note here that only a regular pentahedral mesh can be

shredded using two configurations Other kinds of pentahedral meshes require more
) .

than two simultaneous configurations, and certainly more than the one erroneously

assumed by 'Yamashita & Takahashi 1984/, whose method produces inconsistent

* meshes. -
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Figure 4.10
Prism node nambermng.
_The pris-a node numbering employed in the look-
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. CHAPTER 5
Assembling The Ring
W

5.1 Introduction _ . -

”»
<

By removing the core mesh from the slice, a hollow, torus-like structure is
usually left (Figure 5 Y. By convention, we shall refer to this structure as the
'ring’, although other shapes might also occur. For example, if no triangles have

been matched on the two surfaces defining a slice, no prisms will be shredded and

the ‘ring’ will consist of the whole slice (Figure 5.2).
*

For the finite-element mesh to be complete, this structure has to be meshed-
too. Furthermore, at its inner side. where it is cor'mect‘;ed to the core”mesh, both
meshes have to interface exactly at every node, edge and face. Before any further
work can be done however, a topological and geometrical characterization of the
st;ructure is needed. The information available has to be preprocessed and entered

into a coherent data structure that will be acted on by the shredder. L

7

5.2 The Data Sﬁructxére v

The data structure used here defines three data entities in the form of three

lists. .

-

1. The VERTEX list contains the X. Y, and Z coordinates of each vertex. along

with its connectivity (number-of edges meeting at a vertex) and pointers into

“

4 , ‘ -
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Figure 5.1

The remaining torus, after the core mesh has been removed

Figure 5.2

1
When no core mesh can be removed, the ‘ring’ consists of the

whole slice




the EDGE list to those edges meeting at the vertex. PN
. :

2. Each entry in the EDGE list consists of a pair of pointers pointing into the

VERTEX list to the two vertices that bound that edge.

3. The FACE list stores faces as triplets pointing into the VERTEX list to the

three nodes of each face.

In addition, a few functions are used by the program to perform data retrieval
%« O

. _The function E_FACES returns two pointers to

operations on the data structures

/ - .
the two faces in the FACE list that have tha given edge in“common. The function

V_EDGE finds an edge in the EDGE list, given its two endpoints. The function

V_FACE finds a face in the FACE list, given its three vertices. Other functions,
V_DEL, E_ADD. E_DEL, F.ADD, and F_DEL perform insertions, deletions 6f-é-
tices, edges and faces in the structure, while maintaining the overall\consistency

and upaating all the appropriate parameters.
5.3 Creating the Ring .

Having d2fined the data structure, the four parts of the ring, namely the top,
bottom, internal and external surfaces, are individually generated and merged into
the structure. F irst the inner side, which is the interface“of the ring with theTore——7o0o

mesh (Figure 5.3), is generated in the following manner.

The surface of the whole slice consists of the top, bottom and external sur-

faces, and is denoted by

-

$¥'=T*- B+ E?

(Refer to the Appendix for the notation used). Similarly, the core mesh surface




Figure 5.3
J - The inner surface of the ring.

Figure 5.4

The top and bottom surfaces of !.he ring.

3
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P

‘ consists of

.

C!=T?+B}+E!

The ring, on the other hand, includes an extra surface portion at its interface with

the core, namely the internal surface, so that

"R? =T?+B?+E?+1?

Since the slice is composed of the union of the ring and the core, the equations
S*=C*~+ R?
=T}~ B~ E*+T*+B*+EX+ 1}
s ‘ . \
=T ~B; - Ep :
must hold. We know. from the v;'ay those surfaces were generated, that the union
of the core top and the ring top make the slice top surface, the union’ of the core
‘ bottom and the ring bottom make the slice bottom surface and the external ring
side surface is thee same as the slice external side. This is translated into

T?=T?-T? >

B! = B* +'B?

E] = E;
. resulting in on -
- El+1}=0 ]
I} = —E?

meaning that /2 has the same faces s E*, but wiith the opposite orientation. To
compute  this, the triangular faces of the tetra}}edr'a forming the core mesh are
sorted and all triangles occurring twice are removed, leaving tﬁe surface triaﬁgles.
Of these, the external side triangles of the core are the ones that do not lie in the
horizontal top or bottom planes. Reversing the node numbering of these triangles

5 . will yield the trianglesv‘on the internal side of the ring.

- : & 39 " ) 4




Figure 5.5 °

The completed surface of the ring.
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The top surface is then g?nerated from the two-dimensional triangulation of

¢ the top contour by keeping the triangles that were not used in the _prism assginbly
of the core mesh. This involves scanning* through the triangle list of the two-dimen-
sional top contour triangulation and copying the unflagged triangles, i.e. triangles
that were not part of a pair of corresi)onding triangles (section 4.2). The counter-

clockwise numbering of the triangle nodes is kept, so that. the normal.vectors point

-

upwards, out of the ring.

i . . .
The bottom surface is simularly generated from the bottom contour two-di-

o

- mensional triangulation, except that the node nuqlbering of the triangles is flipped

to make the normals point downyand outwards, keeping with the consistent orien-

’ tation of the structure {Figure 5.4). °
e Finally, the external side surface of the ring (Figure 5.5) is generated by
‘ i triangulating between boundary nodes on the top and bottom contour nodes. The

method is the same one used for joining the inner and outer boundaries in the

two-dimensional mesh (sectioh 3.4) and consists -of joining neighbouring nodes to

¢
optimize an area or a volume cost, function [Fuchs et al. 1977, Funnell 1984]|.

o 4

5.4 Topological Checks
. ; ) »
After the ring has been generated, a topological consistency check is per-

formed on its structure. Since the ring is a three-dimensional manifold, its surface

should have no boundary curves, i.e. R? = 0. This is easily checked by counting
the number of times each edge occurs in the list of triangles, and its orientation
each time. For a consistent topology, each edge should only oeccur twice (once in
e two different triangles) in the whole structure, @nd in opposite directions. reducing

&

the sum R? = 3 22 to zero. As shown in section A.5, this check'also makes sure @‘r .

* .
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that the orientation of all the faces is the same. This orientation-is.the correct one ,

if the vectors normal to the faces point outwards. It can be verified, for example, if

¥

the normal vector to one of the fages on the bottom side points-downwards in the . .

©

negative Z direction. The Euler number of the structure is then calculated, and

used to keep track of the structure as it is being meshed.

