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1. Introduction
This document covers two general areas: mechanics for middle-ear modelling, and modelling for 
middle-ear mechanics. It is intended mainly for people who do not have advanced training in 
mathematics, mechanics and modelling but who wish to understand what is being done in the 
modelling of middle-ear mechanics as reviewed by Funnell et al. (2013).

Some readers may find that at some point the material becomes too difficult to follow in 
detail – they are encouraged to continue reading, if only to capture some of the flavour. On the other 
hand, some readers may find that the material seems too elementary – they also are encouraged to 
continue reading, because the topics do gradually become more substantial.

Section 2 is a review of some of the principles of mechanics that are relevant to the middle ear, from 
simple levers to viscoelasticity, continuum dynamics and non-linearity. Section 3 is a review of some 
general concepts related to modelling. It briefly mentions a number of different types of models, and 
Sections 3.5, 3.6 and 3.7 deal specifically with two-port modelling, lumped-circuit modelling and 
finite-element modelling in somewhat more detail.

2. Mechanics
This section gradually introduces some of the basic concepts of mechanics that are required for 
understanding the mechanical behaviour of the ear. ‘Mechanics’ is taken here to include acoustics. The 
sequence starts with statics, moves through dynamics, first without and then with energy dissipation, 
then on to continuum mechanics, and finishes with a brief look at non-linearity. (Although particular 
textbooks are cited in various places below for further information, the reader will undoubtedly be able 
to find comparable information in many other undergraduate textbooks of physics and engineering.)

2.1 Statics: simple machines
Statics is the study of mechanical systems in which all velocities are zero, or at least negligible. 
(Strictly speaking, one should say that all relative velocities within the system are zero. An overall 
constant velocity of the system relative to the centre of the galaxy, for example, is irrelevant.) In real 
life, no system is truly static. However, if a system changes slowly enough that relative velocities and 
accelerations can be ignored, or if one waits long enough after a change that transient effects die out, 
then a system can be treated as though it were static.

Time does not enter into the analysis of static systems, and the mechanical variables consist of force 
and displacement. Each of these is a vector quantity, involving both a magnitude and a direction, as 
opposed to scalar quantities, which do not involve a direction. A vector can be described in, for 
example, polar coördinates, that is, as a magnitude and a direction (e.g., two miles northwest), or 
Cartesian coördinates, that is, as orthogonal (mutually perpendicular) magnitudes (e.g., four blocks 
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north and three blocks west). In our three-dimensional (3-D) world, forces and displacements are 3-D 
vectors. A common convention is to write vectors in bold face, and to use orthogonal x, y and z axes: 
f= f x ux+ f y uy+ f z uz where ux, uy and uz are unit vectors in the x, y and z directions and fx, fy and fz are 

the three components of the vector force f.
Static analysis involves the balancing of forces and 

of force components. An example of such an analysis 
is that of a lever (Figure 1), one of the ‘simple 
machines’ described by Archimedes around 250 BC 
(e.g., Chondros, 2007). In this case the forces acting on 
the lever produce a moment, or torque, around the axis 
at the fulcrum. The moment is given by M= f d where 
f is the magnitude of the force and d is the 
perpendicular distance between the axis and the line of 
action of the force. (In this simple example the moment has only one component, perpendicular to the 
image plane, but in general it is a 3-D vector.) The principle of the lever is that a moment applied to the 
lever must be balanced by an equal and opposite moment in order for the lever to be in equilibrium, 
that is, for it to have zero velocity. This moment balance can be expressed as f 1 d1= f 2 d 2 . In the case 

of the wedge, another of the simple machines of Archimedes, one needs to balance the different 
components of the force vectors.

As another example of a static analysis, consider a thumbtack 
(Figure 2) being pushed into a wall. The function of a thumbtack is most 
easily understood in terms of pressure, with p= f / A where A is the area 
of a flat surface and f is the magnitude of a force applied perpendicular 
to that surface. The pressure p is a scalar but the force and the area are 
both actually vectors; the ‘direction’ of a surface is the direction 
perpendicular to the surface. In the case of the thumbtack, a pressure p1 

applied to the large surface (with area A1) results in a pressure p2 at the 
small tip (with area A2). Since the forces at the two ends of the thumbtack must be equal and opposite 
as long as it does not move, p1 A1=p2 A2. Therefore p2= p1(A1/ A2) and the thumbtack exerts a much 

larger pressure on the wall than could be exerted by the thumb on the tack. This analysis should in 
general be done with vectors, of course, and once the tack breaks into the wall then things become 
more complicated. (This use of the term ‘pressure’ apparently originated with Pascal (1623-1662) in 
the study of fluids (Pascal, 1937). A hydraulic press or jack also involves two different surface areas 
but, unlike the thumbtack, relies on the principle that the pressure is the same at all points in a static 
fluid.)

These particular examples, the lever and the thumbtack, are presented here because they are often 
invoked to explain the basic mechanism of the middle ear as involving an ossicular lever ratio and an 
eardrum/footplate area ratio (although such a description is very much oversimplified: Funnell, 1996).

2.2 Statics: springs
The systems discussed above consisted of rigid parts. The simplest example of a non-rigid body is the 
ideal spring, the behaviour of which was described by Hooke (1678). In modern terms Hooke’s law can 
be written as

f=k u (1)

where f is the force exerted on the free end of the spring, u is the displacement there, and the constant k 
is the stiffness of the spring. Sometimes it is convenient to use the compliance C=1/ k. Equation 1 can 

2

Figure 2: Thumbtack.