5.5 Conclusion

5,

So far, the center of the slice has been processed to produce a core mesh

of tetrahedra and the remaining portion assembled into a consistent 'data structure

: using results frnornﬂprevious steps. This ‘ring’ was formed in four parts. The top.and
bottom parts were obtained from the two-dimensional triangulation of the contours,

the internal side computed from the tetrahedral core mesh and the external side

by triangulating between the nodes on the the two consecutive contours defining

. the slice. The data structure, consisting of a Vertex list, an Edge list, a Face list

and a vertex connectivity array i1s now ready to be operated on by the topological

Bl

shredder using the Euler operators to be introduced in the next.chapter. .
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CHAPTER 6

Meshing The Ring
\\ m

6 1 Introduction

In this chapter the t~>a51c shredding operations will be developed. They con-
sist of a Set of operators that are applied to a polyhedron in a certain sequence.
reducing 1t to a final tetrahedron and compiling a tetrahedral mesh along the way
These operators make use of the Euler characterlstl;:ﬁeqtiation for polyhedra and
its differential form. ar:d' are therefore called Eulerian cperators. It will be shown
that the previously published methods are inadequate.'or a largé set of polyhe-
dra and addmonal' operators will be presented. Examples of completely irreducible

polyhedra will also be given. and the constraints they impose will be discussed.

6.2 The Eulerian Operators -

s

Meshing a polyhedron P can be thought of as a sequence of operations to
remove tetrahedra from the initial structure in order to reduce it to an etnpty set.

t

\
Denoting the set of operations by

O ={0,, 1=1,2,3..V} ) B

where O, is the ith operator and .V the total number of operations, then the oper-

<

ation is
oP)=T
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where

T={T;:=123.N}

- AN
is the set of generated tetrahedra. -The side effect of this reduction scheme is the

4]
compilation of ti’ﬁa set of tetrahedra T, that have been rernoved from the structure.

The union of these tetrahedra constltutes a tetrahedral mesh spanning all of £.

£

The progress of the meshing procedure is shown below, where Peis the polyhedron
J
representation of the ring, Sy is the initial data structure and S, the data structure

after (: — 1) operations
Sl — P

O\(S1] = Ti - 5%

SN _’TVJ_Q)

The operations are carried out by a set of operators that work on the topology of

¢

the structure. By cutting out a tetrahedron, operators might change the number

of vertices,?dges or faces of the structure. Since the initial polyhedron satisfies

Euler’s equation

V-E~F=2-2
any chahges brought on by the operators have to satisfy the differential form of that

©44




‘ formula, namely .
AV - AE + AF = -2AG

or

AG = —3(AV — AE + AF)

[n the next sections a thorough description of these Eulerian operators will be given.

6.3 The Vertex Operator (V_.OP)
° ° . ° \

An accepted method for tfle triangulation of two-dimensional polygons is the
corner-cutting technique. It consists of locating a cormer at a convex vertex of the
polygon and cutting off the rlangle formed there (Flgure 6.1). By analogy, the
Vertex operator Woo & Thomasma 1984. Wordenweber 1984 acts on a trivalent

] Q
(belonging to only three edges), convex (the summit of a convex three-dimension-

al corner) vertex v, The tetrahedron having for ‘vertices v, and the three other
attached vertices is removed from the structure in one cut (Figure 62) In the
- process. one vertex. three edges and three faces are deleted, and one face added

From the equation below we can see that the genus of the object 1s left unchanged.

* . * 2

AG = -L(-1-(-3)+(1-3)) =0

This cut cannot be performed without some preliminary intersection checks to en-

. 3

sure the geometric cor151stency of the cutting procedure.
Ig -

° 1. The four vertices cannot lie in the/same plane. Violations of this rule produce

degenerate, or flat, tetrahedral element that are useless lin finite-elements

# - 5,
computations. In addition, producing flat: tetrahedra withl this operator can
place the algorithm in an infinite loop, by p}ling flat tetrahedra onto each

‘ i other\, without changing the volume of t}1:e object. -

45 ,
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Figure 8.1 ) . .
‘ ’ s 2-D) corner-cutting °
a) The polygon 1o be triangulated. / )
b) Locating a corner and cutting it off )
X c) The completed mesh .
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Figure 6.2
- The vertex operator. o
e vertex operator locates a trivalent con- :

vex vertex and removes the tetrahedron 4t-
tached to 1t 1n one cut

’ Figure 6.3

The edge operator.
The edge operator locates a convex edge and

removes the tetrahedron attached to it in .

‘ | two cuts.
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G - 2. The tetrahedron to be removed has to be empty, i.e. no vertices or edges
belonging-to the remaining structure can fall inside its volume. This rule

4
ensures that the remaining structure is not self-intersecting.

3. The newly created face cannot intersect any edge ot face of the remaining

structure,
o 6.4 The Edge Operator (E_OP)

The corner-cutting techpique alone, implemented by the vertex operator,
does not always succeed in completely meshing a three-dimensional polvhedron
An alternate operator i1s needed when it fails to find an appropriate vertex The
Edge operator Woo & Thomasma 1984, Wordenweber 1981 acts on a convey edge.

The two faces with the common edge have four vertices altogether In two cuts,

- the operator cuts off from the structure the tetrahedron formed by the four vertices ,
‘r‘ N .
(Figure 6.3). In the process, one edge and two faces are deleted. and one edge and
two faces added. Again. we see that the genus of the object s unchanged
AG =-20-(1-1)«(2-2) -0
Here too, some preliminary intersection checks have-to be carried out hefore the
operation is allowed.
I. Conditions 1. 2 and 3 from the previous section (non-p)landr vertices, emply
* . . A °
° tetrahedron and face intersections) sull apply.
. 2. In addition, the newly created edge cannot intersect any existing face
’ [
6.5 The Zopological Cut Operator (C OP)
‘ The two previous pperators do riot change the genus of an object. This

L

o

¢ . 18 ' .
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should not pose any problems if the object being shredded is simply connected
(G = 0), beca;lse s.uccessive applications/of the operators could, without viola.tiné
the differential foi'.rn of Euler’s equation, resolve it down to the final tetrahedron :;',v.
However, for multiply conne;;ted domains, like a torus for example, this diﬂ'eren%ial
equation implies that a structure with a positive genus cannot be reduced toKa
tetrahedron using the Vertex and Edge opera.i:ors. A new operator has to be used
to perform the topological cuts needed to transform multiply conne{cted domains
into simply connected ones by reducing their genus. This operator s used whenever
V_OP and E.OP are unable to’ cut a tetrahedron off the structure. When this point
is reached, at least one triangular cross-section through the domain egists [Woo &
Thomasmz_i 1984 The Cut operator locates such a cross section and makes a cut
by creating two faces at the cross-section site. In the process, three vertices, which

are duplicates of, the three vertices at the cross-section, three edges, duplicates of

the three edges at the cross-section, and two faces are added to the data structure

fa

(Figure 6.4) From the equation
3 AG = -3(3-342) = -1

it is seen that the genus is effectively decreased by one. V_OP and E_OP can then
: X

resume the shredding.