Figure 1: Lever and fulcrum, with a heavy weight and a 
light weight.
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be viewed as representing a balance of two forces, with ku being an imaginary force exerted by the 
spring. The work put into stretching or compressing a spring is said to be stored in the spring as 
potential energy. Work is calculated by multiplying force by the distance through which it acts; using 
calculus, the potential energy can be calculated by integrating the product of the applied force and the 
resulting displacement of the end of the spring: 

E p=W=∫
0

u

F d x=∫
0

u

k x dx=½ k u2
. (2)

Fluids, whether gases like air or liquids like water, do not have fixed shapes to which they return 
when external forces are removed. Thus, the archetypical spring is made from a solid material. 
However, if a fluid like air is compressed by a piston in a rigid-walled cavity, it effectively does have a 
fixed shape and it also can act like a spring. For a fixed amount of an ideal gas at a constant 
temperature, Boyle’s law states that the product P V  is constant, where P is the internal pressure of the 
gas and V is the volume (Boyle, 1662). (Boyle’s experiments were quite challenging, and his 
presentation of his results was obscure by modern standards, as discussed by West (1999, 2005).) 
Consider a piston of surface area A compressing a gas at pressure P0 in a cylinder of length l0. Suppose 
that the piston is displaced inward by distance u so that the new length becomes l 1=l 0−u, and the gas 

pressure and volume become P1 and V1. Boyle’s law requires that P0V 0=P1V 1, which means that 

P0(l 0 A)=P1(l1 A), so P1=P0(l0/ l 1). Therefore, with a little algebra it can be seen that the incremental 

pressure P1−P0  is given by

p=P1−P0=P0(l0 /l 1)−P0=P0(l 0/ l1−1)=P0(
l 0−l 1

l 1
)=(P0/ l1)u. (3)

Since the additional force required to produce this displacement of the piston must be equal to the force 
exerted by p on the piston area A, the required force is f=A p=(A P0/ l 1)u. This is actually not as nice 

as it may appear since the right-hand side contains a combination of the original pressure and the new 
length, but if the piston displacements are assumed to be very small (u≪l0) then l 1≈l0 and

f=k u (4)

where k≈ AP0/ l 0. Equation 4 is the same as equation 1 for an ideal spring. The restriction to small 

displacements is not unreasonable, since a real-world spring will also no longer be so simply described 
when displacements become large compared with its length.

Equation 4 can also be expressed in terms of pressure rather than force:

p=
f
A
=

1
A

k u=
1
A

A P0

l0
u=

P0

Al 0
Au=

P0

V 0
U  (5)

where V0 is the initial volume of the enclosed air and U=Au is the volume displacement, that is, the 
volume displaced by the surface area A in moving through distance u. This is the form used for 
acoustical circuit models (Section 3.6).

As will be discussed below, the middle-ear air cavities are often modelled as springs in this sense, 
and the ossicular ligaments are also often modelled as springs.
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2.3 Dynamics: masses
Newton’s three laws of motion from 1687 (Newton, 1729, Book I, pp. 19–21) underlie classical 
dynamics. In particular, the second law can be expressed as f=m a where f is a force exerted on an 
object with mass m, and a is the resulting acceleration of the object. Again this can be viewed as a 
balance of forces, with ma being conceived of as an inertial force. If the mass changes then the law can 
be generalized in terms of momentum, the product of mass and velocity.

The acceleration is the rate of change of the velocity v, in the same way that velocity is the rate of 
change of displacement. The acceleration, velocity and displacement are all functions of time, indicated 

sometimes by writing ‘(t)’ as in a(t), v(t) and u(t). In the notation of differential equations, v=
du(t )

dt
 

and a=
dv(t )

d t
=

d2u(t )

dt2 . The derivative 
du (t )

dt
 can be thought of as the ratio of an infinitesimal change 

in u (which varies with time) to an infinitesimal change in time, that is, the rate of change of u(t):
du
dt
= lim

Δt→0

Δu
Δt

. (6)

The acceleration is the second derivative of u(t), that is, the derivative of the derivative.

The work put into getting a mass to a certain velocity can be thought of as being stored in the form 
of kinetic energy. Analogous to Equation 2, the kinetic energy is found by integration to be

E k=∫F dx=∫F v dt=∫m
dv
dt

v dt=∫m v dv=½ m v2
. (7)

In the middle ear the mass of the stapes is an obvious candidate for the straightforward application 
of f=m a, as long as it moves back and forth in a straight line and doesn’t rock ’n’ roll.

2.4 Dynamics: masses and springs
Consider the case of a mass attached to one end of a spring, with the other end of the spring fixed. 
Neglecting the effect of gravity or any other external force, the force acting on the mass is now the ku 
of equation 1, and Newton’s second law gives this ‘homogeneous’ (with no forcing function) second-
order linear differential equation:

−k u=m
d2u

dt 2 . (8)

One way to solve such an equation, that is, to find some function u(t) that causes the two sides to 
always be equal, is to guess. In this case, the magic of sinusoidal functions is used.