6.6 Irreducible and Seemingly Irreducible Polyhed';a

\

A set of Eulerian operators similar to the one presented above was claimed
to be complete by [Woo & Thomasma 1984] anc\i z'} proof of the colrgfctness of the
topological shredding of polyhedra using these op‘;rators was given. This proof is
however flawed in thgt it assumes that any polyhedron can be constructed from

solid tetrahedrg, which is not the case. The most simple counterexample to this

B
assumption is the triangulated prism shown in Figure 6.5. This polyhedron cannot

¢
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be shredded into solid tetrahedra, and consequently cannot be constructed from
solid tetrahedra. We shall come back to this example late® In a more general way,

there are three classes of polyhedra that block the progress of V.OP and E OP. .

6.6.1 Polyhedra of the First Class

A ]
2

Polyhedra of the first class, such as the one shown in Figure 6.6.a, are not
a major stumbling block. They can usuéxlly be processed by dividing them into

two separate polyhedra using C.OP (Figure 6.6.b), redﬂg_\t}&‘connvctwny of

three of the vertices. Since a cut through a simply connected domain divides 1t
into two separate sub-domains, it is important to keep track of the number of
separate polyhedra being generated by C OP. as this will affect the Fuler number

of the global structure. To see this, assume N separate polyhedra have already been

generated The Euler formula for one of them s
V., - E -F .2 ' ya

and the total number s

V -E«F:lv, Lﬁ ~2‘F,

Y (Vo-E - F) 2N

As a solution, a pointer to a vertex in each separate polyhedron is kept and updated

to another vertex if that vertex 1s deleted. until the whole polyhedron ha.sab(*n\

shredded. This procedure can be repeated until one of three conditions becomes
true: 1) V.OP or E.OP can be applied. 2) all the polyhedra have been reduced to

separate tetrahedra or 3) all the polyhedra have been reduced to polyhedra of the

\
second class.

6 6.2 Polyhedra of the Second Class

»

This second class of polyhedra,sa simple example of which 1s the prism men-

\
\
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i Figure 6.4
The Topological Cut
The topological cut operator performs a cut through a
triangular cross-section. reducing-the genus of the ob-

-

Ject

Figure 6.5

An irreducible triangulated prism.
This is one of the possible triangulations of the faces of

a prism. The resulting polyhedron cannot be divided
into solid tetrahedra
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tioned previously (Figure 6.5), is more of a problem. Polyhedra in this class can
usually be transformed by flipping one of their diagonals. A diagonal is deﬁne:d asg
an edge common to two triangles, forming the diagonal of a planar quadrilateral.
Two approaches are used to do this, depending on the position of the diagonal.
During the sequence of operations O,, sugl-l a polyhedron can either occur at the
edge of the ring or completely i‘nside. Consider the first case where the polyhedron
is at the edge of the §lice. Flipping a diagonal effectively alters the external sur-

face triangulation of the slice. This, however, 1s acceptable, since the tmangulation,

which was optimized with respect to a cost func{tion, is thus transformed into a

sub-optimal, but still valid. trnangulation\%ﬂ
!
-

If, on the other hand, the polyhedron lies completely inside the slice, another
X ;
approach is taken. The fact that the polyhedron is inside the slice means that it

)
interfaces with other tetrahedrz‘x of the mesh at all its vertices, edges and faces.
Flipping a diagonal would violate the mesh rul(‘as by creating unwanted intersections
between neighbouring elements at the site of the flipped diagonal. This is remedied
by creating an Interface Tetrahedroh as an interface between the polyhedrlon n
question and the rest of the meshe(i structure (Figure 6.7) The fact that this
interface Letrahedrqn is flat, however, will be taken care of {n the next section by
relaxing the nodes to improve the quality of the mesh, ‘unflattening’ flat tetrahedra
along the way. The 6perator that generates the interface tetrahedron is very similar
to E_OP in its actions. It acts on an edge.whose two connected faces are coplanar
by forming a flat tetrahedron out of the four connected vertices, but is used only
when all other operators have failed, indicating the presence of one or more Class 2

polyhedra. The same alterations are produced, namely one edge and two faces are

deleted, and one edge and two faces are added. None of the intersection checks are

performed, being irrelevant in this case. The effect of this operator is in fact to flip

.7




Figure 6.6 .

a) A polyhedron of the first class
b} A topological cut 1s performed on 1t dividing 1t into
o

two separate polvhedra
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Figure 6.7
The Interface tetrahedron.
By using the flat Interface Tetrahedron, the irreducible

olyhedron on the left is converted to a reducible one,
4

then shredded.

e
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a diagonal on S,, making it more susceptible to shredding, while keeping the mesh

consistency intact. ’ - - \

6.6.3 Polyhedra of the Third Class (Monsters)

~

Finally, the third class represents truly irreducible polyhedta. These polyhe-
dra cannot at all be divided into tetrahedra without creating additional npdes. The

existence of irreducible polyhedra was first shown by 'Lennes 1911} and Schonhardt

RS
- 1928| proved that all polyhedra ﬁav'mg five or less vertices are decomposable, i.e.

- - .
that an irreducible polyhedron must have at least six vertices. The polyhedron

shown in Figure 6.8 is due to Bagemihl 1948|, and the one in Figure 6.9 was found

during the course of this research.

~ N - ©

If, while meshing a slice, such a polyhedron is encountered. the mesh gener-

ation procedure fails. Nonetheless, this conclusion 15 not as final as it sounds. [t

[

has been found ‘that changing the starting point of the meshing will often result in

a successful meshing. This has been implemented by storing the Vertex., Edge and

Face lists in circular forward- and backward-chaining rings. If a Class 3 shape is -
encountered during the meshing, the procedure is aborted, the original slict daia -
structure restored and the pointer to the beginning of the E@ge list 1s advanced by

one position. . The procedure is then restarted on the new dafa structure.

6.7 Conclusion’ . oo

*

] .
[n this chapter, the topological shredding procedure was characterized as a

s set of operations on a data structure, and the three main operators, the vertex.

edge and cut operators, were presented. the first two of which are modifications of

L4

previousiy pubﬁshed ones. [t was then shown that these operators do not forma

‘ complete set, in the sense that they are not sufficient to reduce any polyhedron to a
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Figure 6.8

An irreducible polyhedron.
This polyhedron, due to Schonhardt. cannot be divided into tetrahedra.

-

Figure 6.9 -
Another irreducible poiyhedron.

«
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‘ set of tet;gh?dra. T‘hree‘,classes q@eemingly irreducible polyhedra were.ntroduced:— _
A way to convert two of these classes into reducible polyhedra was shown. The case
of the third and cbmpletely irreducible class was solved by restoring the whole data -
structure for the slice and restarting the mesh generation procedure at a different | -

point in the structure.

®




s

CHAPTER 7
The Quality of the Mesh

S

7.1 Introduction

Tetrahedra produced by the mesh generation can have a variety of shapes,
including long and narrow tetrahedra. and the flat interface tetrahedra. Narrow

tetrahedra can be acceptable, but tend to be avoided in the finite-element method

because they can reduce the accuracy of the solutions Barnhill & Whiteman 1973,
Cia“rlet 1973, Hermeline 1982. Strang & Fix 1973] Flat tetra}‘ledra. on the other
hand, are absolutely unacceptablé ‘It 1s important then to be able to dgtest badly
shaped tetrahedra and correct them to improve the quality of the finite-element
mesh. In this chapter. a way to characterize the overall quality of a mesh, and a

method used to improve the shapes of its elements. will be described.

72 The Quality of an Element

=

A mesh generation scheme can produce a mesh, that is topologically correct,
but of little value f(?r finite-element computations becausg/ some of its elements
are badly shaped. I[n an ideal mesh, on the other hand\ all the elements would
be equilateral, since the best computation results ar:a obtained with equilateral

elements [Hermeline 1982!. It 1s therefore preferable that the tetrahedra in a mesh

be as equilateral as possible. This state is usually very hard to achieve in real

situations, unless the object itself s highly regular and lends itself to such a mesh.




8 .
In general, the usefulness of a mesh is a function of the quality of its individual

elements, and particularly that of its worst elements. For this reason, the quality
of a mesh has to be assessed, through a computed criterion, before the mesh can

=

be used.

The quality of an individual element can be measured by computing what 1s
called the aspect ratio of the element. The aspecmtio, a number defined to be,0.0
for a degenerate element (e g. a flat tetrahedron) and 1.0 for an equilateral element.
can be computed in a anmber of different ways In two-dimensional triangular
meshes, a widely used measure of the quality of a triangular element is the value
of its smallest angle,.sincesthe bound on the)verror is inversely proportional to the

‘sine of the smallest angle in the mesh |Strang & Fix 1973. Bramble & Zlamal 1971.
Zlamal 1973]. To obtain a measure of an element’s aspect ratio. the value of the
smallest angle in that triangle is normalized by dividing 1t by 60°. since 60° is the
value of an angle in an equilateral triangle. In three dimensions. a similar measure,

proportional to the narrowest sold angle in a tetrahedron, is used here Nguven-

Van-Bhai 1982, Van Oosterom & Strackee 1983 .

Consider the unit sphere centered at ope of the nodes of a tetrahedron. lines_J
along the three edges emanating from that node intersect the sphere in three points.
The three great circles passing through those three pblnts define a spherical triangle

on the surface of the sphere, with internal angles A, B, and C. In spherical geometry

-

Greenberg 1974}, it is known that .
A+B+C>m

and the difference

-

. §=A+B+C—n

E

\br 1s called the spherical excess of the triangle.%e excess increases with the
58
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. curvature of the triangle, so that a wide solid angle at the center of the sphere defines

a triangle with _.:1 large spherical excess. Vice-versa, a narrow angle defines a flatter
triangle with a smaller spherical excess. Computing the excess for the triangles
defined by all four nodes of a tetraledron and taking the srlullest value gives a
good measure of the quality of the tetrahedron, since it measures the narrowest
solid angle in the tetrahedron. Normalizing this velue to the ideal spherical excess,
defined by a node of an equilateral tetrahedron (8, = 0.33128rad), will yield a
measure of the aspect ratio of the tetrahedron tn question, giving a number between
ze’ro and one. with an fqullateral tetrahedron having an aspect ratio of one and a
flat tetrahedron an aspect ratio of zero. As an example, Figure 7.1 shows a plot
of the aspect ratio variation ;s a function of the height of a node in a tetrahedron
In this example the node 1s started at the center of gravity of the base equilateral
triangle. making a flat tetrahedron, and raised vertically by small increments. As
seen on\the plot. the aspect ratio function starts at zero for the flat tetrahedron,
éa,ttains its maximum of one at the pointa where the tetrahedron is equilateral and

decays back to zero as the tetrahedron gets narrower Figure 7.2 shows different

tetrahedra and their correspc')nding aspect ratios

7.3 The Quality of the Mesh

When taken one step further, the method just d?cribed providés a way to
look at the quality of the whole tetrahedral mesh. Once the individual meshes for
all the slices are available, they are combined to form the global mesh. The data
structure is then ‘cleaned’ b;f removing duplicate node entries-and rearranging the

pointer -arrays correspondingly. The resulting data structure corr.espohds to the

desired mesh that models the object, and consists of a list of tetrahedra pointing to

a list of triangular faces that in turn point to a list of vertices.
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. Figure 7.1

The aspect ratio variation
The aspect ratio variation as a function of the height of

a tetrahedron node from the base equilateral triangle

) ®

Rigure 7.2

Some different aspect ratios.
¥ Tefrahedra having aspect ratios of 0 2. 0.4 and 0.8. respectively.
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An ihdic:ation of the quality -of this mesh can then be implemented l;y comput-
ing the aspect ratio for each tetrahedron in the mesh and constrﬁcting a histogram
of the distribution of aspect ratios ‘in the whole mesh. Such a histogram is shown
ixzigure 7.3. As an additional indication of mesh quality, the aspect ratio of the

whrst element in the mesh is determined and the sum of the aspect ratios of all the

elements in the mesh is computed.
A J 0

Although zero-volume elements are definitely unacceptable, there is no well-
defined cutoff threshold for an element to be unacceptable, since the accuracy of
the solution\decreasgs gradually with the aspect ratios of the mesh elements. QK
is clear howe'ver that a mesh like the one whose aspect ratio histogram is shown
in Figure 7.3 needs improving, since ittcontains four zero-volume elements and
several low-aspect-ratio elements In two-dimensional meshes, improvnjng a mesh
can be achieved by relaxing its nodes to an equilibrium position where each node
is positioned at the geometric center of all the nodes connected to it {Thacker et al.
19801 The same relaxation method is followed here to improve the overall shape of

the mesh elements and achieve a better distribution.

7.4 The Relaxation

¢ Every internal node in the global mesh is assumed to be acted upon by
fg‘ces along the edges connecting it te other nodes a.rounZi it, in analogy to a set of
springs of similar stiffness and negligible initial léngth. now under tension. These
forces tend to displace the node towards an equilibrium position at the center of

the other nodes connected to it. This is‘equiva.lefxt to solving a set of simultaneous

.
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equations | Thacker et al. 1980! for the new internal node pqsitio;ls

lNk
| SRS
A ) '

1 &
yk.: :VT Zyn.(k)
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N

1
Ll = v E
k N Plzn'(k)
PR

where n, (k) are the indices of the N point§ connected to the point & being displaced.
The system is solved iteratively using the Gauss-Seidel method by displacing each
of the nodes until the displacemeats converge and all the int;ernal nodes are more or
less at the center of their at;ached nodes. It is important to note —here that, unlike
IThacker et al. 1980], the external nodes, i.e. the nodes lying on the surface of the
object, are fixed. In this way, they provide a rigid frame, holding the shape of the
object and pre;'entmg its collapse under the spring forces. This might cause a few

problems, as will be seen later.