Given a right-angled (90°) triangle as shown in Figure 3a, the sine function sin(θ) is defined as y/r 
where y is the length of the side opposite the angle θ and r (a radius) is the length of the hypotenuse, 
that is, the side opposite to the right angle. It can be seen that sin(0°) = 0, sin(45°) = √2 (from the 
theorem of Pythagoras, ca. 550 BC), and sin(90°) = 1. As θ sweeps from 0° through 90°, 180°, 270° 
and back to 0° (= 360°) the value of sin(θ) varies smoothly from 0 to 1, back to 0, down to −1 and back 
to 1 (Figure 3b). The cosine function cos(θ) is defined as x/r where x is the length of the side adjacent 
to the angle θ. As θ sweeps from 0° around and back to 0°, the curve of cos(θ) looks like a shifted 
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version of sin(θ), starting at 1: cos(θ) = sin(θ+90°). This is described 
as a phase shift of 90°. Note that the value of cos(θ) is greatest at θ=0° 
where the slope of sin(θ) is greatest; that the value of cos(θ) is zero at 
θ=90° where the slope of sin(θ) is zero; and so on. This suggests that 
the derivative of sin(θ) is the same as cos(θ) and it is in fact not very 
difficult to prove both that

d sin (θ )
dθ

=cos(θ ) (9)

and that

d cos(θ )
dθ

=−sin (θ ). (10)

It can also be seen that

d 2 sin(θ )
dθ 2 =−sin(θ ). (11)

The angle argument of sin( ) and cos( ) is often expressed in radians rather than in degrees, with 2π rad 
= 360°; 1 rad is the angle which, when projected onto a circle from the centre, covers an arc equal in 
length to the radius of the circle. In other words, the value of an angle in radians is the length of the arc 
subtended by the angle divided by the radius. As a ratio of two lengths, the unit of radian is 
dimensionless.

It is now convenient (another ‘guess’) to write θ=ω t. This ω is interpreted as the angular speed or 
angular frequency (in radians/second, or just s−1) with which θ cycles around the circle from 0 to 
2π radians; ω=2π f  where f is the frequency in cycles/second (Hz). After θ has been replaced by ωt, 

by the ‘chain rule’ of differentiation Equation 9 becomes

d sin (ω t )
dt

=
d(ω t )

dt
d sin(ω t )

d(ω t )
=ω cos(ω t ) (12)

and Equation 11 becomes

d 2 sin(ω t)

dt2 =−ω 2sin(ω t ). (13)

Returning now to Equation 8, one guesses that u (t)=sin (ω t ), and the use of Equation 13 leads to

−k sin (ω t)=−ω2 m sin(ω t). (14)

This equation can be reduced to

k=ω2 m (15)

or

ω=√k
m

. (16)
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Figure  3:  Definition  of  sine 
function. (a) Illustration of circular 
nature of sine function. (b) Shapes 
of functions sin(θ) (solid line) and 
cos(θ) (dashed line).
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Thus, the ‘lucky guess’ for u(t) has led to the finding that a sinusoidal motion of the mass at one 
particular frequency, given by Equation 16, satisfies the differential equation governing the ideal mass-
spring system. This frequency is called the natural frequency, or resonance frequency, of the system. It 
is the frequency at which the system vibrates most easily, and the frequency at which it would continue 
to vibrate (in the absence of damping) even with no applied force. A resonance frequency is the basis 
for the usefulness of a tuning fork. The concept of resonance is often used to describe the behaviour of 
the middle ear, but that system is obviously much more complicated than a single mass and spring.

The fact that a sinusoidal signal can be completely described by an amplitude and a frequency is the 
simplest case of the complementary use of descriptions in the time domain and in the frequency 
domain. This concept will be used more fully below.

2.5 Energy dissipation

2.5.1 Introduction
In the discussion so far, there has been no mechanism for energy dissipation, but in real life every 
system has some energy dissipation. This dissipation can arise in many different ways, most or all of 
which involve heat generation due to complex interactions among molecules and atoms.

Dissipative effects are difficult or impossible to compute ‘from first principles’, and experimental 
observations are typically approximated with simple empirical formulas. Classical dry friction between 
two bodies is characterized as a kinetic friction (or Coulomb friction), with an opposing force 
proportional to the normal (perpendicular) force holding the bodies in contact and independent of the 
relative velocity of the two bodies, and as a larger static friction when the relative velocity is zero (e.g., 
Palmer, 1949). In fluids, the classical viscous friction involves an opposing force (e.g., by the walls of a 
pipe on the fluid flowing through it) proportional to velocity. There will also be energy dissipation 
within a deforming solid, due to some sort of internal friction. Various combinations and refinements of 
these types of friction models have been developed.

The effects of energy dissipation are discussed below in five parts. The first four parts deal with 
quasi-static conditions where mass and inertia are negligible: the first part deals with fluids, and then 
the next three parts deal with dissipation within solids. The fifth part deals with vibrations.

2.5.2 Viscosity in fluids
Fluids resist flow as a result of viscosity, which results mainly from molecular diffusion and, in liquids, 
from intermolecular forces. An applied force causes a fluid to move (e.g., in a pipe) with a velocity 
that, for a simple Newtonian fluid, is proportional to the force (Newton, 1729, Book II, p. 184). The 
constant of proportionality (usually denoted by µ or η) is the viscosity (specifically, the dynamic 
viscosity) of the fluid. When the force is removed, the fluid does not return to its initial configuration, 
so the work that was done by the force is lost and energy has been dissipated, unlike the case of a 
spring which returns its potential energy when the force is removed. Liquids generally have much 
higher viscosities than gases do, and a liquid like maple syrup has a much higher viscosity than water 
does. Corresponding to the notion of an ideal spring is the idealized mechanical element called a 
dashpot, thought of as a cylindrical reservoir filled with a viscous fluid in which a somewhat loosely 
fitting piston moves up and down (cf. Figure 9 below). The viscosity of the fluid squeezed between the 
piston and the cylinder walls dominates the behaviour of the device.
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2.5.3 Viscoelasticity: creep and relaxation in solids
When a force is applied to an ideal spring, the spring will instantaneously take on a new length. In real 
life, this motion would be affected by the need to accelerate some mass, although the effect might be 
very small. The motion would also be affected by energy dissipation, but for a metal spring this would 
be very small. For some materials, however, the effect of energy dissipation can be quite substantial. 
Such materials are said to be viscoelastic, as opposed to just elastic. One phenomenon characteristic of 
viscoelastic solids is known as creep: if one suddenly applies and then maintains a force, there is a 
sudden deformation followed by a gradual further approach to a final, larger deformation. A related 
behaviour is called relaxation: if one applies whatever force is required to suddenly obtain a specific 
deformation and then holds that deformation, it will be found that the force required to hold it decreases 
gradually, approaching some lower but non-zero value.