An example of two-dimensional relaxation of a triangular mesh is shown in
Figure 7.4. As seen on the ﬁguré, some elements have lost their equilateral property

but the overall quality of the mesh has improved.

The relaxation procedure rnay sound straightforward, but has two inherent
pitfalls. First, every internal node has, associated with it, a polyhedron which we
will call its enclosing polyhedron. This polyhedron is formed by the set union of
all the tetrahedra attached to the node. The boundary of the enclosing polyhec}ron
for a given internal node is therefore delimited by the faces formed by all the nodes
attached to the node in question. A two—dimeﬁsional -analogy, the enclosing polygon
of 3. node, is shown in Figur;e 7.5. A polyhedron is saiﬂd to be star-shaped if there

exists a point z such that for all points p in the polyhedron, the line segment zp

S

62




A A S A RN
- a SoSR T -
;

s T ~ !
LY

A
N ¢ L
.
o : . X )
» .

A R-] } - 3

42RXxArn

Figure 7.3

- An aspect ratio histogram. . ,
The aspect ratio of each element in the mesh is com-

puted and the histogram of the aspect ratio distribution
1s constructed

) . ° B .
Figure 7.4

The 2-D node relaxation. . e .
a) The mesh before the relaxation. Notice the bad shape
of some of the triangles.

< b) The mesh after the relaxation. Some triangles have
. 1g#1 their equilateral .property. but the overall mesh has
improved.




lies inside the polyhedron [Shamos 1978|. The kernel of a star-shaped polyhedron is ' o™
the set of all the points z. An enclosing polyhedron therefore must be star-shaped,
with the node it encloses lying i:l the kernel. In certain cases where there is a large
concavity in the enclosing polyhedron, the node being relaxed may be displaced
to a point outside the kernel, creating ill-formed tetrahedra and resulting in an
inconsistent set of equations for the finite element solution. Furthgrmore. if such a
concavity occurs at the external surface of the object br:e'mg modelled, the relaxed
node might end .up outside the problem domain. In relaxing a node, therefore,
care is taken to displace it only up to the boundary of the kernel of the enclosing
polyhedron. This can b;e illustrated in a two-dimensional example. In Figure 7.6,
moving the node to the center of its neighbouring nodes , while keeping it inside its

enclosing polygon, puts it outside the kernel and produces degenerate elements. In

Figure 7.7, on the other hand, displacing the node puts it completely outside the
v

polygon.

Second, since external nodes are fixed, only internal nodes are displaced in
the relaxation. Consequently, tetrahedra that have four nodes lying on the external
shell stay fixed. If a badly shaped tetrahedron happens to have four fixed nodes, its
shape cannot be improved by the relaxation. A solution to this problem might lie
in screening t};e tetrahedra produced during the meshing by modifying the Vertex
and Edge operators to reject any bad tetrahedra with four fixed vertices. Another
solution might be to allow the relaxation of surface nodes, while constraining-thé‘m
to lie on a splined contour curve that passes throdgh all the boundary nodes at

v

that particular cross-section. A similar technique has successfully been used in ,
\ L]
two-dimensional node relaxation |[Thacker et al. 1980].

»

- IS

64 , ,




(S
Figure 7.5
The enclosing polygon of a node.
The shaded polygon represents the enclosing polygon
of the mesh node at 1ts center It 1s made of all the
elemegts that the node belongs to.

Figure 7.6

| Relaxing a node outside the kernel.
“ . Mogling a node to the center of the nodes connected to

it can put it outside the polygon kernel (shaded in the
figure), producing degenerate elements. ) &

q
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Figure 7.7
Relaxing a node outside-the polygon
Moving a node can leave it completely outside the poh -
gon, also producing degenerate elements.
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7.5 Conclusion

2 /
Once all the slices have been processed, the individual meshes -are merged

to form the globa‘l mesh. The need for improving the global quality of the mesh
has led to the use of relaxation tech;liques. The nodes inside the mesh are relaxed
to a position at the geometric center of the nodes attached to them. The aspect

; " ratio distribution for the mes'h, tehecting the overall quality of the mesh, is then ‘

A4 computed. TW9 major problems that can occur during the relaxation phase were

described, qnd possible solutions to them were presented.




CHAPTER 8 .

Results

-

8.1 Introduction

v 5

Once an algorithm has been developed, it is ir'nportoant to analgze its Qseful—
’negs in terms of speed and quality of results. For this purpose, the mesh generation
method described in this thesis was tested on several problems of vuarying com-
plexity. The number of nodes was used-to characterize the size of each of the test
problems used in measuring the performance of the method. The testin‘g procedure
will be described in this chapter and the results ‘of the mesh generation and 'thfe

]

relaxation wilt be presented.
8.2 The Testing Procedure

The method was implemented in 4500 lines of FORTRAN code on a Digital
. Equipment Corporation VAX 11,/750 and MicroVAX II. The-testing was done by
generating several objects of varying complex;ties, using the program to mesh them
and rr;easuring and analyzing the corre:sponding run times. The complexity of a
problem can usually be measured either by the number of nodes (V') or by the
number of elements (7T') in the mesh needed to model it. These two measures are
closely related, and the bounds on the number of tetrahedra that an object can be

discretized into [Woo & Thomasma 1984]| is given by the relation

(V=3)(V -2

2

(V=-3)<T< ﬁ —
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Given the same problem with the same number of nodes, several meshes, having
different numbers of tetrahedra, can be produced to mesh it. Being the only con-

trollable input parameter, the number of nodes was used in this instance to measure

the complexity of a test problem.

To generate. the test problems, a few contours were digitized and ‘the two-
dimensional triangulation step was performed, using a set of different resolutions for
each of them. These triAngulated contours were used to define several slices. having
different numbers of nodes and con§tituting a tes{ problem each. The meshing
program was then run several times on each of the slices, using a different starting
edge at each time.. Data from each run was used to produ‘ce a plot of the meshing

times for each of the slices, from the different starting edges. Although not complete

problems in themselves, the produced slices are portions of complete three-dirhen-

. sional problems.