One very simple way of attempting to represent such 
behaviour is the Maxwell model (Maxwell, 1867), 
effectively a series combination of an ideal Hookean spring 
and an ideal Newtonian dashpot (Figure 4a). In the case of 
creep, the spring contributes the desired instantaneous initial 
deformation and the dashpot contributes a subsequent further 
deformation. However, because the dashpot is in series with 
the spring, the combination will continue to deform without 
limit if the applied force is maintained, causing the 
combination to act more like a fluid than like a solid. In the 
case of relaxation, the behaviour is as required except that the force approaches zero. (Maxwell’s 
analysis was for gases.)

An alternative simple model (Figure 4b) is a parallel combination of a spring and dashpot (Voigt, 
1892). In the case of creep, application and holding of a constant force will now cause a gradual 
approach to a final configuration, but no instantaneous deformation will occur at the beginning. In the 
case of relaxation, applying an instantaneous deformation to the dashpot (and thus to the parallel 
combination) will require an infinite force, but the force to hold the deformation will then instantly 
drop to a non-zero value. (Voigt’s analysis was for friction in metals.)

The presentation of the differential equations of Maxwell and Voigt in terms of mechanical 
components actually came later (Poynting & Thomson, 1902; Zener, 1948) and was not universally 
appreciated (Tanner & Walters, 1998, p. 30). Reiner (1954) denoted the series spring-dashpot model by 
H — N and the parallel combination by H | N. The parallel combination has been variously referred to 
as the Voigt model, as the Kelvin model with reference to Thomson (1878), and as the Kelvin-Voigt 
model, and Tanner & Walters (1998) have suggested that perhaps it should be credited to Meyer (1874).

It can be seen that neither of these two simple models is adequate to describe creep and relaxation of 
a solid. The next step in complexity (Figure 4c,d) is to either add a spring in parallel with the Maxwell 
model (H | M) (Poynting & Thomson, 1902; Zener, 1948), or add a spring in series with the Kelvin-
Voigt model (H — K). The H | M model has been variously referred to as the Poynting-Thomson 
model; as the Zener model; as the Kelvin model by Fung (1993, §2.11); and often as the standard linear 
solid (SLS) following Zener (1948). The name Poynting-Thomson has sometimes been used to 
distinguish the H — K model from the H | M model (e.g., Sobotka, 1984; Schiessel et al., 1995), but 
this seems to have been based on a misinterpretation of the way Poynting & Thomson (1902) drew 
their model. (The issue of names is not helped by the potential confusion between W. Thomson, Lord 
Kelvin; J. Thomson, W. Thomson’s father; and J.J. Thomson of Poynting & Thomson.) In any case, the 
H | M and H — K models are equivalent (e.g., Reiner, 1971, p. 179; Schiessel et al., 1995) and they 
both produce reasonable behaviour for both creep and relaxation.

With the SLS model, the gradual change of either deformation or force, produced for a constant 
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Figure  4:  Two-  and  three-element  mechanical 
models.  (a)  Maxwell.  (b)  Kelvin-Voigt.  (c) 
Standard  linear  solid.  (d)  Alternative  standard 
linear solid.
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applied force (creep) or applied deformation (relaxation), respectively, is described by the exponential 
e−t / τ, where τ is a characteristic time constant. For biological materials like muscle and connective 
tissue, this time constant might be on the order of ten to twenty seconds. It turns out, however, that with 
real materials the gradual change often cannot be well described with a single time constant. One 
reason is that the phenomenon may be caused by multiple physical mechanisms, each with its own time 
constant. Each such time constant τ can be associated with a corresponding frequency f = 1/τ, and the 
relaxation can be described in the frequency domain as a relaxation spectrum with narrow peaks 
corresponding to the different time constants. Moreover, each physical mechanism may be best 
described, not by a single time constant, but by a broad peak in the relaxation spectrum. For example, 
Zener (1948, p. ii) showed a ‘typical’ relaxation spectrum for a metal exhibiting six peaks over a range 
of frequencies spanning twenty orders of magnitude (i.e., a factor of 1020). Five of the peaks were 
relatively narrow but one (due to grain boundaries) was very broad, itself covering three orders of 
magnitude. Relaxation mechanisms spanning large frequency ranges are also typical of the long-chain 
polymers found in biological materials. The mechanisms range from very fast ones, involving 
individual atoms, to much slower ones involving large-scale interactions among the long chains (e.g., 
Ferry, 1980; McLeish, 2008).

One way of dealing with relaxation spectra with multiple time constants is to use a generalized SLS 
model, that is, a parallel or series combination of multiple SLS models. Combining one or two such 
models per decade over the range of time constants that is required gives a fairly smooth relaxation 
spectrum. An alternative is to define a continuous spectrum with an infinite number of time constants 
(e.g., Neubert, 1963; Fung, 1993, §§7.6.5–7.6.7). Other mathematical approaches may also be used, 
such as correlation functions, stretched exponentials like e−(t / τ)

α

, power laws like (t / τ )−β, or fractional 
calculus in which derivatives like d /dt  are replaced by ‘fractional’ derivatives like d β /dt β  (e.g., 

Schiessel et al., 1995).
It is challenging to experimentally characterize a material exhibiting time constants that span many 

orders of magnitude. An interesting case is the pitch-drop experiment started by Parnell in 1927 
(Edgeworth et al., 1984). Although pitch at room temperature acts like a hard solid, shattering when hit 
sharply, over periods of years it actually flows. In Parnell’s set-up the pitch forms drops that separate 
and fall once every ten years or so.

Materials like pitch blur the dividing line between solids and fluids. Reiner (1964) proposed the 
Deborah number

D=
time of relaxation

time of observation
(17)

to quantify the distinction and to make explicit the importance of how short or long the time of 
measurement is. If D is small, the material will appear to be a fluid, but if D is very large then the 
material will appear to be a solid.

Rheology is replete with observations of odd material behaviour such as shear thinning, shear 
thickening, thixotropy and anti-thixotropy (e.g., Tanner & Walters, 1998). One example is the behaviour 
of the synovial fluid that occurs in synovial joints. It is a highly viscous liquid, but when squeezed 
between a flat surface and a convex surface it does not completely flow away so as to allow the two 
surfaces to touch. A narrow layer remains, effectively acting like a solid (Ogston & Stanier, 1953). 
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2.5.4 Viscoelasticity: hysteresis
In the previous section the loads were applied as step 
functions. It is also common experimentally to apply ramp 
functions, with either force or displacement linearly 
increasing with time. This can be done cyclically using 
triangle-wave functions. For an ideal spring, the resulting 
plot of displacement against force, or force against 
displacement, is a straight line with the unloading curve 
superimposed on the loading curve. For a viscoelastic 
material, however, the loading and unloading curves form a 
loop. This phenomenon is referred to as hysteresis 
(Figure 5). The area within the hysteresis loop is a measure 
of how much energy is dissipated.

In general, when a sequence of loadings and unloadings is started, the hysteresis loop will gradually 
change shape over the first few (or several) cycles, gradually converging to a final shape. This is 
referred to as preconditioning. If one does this loading and unloading until the loop converges, then if 
one starts the loading and unloading again after a long pause the loops will again gradually change until 
they converge to a stable form. If the timing or amplitude of the applied cyclical load changes, the 
loops will again change shape. An example for simple single-time-constant viscoelasticity is shown in 
Figure 5. The actual shapes of the curves depend on how quickly the loads are applied and removed.

It is extremely important to precondition the material samples when attempting to experimentally 
characterize a viscoelastic material, in order to obtain reproducible results. Ideally the experimental 
conditions (including rate and amplitude but also things like temperature and humidity) should be the 
same for the preconditioning cycles as for the measurement cycles, and there should be no pause 
between them.

The effects of hysteresis and preconditioning are important in interpreting attempts to measure the 
material properties of different parts of the middle ear. They may also be important in understanding 
tympanometry. Normally material properties are measured on preconditioned samples, but there is no 
opportunity for preconditioning in the clinical application of large quasi-static tympanometric 
pressures, and tympanometric measurements have been found to depend on the direction and rate of the 
applied pressure changes and the number of measurement runs (e.g., Creten & Van Camp, 1974; 
Vanpeperstraete et al., 1979; Osguthorpe & Lam, 1981).

2.5.5 Damage
There is a somewhat different form of hysteresis known as the Mullins effect. In the idealized form 

of this effect, all of the hysteresis and preconditioning takes place the first time the material is loaded 
past the previous maximum loading. The effect is particularly associated with filled rubbers, that is, 
rubbers with a filling of small particles, such as natural rubber with carbon black filler, or silicone 
rubber filled with silica particles. In this case the phenomenon is associated with damage that is 
irreversible (e.g., Ogden, 2004; Peña et al., 2009). The distinction between the reversible response 
changes associated with SLS models and the irreversible changes associated with damage may not be 
clear-cut. Breakage of intermolecular bonds and changes of molecular configuration may be involved 
in both cases, with the bonds and configurations subsequently recovering easily, more slowly, or not at 
all. Some materials, including but not limited to living tissues, can heal even macroscopic damage (e.g., 
Wietor & Sijbesma, 2008; Canadell et al., 2011).

Another phenomenon caused by irreversible damage is plasticity. In this case, when a load is applied 
to a material, it responds linearly up to a yield point and then softens irreversibly. When the load is 
removed, the material returns linearly to a configuration different from the original one. Usually 
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Figure  5: Hysteresis  and preconditioning for a 
standard linear solid, loaded and unloaded with 
several  cycles  of  a  triangular  wave.  The  first 
loading starts from (0,0) and the first unloading 
does not return to that point. After one cycle the 
curves converge to a final shape.
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associated with stiff materials and small deformations, this behaviour is found in metals (e.g., when 
bending a spoon) and also in bone (e.g., Charlebois et al., 2010).