8.3 Running Time and Complexity

Figure 8.1 shows the running time élots for problems of 26 and 80 nodes. The
times shown were measured in CPU seconds-on the MicroVAX II. As can be seer,
;:here are some large fluctuations in the time it takes to mesh a slice, depending
on the starting point for the meshing.- Furthermore. these times fall into two or
three distinct classes, dei)ending on their value. This can be due to the f;mt that,
depending on the starting point, the meshing rapidly converges to one’ of a few
possible final mesh states, resulting in similar runpin?ﬁr.ies for starting points
converging to the same state. Finding the optimal starting point, however, is $till

an open problem.

-

Problems of 22, 26,;36, 46, 58, 68, 74, 80 and 94 nodes were used in trial runs
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LRunning time plots.
The two plots shown are for slices of.26 and 80 nodes, respectively.
v The abcissa corresponds to the number of the starting point in the
" shredding and the ordinate to the time, in §econds, taken to shred the
slice from a particulat starting point.
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- ‘ to estimate the time complexity of the program. Figure 8.2 shows thé average time

taken in each of th€three main stages of the method: meshing the core, assembling

the ring and meshing the ring, the relaxation stage being neglig\ible It is glear that
most of the time s spent in the ’topological shredding phase. An estim%te of the
order of comnplexity of the method can readily be obtained from this measured data
by fitting the mean running time for each problem against the p;oblem size. Using

14
a least squares fit. 1t 1s found that the polynomuial

.

T =0079N'?% — 0.043V

v

. and provides a good model of the time complexity as a function of problem size
9

(Figure 8 3), This suggests_a time complexity of O(.V~) for the method to process

a slice of .V nodes. A generalization of this result to an object consisting of several

‘ slices follows. . ’
- /

b Consider an object composed of “s slices and having a total of N nodes For
-4

any slice. the number of nodes n, 1s given by

\ A

’

1

where ¢, 1s the number of nodes in the tob surface'triangulation of the slice and
b, that in the bottom surface. Assuming that slice index : increases from top to

. bottom. the total number of nodes in the object is given by

’

N =ty ~tg +..~ty, +b,

. An upper bound on N is easily obtained: ™
Z ng = tl - bl T tz + 62 -+ L. t-i + bd - R /
‘ ° =1 . x
\ » =t ~ 2tz ~t3+ .. +t5) + by
A ‘ Kl R
Y 71 ]

where N is the number of nodes in the final mesh, accounts far 94.0 % of the vanance*



.since v

bljtt+l 1§l<3

Q
Subtracting the value of N yields

L] <

3
Zn1—1\f:t24—lg—..-‘-£, = N<Zm

=1 1=
X lower bound on N can also be obtained: .

>

: %Zn,:§t1+(t2+t3+ c~t;) + Lo,
~

=1

adding 1(t, - b,) to both sides gives

2 .

1=
=

{
o —

(tr+bs) =ti wta+tg+ . <ty =b, =N

’

which results 1n

or, as an approximation, taking n, = n for all the slices,

-

L

. 3 .

sn < .V < sn

Assuming O(n?) for each slice using the method, the time complexity is O(sn?).

For s > 4, this is better than O(:V?) A )

8.4 The Relaxation

-
|

W hen slices forming a single object are merged and the aspect ratio histogram

of the cémpletg mesh is computed, a few badly shaped elements will sometimes

[

§

. ' N +
appear, as shown in Figure 8.4. The mesh.represented in this example- has an

|

o
i |
| aspect rajtio sum of 141.8 and contains four zero-volume elements that were created

@ - by the interface tetrahedron operator.. As seen in Figure 8.5, the node relaxation

-
LY
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Curve fit to running time data.
The average time taken to shred each slice i¢ plotted against the num-

ber of nodes in the slice, and the resulting data points fitted *0 a curve
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Aspect ratio histogram of a mesh before the relaxation.
Notice that there are some zero-volume elements in the mesh, making
it useless for computations. The two peaks are due to the two types
of tetrahedra generated by shredding the core, which makes the bulk

of the mesh.
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improves the mesh by shifting’its histogram to the right and eliminating all the zero-
. . . . 4
volume elements. In this particular example the aspéct ratio of the wotst element
in the mesh is increased.from 0.0 (degenerate} to 0.1 and the aspect ratio sum is
increased to 196.8, reflecting the overall improvement of the elements in the mesh. )
N a

8.5 Conclusion

The method was successfully tested by using it to mesh several test problems
of varying sizes. The mgn running times for the problems were then fitted to.nthem
problem sizes using a least-squares approximation method, obtaining a complexity
of O(n'®) in the range being fitted. This suggests a time complexity function of
order O(n?) for a slice. The iterative node relaxation method used was found, to

- improve the overall shape of the produced rr;eshes and elir;linate degenerate tetra-

hedra 1n most of the cases. Variations of the method or manual node repositioning

could be used to completely eliminate degenerate elements when necessary
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" CHAPTER 9

A Discussion-
.-

)

91 $ummary
s
f

Although three-dimensional mesh generation has already been treatkd by
several authors. the problem of modelling highly irregular structures had not been
properly addressed yet. This thesis had presented a new method for automatic
generatioﬁ of ‘three-dimensional finite element meshes that is especially useful in

meshing irregular dorfains.

In this method, the geometry of the object is described by a set of cross-
sectional contours. generally referred to as serial sections. The contours are first
-

triangulated on a grid of nodes. then paired up to form slices. Each slice is meshed

separately and later merges with all the others to form the global mesh.

1

The center of each slice is easily shredded by joining nodes from the trian-
gulated top and bottom surfaces of the slice to form pentahedral prisms that are
sgbsequently divided into three tetrahedra each. Once this core has been removed.

"a vertex-edge-face polyhedral representation of the remaining portion of the slice is

assembled and .passed on to a topological shredder.

The topological shredding is done through four operators that act on the
topologif of the object by modifying the number of vertices, edges and faces. Two

cutting operators remove tetrahedra from the object, according to certain rules, and

.
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another operator is used to reduce the genus of a multiply-connected object by per-
forming a topological cut. Still, not all polyhedra are guaranteed to be shredded this
way, by using only those three operators, and three classes of irreducible polyhedra
have been encountered. A fourth operator ca'n further reduce two of these classes
by flipping external diagonals, or by introducing a flat interface tetrahedron. If a
polyhedron of the third class is encountered, however, the mesh generation must be
halted, but it has been found that the slice can usually still be shredded by restoring

the slice structure and restarting the shreddihg at a different place.

.

Once all the slices have been completed, they are merged and the data struc-

"ture rearranged by replacing the local node numbering for each slice by a global one

for/thé mesh. and deleting all duplicate entries. The internal nodes are then relaxed
to improve the shape and quality of the elements. The method was successfully
tested on a number of problems and its time complexity was_found to be of O(sn?)

in the number of nodes.

9.2 Modifications and Further Developmer’lts *

9.2.1 Branching Objects

. @ ’ N ’ <

As it stands now, the program cannot han:ile branching objects, although the
s;me concepts and operators apply. The main stumbling block lies in the fact that
a branching object will ha;e different numbers of contour curves at cross-sections
before and after the branch (Fig;lre 9.1), so that cross-sections of the branches
have to be matched to their generating cross-section. Several methods have been

suggested {Sabin & Funnell 1984, Zsuppan & Réthelyi 1985 and can be incorporated

in the method.

s
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Figure 9.1 ,

Sections of a branching object.
Cross-sections of a branching object The large contour

is the cross-section before the branch. The two smaller
ones are the cross-sections after the branch. )
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9.2.2 Optimal Starting Point .,

L]

'Another interesting developm;znt consists of finding an optimal starting point
to mesh a given slice. Presently, a starting point is chosen at random. It is rejected
if the meshing fails, and kept if it succeeds, even if the pesulting mesh is far from
optimal. Locally and globally optimal two-dimensional triangulations can be pro-
duced Fuchs et al. 1977] without having to try all the possible triangulations of a

domain but no such solution for this problem has been found yet in.three-dimen-

sional meshing
9.3 Conclusion

The method proposed in this thesis is a mixed method combining the speed
and simplicity of look-up table shredding when possible (in the, core) and the thor-
oughness of topological shredding when necessary (in the remaining layer). This

gives it several advantages over existing methods. Mainly, it makes possible the

°

- g
handling of arbitrarily-shaped. highly irregular objects at relatively low cost wflile

-«

o i
producing meshes of good quality. The only other methods to allow handling of
arbitrary shapes with good results are the filling methods discussed in section 2.2.3.
However, filling techniques are computationally more expensive. ‘since a theoretical

lower bound of O(N?) = O(s*n?) has been shown for the running time of three-di-

mensional Delaunay triangulations Shamos 1978l, and they present other problems."

related to non-convex shéfpes and objects with holes, that have already been dis-
" cussed. Since the other 't;obological methods have been shown to be incomplete, the
method compares well wit% other existing automatic methods, being computation-

L

. | o
ally cheaper than all but ksome of the simple mapping techniques, and produging
r{leshes of better quality for irregular shapes.
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APPENDIX
».

A Brief Review of Topology

1 1 ’

A.l Topology and Topological Properties

[t 1s not the intention of this appendix to give a course in topology In-
deed. several excellent books. ranging from the thtroductory to the highly abstract,
cover the subject very thoroughly Alexandroff 1961. Armstrong 1983, Courant 1941,
Griffiths 1981, Hilbert & Covhn—\r.'ossen 1952, Lakatos 1983|. However, a brief in-
troduction to topological concepts 1s in order to provide a mathematical back-
ground to the discussions found in some of the chapters. Let X -and Y be two

spaces with a distance function d defined on them, having the following properties:

*

Forr.y.z € X,Y
. d(z,y) >0 and d(z.y) =0 < z = y.

[I. d(z,y) +d(y,z) > d(z,z) (The Triangle law).

[
.9)

IIL. d(z,y) = d(y,z) (The Symmetry law).

. Let\the function f be a transformation from X to Y. If, for r,,z» < X and

AN

Y1,y2 € Y, we have
(z1 # z2V=  fr1) # f(z2)]

~

or equivalently, o
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- ¥ - “ - ,‘,’ -




then we say that f is one-to-one, denoted as 1-1.

The transformation f is said to be continuous at the point z; if, given o >

0, 3p > 0 such that
if yo = f(z2) then d(y1.y2) <0 <= d(z,,z2) < p.

In other words, to have y, near y; it is sufficient to take z, near z,. If f is
continuous at all points, it is said to be a continuous transformation or a mapping.
A very simple example of a mapping is the mapping of the unit line segment 0, 1)

onto the unit cir¢le by the function
f:01) —C

f(t) = (cos 2mt.sen 27t), 0 <t <1

Topology is concerned with those propérties of point sets which are invariant
under continuous deformations. These properties are called topological properties.
Ca . .
For example, one property of a cloSed curve drawn on a rubber sheet is that it

divides the sheet into two regions, one inside the curve and the other outside.
=

even If the rubber sheet is deforrned, without being torn. The deformations in

question are called topological mappings or homeomorphisms, and they have two
. - J »
basic properties. '

4
’

N

1. They are one-to-one.

2. They.are bicontinuous, meaning that both f and f~! are continuous at all

points.

. )
Sets of points that can be m?ipped into each other by topological transfor-

mations are said to be homeomorphic or topologically equivalent. As an example

-
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consider the mapping of the c’i‘bg *

L

t

Ci :x2'+y2 =1

to the circle

Il
'

sz:z:2+y2

by the function . ) ‘

[ Cr—Cq, flz,y) = (22,2y)

The two circles are clearly homeomorphic. Note that, unlike this mapping, the
mapping of the unit segment ox:to the circle is not a hc;meomorphism, since f~!
f#ls to be continuous at the point (1,0). This makes sense. as it is clear to the eye
that two circles are topoloéically equivalent, whereas a line segment and va circle are
pot., Properties that are not changed under topological mappings, for example the
number of cuts (one) it takes to turn a circle into a segment, are called topological

invariants. ,

A.2 Euler’s Formula for Simple Polyhedra

One of the earliest (dnd most important for our pur‘poses) topological invari-
ants to be identified was the so-called Euler (or Euler-Poincaré) formula for simple
polyhedra. For our present purposes, a polyhedron 1s defined as a solid wh95e sur-
face consists of polygonal faces, and a simple polyhedron as a polyhedron with o
‘holes’ in it so that its surface can be deformed continuously intolthe surface of a .
sphere [Courant 1941]. The formula was first used by Descartes and rediscovergd

by Euler. It states that, for any simple polyhedron,

V-E+F =2 -

where V is the number of vertices in the polyhedron, E the number of edges and F

the number of faces (Figure A.l.a). Proofs can be found in several texts Courant

B 82‘
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1941, Lakatos 1983). Since it is a topological invariant, continuously deforming the

X
polyhedron does not affect the formula, and it stands for curved polyhedra, ie. .
polyhedra with curved surfaces. This formula is not correct however in characteriz- i
ing objects with holes (Figure A.L.b) since simple polyhedra cannot be continuously

deformed into polyhedra] with holes, and vice-versa. A modified formula taking into

account the number of holes will be introduced later.