2.5.6 Damped vibrations
Once the mass-spring system of Section 2.4 was set into motion, it would continue to vibrate at its 
natural frequency forever even with no further driving force applied. Energy would be cyclically 
swapped between the potential energy of the compressed spring and the kinetic energy of the moving 
mass. In the real world, however, energy dissipation would cause the vibrations to decay with time. A 
common way of adding energy dissipation to a mass-spring system is with the viscous friction of a 
dashpot. Its effect on vibrations is called damping. An everyday application is found in the shock 
absorbers of a car. Another example is seen in the fact that the vibrations of a tuning fork die out after a 
few seconds.

Including a viscous damper involves adding to Equation 8 a term proportional to velocity. Since 
energy is dissipated when the system moves, it is also necessary to add a forcing function to prevent the 
motion from dying out, giving

k u(t)+d
du(t)

dt
+m

d2u(t )

dt2 = f (t ) (18)

where d is the damping parameter. (The use of d for the damping parameter invites confusion with the 
differential operator d; c is more commonly used for damping but may be confused with the speed of 
sound.) It is again assumed that u(t) is sinusoidal: u (t)=Asin (ω t) . (Unlike the guess for solving 

Equation 8, this guess involves an amplitude A, which is required because of the presence here of the 
forcing function f.) With this guess, Equation 18 becomes

A(k sin(ω t)+ d cos(ω t)−ω2 m sin (ω t ))= f (t ). (19)

The mixture of sine and cosine terms makes this more difficult to handle than Equation 14 was. A 
convenient method of approaching it involves the use of complex numbers. A complex number is an 
ordered pair of numbers, with a real part and an imaginary part. If the real part of a complex number is 
a and the imaginary part is b, then the complex number can be thought of as a+ib, where i is defined as 
the square root of −1. (Since the square of any ordinary (‘real’) number must be positive, i must clearly 
be ‘imaginary’ since i2 = −1.) Equivalently, the complex number can be thought of as a point on the 
complex plane, with a horizontal coördinate of a and a vertical coördinate of b. One can treat u(t) as a 
complex number and guess that u (t)=A(cos(ω t)+ i sin (ω t )). Even simpler, one can use the amazing 

fact that e iθ=cos (θ )+i sin(θ ) (Euler, 1748, p. 148; Sandifer, 2007), where e is defined as the 

remarkable number for which

dex

dx
=ex

. (20)

Substituting u (t)=U eiω t and f (t )=F eiω t (where U and F are both complex numbers) into Equation 18 
yields

k U ei ωt+ iω d U eiω t−ω2 m U eiω t=F ei ωt
. (21)

The quantity F /U=k+ iωd−ω2 m is the dynamic stiffness, a complex, frequency-dependent analogue 
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of the simple spring stiffness k. The real part is k−ω2 m  and the imaginary part is ω d . It is 
sometimes convenient to work with the complex velocity V rather than the displacement U. In that case 
F/V is the complex impedance Z. The inverse is the complex admittance (or mobility) Y=1/Z .

At very low frequencies, ω2m is much less than k and the behaviour of the mass-spring system is 

stiffness-dominated, acting almost like a simple spring: the displacement is in phase with the applied 
force (the displacement is inward when the force is inward, and outward when the force is outward) 
and the magnitude of the displacement is almost constant. At very high frequencies, ω2m is much 

greater than k and the system is mass-dominated, acting almost like a simple mass: as indicated by the 
minus sign, the phase of the displacement is opposite to the phase of the applied force (it is 180°, or 
π radians, out of phase: the displacement is outward when the force is inward, and inward when the 

force is outward) and the magnitude of the displacement decreases (it is inversely proportional to the 
frequency squared).

At the undamped natural frequency ω=√k /m, the 
stiffness and mass terms cancel each other out and the 
magnitude of the dynamic stiffness becomes small—very 
small if the damping (energy dissipation) is small. Figure 6 
shows a plot of the frequency response (the magnitude and 
phase of the displacement for a constant magnitude and 
phase of the driving force) for various values of the damping 
parameter d. The resonance peak is very sharp for the lowest 
damping and the transition from being in phase to being in 
opposite phase is very abrupt. The resonance peak 
disappears completely for the highest damping. The damping 
has an effect only in the vicinity of the resonance, where 
increased damping reduces the magnitude of the 
displacements; above and below that region the damping has 
no effect on the overall level of the displacement curve. It is fairly common to use the words ‘damp’ 
and ‘damping’ when referring to an overall attenuation due, for example, to contractions of the tensor 
tympani (e.g., Hallpike, 1935). This usage is consistent with the general meaning of the verb ‘damp’ 
(OED, 2011, s.v. damp, v. 1.a) but is not consistent with the technical usage (OED, 2011, s.v. damp, v. 
1.c).

Notice that Figure 6 is plotted with a logarithmic frequency scale and a logarithmic magnitude scale. 
This is common in auditory studies, in part because it is well matched to human perception, for which 
both loudness and pitch are detected approximately logarithmically. A log-log scale for magnitude has 
the convenient effect that a mass-dominated roll-off proportional to frequency squared appears as a 
straight line, with a slope of −12 dB/octave. Similarly, a stiffness-dominated increase of velocity with 
frequency and a mass-dominated decrease of velocity with frequency have slopes of +6 and 
−6 dB/octave, respectively. (The logarithmic unit dB is a decibel, or a tenth of a bel. A ratio of 10 
corresponds to 10 dB for a quantity of power (e.g., Friedland et al., 1961, p. 207). For non-power 
quantities like displacements and voltages, a ratio of 10 corresponds to 20 dB, and 6 dB corresponds to 
a ratio of approximately 2. An octave corresponds to a frequency ratio of 2.)