A.3 Connectivity and Gienus

i

-

Two surfaces' areé shown in Figure A.2; they are obviously not topologically
equivalent. 'Ijhe questio:p is whether {herfe‘ is any way to classify them as different. N
Now consider this; any rlosed curve in ‘;igure A.2.a can be shrunk down to a point
inside the surface withq‘ut crossing the boundary. This type of surface is ;known as
a simply connected dorixain. This 1s not the case in Figure A.2.b, as shown by the
closed curve drawr; insiae the surf ac;z. This surface represents a multiply (doybly m
this case) connected domain. Transforming this domain into a simply connectkd ofe N
will alter its topological characteristics. The oper’z‘lti:)n i€ called a topological cut
and involves joining the two boundary curves by a double arc (Figure A.3). The
number of cuts needed to transforn'} a multiply connected domain into a simply

connected one is referred to as the genus.of the domain. After performing the cut.

it is clear that the new surface is simply connected.

A.4 Orientation

We will start this section by definiing the concept of'a simplex. Generally, an
N-dimensional simplex is the smallest convex set containing (/N + 1) vertices, such .
that the (IV + 1) vertices are not contained in an (¥ — 1)-dimensional hyperplane. ;
Thus a one-dimensional simplex is a straight line segment; a two-dimensional'sim-

83 . .
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f+ plex is a planar trfakgular surface; a threg-dimensional simplex is a tetrahedron,

| . -

ll ' a ‘ 4 . Yy .

L - % andyse on. A geomefrigal complex is_ a srét of sim})llces such that any two simplices,
) -~ s * Mol ce o - et ‘dq,_ a .

either have no points in common, ar have a face (of any dimension) in common. A
finite-2lement mesh s an example «f a geometric complex.

" \
. \nother impertant concept is that of orientation An oriented one-dimen-

sional simplex 1s a directed line segment (a.a,). 1e a segment traversed from a,

-

to a; If we denote the oriented symplex by

— . -

then

and , . K

J.'l -~ d,dy Toayan

L3

’

Simularly. an oriented two-dimensional simplex 1s a triangle with a particular sense

of rotation or vertices ordering. so that

r~ = (anaaq) = (a1aqay) - (aa.a)

—-z° = (anaqa)) = (aza an) = (a,ana,)

€

Note that to invert the orientation of a triangle 1t suffices to flip the ordering of two

"

of 1ts nodes. 1.e. .
{{f—/\ e (ana az) = —(anaza,)
. \ \ ‘ .
3 -
' Denoting the boundary of r? by 2. wve have
/ : 2

(a0ar) + (a;a2) *‘\(azao)

ti

h

o

= (agan) + (1) - (asaz)

”
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An oriented geometric complex’ is a geometrie complex whose simplices are
oriented. Now consider the.two-dimensional oriented complex C? shown in Figure

PR -

and taking
Cce _Vzl‘ :rf *—.E',Z
pa—— e
we have that
ry = (anay) ~ (a1a3) - (asan)
I3 = (ajay) - {ayas) - (aadl)

this gives

& - - fana,) - (a1a2) -~ (azas) ~ (azan)
which 1s the oriented boundary curve of the complex These concepts are obviously

extensible to V-dimensional point sets. but most important to this thesis are the

-,

o
three-dimensional topology considerations .

A 5 Three-dimensional Topology

In three dimensions. a simply connected polyhedron 1s homeomorphic to a

sphq[re. and hkas a genus’ of 0 A”polyvhedron with one ;1016 is homeomorphic to
. a torus. A torus is not simply connected since one cut is not always sufficient *

< to divide 1t in two pleces. Transforming a torus into a simply connected domain
involves one cut (Figlshre A 5)7 thus a torus and all its homeomori)hs have a genus -

of 1. Incorporating the genus concept into the Euler formula (A.l), the modified

“ Euler formula states that, for. any polyhedron,
‘ ) V-F-F=2-2G
' 36
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Figure A.3

Reducing the genus of a surface
Perforrming a topological cut on a surface by joining the

two boundary curves

‘ Figure A.4
A 2-D oriente? complex-
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‘ where G is the genus of the polyhedron. Again in three dimensions, cor;slxdermg ag

. N .
o
3 N i -

a two-dimensional complex the surface of a tHree—dimensional polyhedrgn will yield

- another interestigg result. Denoting the complex shown in Figure A6 by

z_z D2 2 2, .2,
C — Il —\.tl Ir") et I3 + I4 L' ~

and its béundary curve by ° \’
’ 2 2 2 2 a2 2
C* = g I, =1I]~ 55 ~1I3+ I
R v
o
| S . X . :
and. without loss of generality. if we' take .
!
I, = (ﬂa“al) . .
I§ = (a1a,) / )
1 !
I, = (az2a,) ‘
< ' _
zy = (anas)
i
z; = (ara3) o
1 _
g = (aza3) .
othen substituting for )
2 _ 1 1
I = I| I 4~ I
.
2 1 1 1 '
If_) = 1«'2 - 1:5 e IG
~
, 2 _ L 1>
I3 = Iy~ Iy~ Ig
2 _ 1 1
results in . "
2 Cc? = 2 2 =0 -
- :l . ‘

.

which makes intuitive sense, since a three-dimensional solid cannot have a boundary
curve. This will provide a way to check the consistency of generated structures

‘ and meshes. In this example, we have assumed that all simplices are identically
+ . . A ~ &
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Figure A.5 ,
Reducing the genus of a torus -
Performing a topological cut on a torus to reduce 1ts genus

/ ) ' \
@ * Figure A.6 i ¢
- A 3-D oriented co}nplex
& * \
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orientef,\res'ulting in a null boundary %curve for the complex. If, on-the other hand,

» '

~

we consider a complex with differently oriented simplices as,shown in Figure A.7, T

a

the sum ‘

where B! s the boundary curve separating the two differently orientdl regions In

the same spirit, the orientatien concept 1s useful while gererating the mesh itself. All

tetrahedra in the mesh should have the same orientation. This makes it easier, .for
0y (4 |

example, to compute the boundary surface of the domain for boundary conditions .

considerations. once the mesh is complete, by performing the sum

- _' 3 L]
Surface = Z I, .

[ 4
0

where L} are the three-dimensional simplices, 1e. the tejrahedra. This property is -
also later used in determniifing the convexity of & vertex or an edge. [n addition, all ~ o
triangles on the surface of the domain should be similarly oriented. The orientation B

!

adopted in this work is by listing the nodes counter-clockwise as\viewed from the

outside, making the vectors normal to the faces poigt outwards and away from '

. N .
the polyhedron. Any number of triangles that are’ not consisténtly oriented will

cayse the sum (3} z?) to be different from zero, and equal to twice the separating

£

boundary. . - '

i
p
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y Figure A.7

- A non-oriented 2-D c¢omplex.
A geometric complex with differently oriented simplices The sum

of all the simplices will give the external boudary of the complex

: and twice the internal boundary of the area of differently oriented
simplices. A W
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