Real-world systems will usually include more than a single mass, spring and dashpot. A system with 
many such elements connected together will generally have a much more complicated frequency 
response than the one shown in Figure 6. The resonance peaks will be smeared together more or less, 
depending on the amount of damping. At the lowest frequencies the displacement will always become 
stiffness-dominated, and thus almost independent of frequency.

One approach to analyzing the frequency response of a system with a combination of multiple 
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Figure 6: Frequency response for a simple mass-
spring-dashpot system for four different values of 
the damping.
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masses, springs and dashpots is to express the frequency responses of individual mass-spring-dashpot 
branches as polynomial functions of s = iω. For example, the left-hand side of Equation 21 would 
become k+ s d+ s2 m. One can then combine the resulting polynomials of different branches 

algebraically. It can be shown that the result is always a rational polynomial, that is, a ratio of two 
polynomials. One then attempts to find the roots of each of the two polynomials, that is, those complex 
values of s that cause the polynomial to equal zero. The roots of the denominator polynomial are called 
the poles of the system and correspond to the resonances discussed above. The roots of the numerator 
polynomial are called the zeroes of the system and correspond to anti-resonances, where the system 
response is small. In general the poles and zeroes are complex numbers and they are sometimes 
visualized as a pole-zero plot on the complex plane with the real part of s along the horizontal axis and 
the imaginary part along the vertical axis (e.g., Friedland et al., 1961, p. 202). If a pole lies on the 
vertical axis, then it corresponds to an undamped natural frequency.

So far in this section the discussion has been limited to the modelling of viscous damping, in which 
the force is proportional to velocity. This is the type of damping that has been used for the middle ear, 
but other forms exist. Coulomb friction (Section 2.5.1) is an important source of damping in some 
dynamic systems (e.g., Beards, 1996, pp. 39–42). In another variant (Beards, 1996, pp. 43-45), the 

damping parameter d in Equation 18 is divided by ω, so the dynamic stiffness becomes k+ i d−ω2 m. 
This is referred to as structural damping or hysteretic damping; unfortunately, neither name is 

particularly distinctive. In some areas this formulation matches the frequency characteristics of the 
experimental data better than viscous damping does.

2.6 Rigid-body analysis
In the dynamic analysis so far, the spatial extents of the masses, springs and dashpots have not been 

taken into account. Each element has been represented by a single displacement, a single parameter 
(e.g., stiffness) and a single applied force, all of them scalar. No consideration has been given to 
positions, sizes and directions. In rigid-body analysis the extents of objects are taken into account, but 
the objects are still not considered to be deformable. Taking extents into account re-introduces the 
notions of lever arms and force vectors that were involved in the analysis of simple machines 
(Section 2.1). In addition, the concepts of centre of mass, moment of inertia and angular momentum 
arise. All depend on the size and shape of an object. The moment of inertia is analogous to the mass of 
a point mass as considered in Section 2.3, but for use with force moments as described in Section 2.1. 
In a system of connected rigid bodies, each part of the system can apply both forces and moments in 
specified directions and at specified locations on other parts of the system. The analysis uses the two 
laws of motion of Euler (1752; Euler Archive, n.d.), which together are a generalization of Newton’s 
second law.

The three ossicles of the middle ear are obvious candidates for rigid-body analysis, although there is 
evidence that the manubrium does not always act as a rigid body (Decraemer et al., 1994). Even if the 
ossicles themselves are rigid, their motions are controlled by many surrounding structures that cannot 
be treated in that way.

2.7 Statics of a continuum
In the mechanical analyses considered so far, no account has been taken of deformation of an object: 
each object or part of a system was considered either to have no spatial extent at all or to be rigid. 
Clearly, real-life objects have spatial extent which affects their behaviour, and they can deform. The 
study of such systems is continuum mechanics. In the case of the middle ear, the most obvious structure 
for which spatial extent is likely to be important is the eardrum.

12
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As an example of taking spatial extent into account, consider an elastic rod of material such as 
rubber, with length l and cross-sectional area A. If a perpendicular force F is applied to the ends, the 
rod will stretch by, say, amount s. Our experience tells us that, for a given material and a given force F, 
a rod with a small cross-sectional area will stretch more than one with a large cross-sectional area, and 
that a long rod will stretch more than a short one. For most materials it turns out experimentally that, at 
least for small deformations, s is proportional to l and inversely proportional to A. Thus,

s=
F l
A E

 (22)

where E is Young’s modulus (Young, 1807, p. 137), a measure of the stiffness of the material. It is 
convenient to define stress as σ=F /A and strain as ϵ=s / l, leading to ϵ=σ/E . (In different contexts 
one may meet somewhat different definitions of stress and strain, under various names.)

To analyze the effect of a longitudinal force F applied to a rod of length l for which the cross-
sectional area A changes along its length, consider a short length Δl which stretches by amount Δs in 
response to the force. Because the forces applied to every part of the rod must be balanced, the force 
applied to this small piece of the rod is also F. Therefore

Δs=
F Δl
A E

. (23)

As Δl is made infinitesimally small this leads to the differential equation

ds
dl
=

F
E

A(l), (24)

leading by integration to the overall stretch

s=
F
E
∫
0

l

A(l )dl . (25)

It can be seen that consideration of the extent of an object has led to a differential equation with a 
spatial variable, as opposed to the time variable seen previously for dynamic analyses. In both cases 
these are ordinary differential equations because there is only one variable for which derivatives are 
involved. Clearly, however, a dynamic analysis of a spatially extended object will lead to a differential 
equation with derivatives of both spatial and temporal variables. This is called a partial differential 
equation, and the symbol ∂ is used instead of d to indicate differentiation by one variable while the 
other variables are held constant.

If a material is incompressible, that is, if the volume of a block of the material cannot change, then 
clearly the block must become narrower if an applied longitudinal force makes it become longer. On 
the other hand, if the material consists of uncoupled longitudinal fibres, it will not become narrower in 
response to a longitudinal force. The extent to which this narrowing occurs can be characterized by the 
Poisson’s ratio ν (nu). For most materials this ratio lies between zero (as for uncoupled fibres) and 0.5 
(for an incompressible material), although in some cases it can be negative (e.g., Greaves et al., 2011).

For three dimensions the simple ϵ=σ/E  relationship given above must be generalized. For a 3-D 
block there are axial (or normal) stresses, each acting perpendicular to two opposite faces of the block, 
and the corresponding strains. There are also shear stresses, with equal and opposite forces acting 
parallel to each of two opposite faces, causing shear strains, with a shear modulus G analogous to E. 
Since the block has three pairs of opposite faces, there are thus three axial stresses (σx, σy and σz), three 
shear stresses (τx, τy and τz), three axial strains (ϵx, ϵy and ϵz) and three shear strains (γx, γy and γz). If the 
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material is isotropic, that is, if it responds to forces in the same way regardless of direction, then the 
simple ϵ=σ/E  can be generalized as

(
ϵx
ϵy
ϵ z
γ x
γ y
γz

)=(
1 /E −ν/E −ν/E 0 0 0
−ν/E 1 /E −ν/E 0 0 0
−ν/E −ν/E 1 /E 0 0 0

0 0 0 1/G 0 0
0 0 0 0 1/G 0
0 0 0 0 0 1 /G

)(σ x
σ y
σ z
τ x
τ y
τz

). (26)

The six strains and six stresses can be further generalized to the 3×3 arrays

(
ϵxx ϵxy ϵ xz
ϵyx ϵyy ϵ yz
ϵzx ϵ zy ϵzz

) and (
σxx σxy σ xz
σyx σyy σ yz
σ zx σ zy σ zz

) (27)

and the array relating them is 9×9. These arrays are referred to as tensors. A tensor can be thought of as 
a generalization of the notion of a vector. Like a vector, a tensor is related to geometry. Like the special 
scalar-product (or dot-product) and vector-product (or cross-product) operations associated with 
vectors (a·b, a×b), there are special scalar-product and tensor-product operations associated with 
tensors (A:B, A⊗B). Just as taking the vector product of two vectors creates another vector, so too does 
taking the tensor product of two tensors create another tensor. Various relations among the components 
of a tensor are enforced by the geometrical and physical interpretation, including symmetries such as 
those seen in Equation 26 for the special case of isotropy.

Crystalline materials will be anisotropic, with symmetry depending on their crystal structure (e.g., 
cubic), while amorphous materials will be isotropic (e.g., Callen, 1960, sec. 13.6). Fibrous materials 
may be more or less isotropic, depending on how the fibres are organized. Fibrous materials are an 
example of composite materials, comparable to concrete with reinforcing bars.

2.8 Dynamics of a continuum
As an example of how to analyze the dynamics of a continuous system, consider a plane (that is, flat) 
membrane, defined here to be a thin structure that has negligible inherent stiffness but that resists a 
transverse force by virtue of being kept under tension. The typical example is the head of a drum. 
Analysis of a vibrating membrane is a classical example of the analysis of physical systems that are 
defined mathematically as boundary-value problems, that is, continuous systems with certain 
constraints imposed by boundary conditions.

The differential equation governing a uniform, plane membrane under tension, with no energy 
dissipation, is

T ∇2w−σ
d2w

dt2 =0 (28)

where w(x,y,t) is the membrane displacement  as a function of spatial position and of time; σ is the area 
density (mass per unit area); ω is angular frequency; T is tension; and p is applied pressure (e.g., 

Morse, 1981, p. 174). The Laplacian operator ∇ 2
 here is an abbreviation for
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∂2

∂x2+
∂2

∂y2  (29)

(in three dimensions there would also be a z term) so Equation 28 is a partial differential equation with 
derivatives taken with respect to the two spatial variables x and y, and also with respect to time t. 
Equation 28 is the wave equation, a continuum version of Equation 8 with a mass-acceleration term 
and a linear restoring-force term. The second derivatives of the restoring force arise because a given 
point in the continuum is acted on by almost-balanced forces exerted by the points around it.

If the membrane is assumed to vibrate sinusoidally then Equation 28 becomes

T ∇ 2w+ σ ω2 w=0. (30)

This is known as the Helmholtz equation and is a continuum version of Equation 15. The boundary 
condition is that the membrane displacement is zero at the boundary. For particularly simple boundary 
shapes, it is possible to solve this equation analytically using various tricks such as a judicious choice 
of coördinate system (e.g., Cartesian coördinates for a rectangular membrane, polar coördinates for a 
circular membrane) and clever separation of variables (e.g., breaking the x-y problem into an x problem 
and a y problem and then superimposing the solutions). When it can be solved, it results in multiple 
solutions, each with its own frequency (recall that sinusoidal vibration is assumed) and pattern of 
vibration. These are the natural frequencies and modes of the membrane, corresponding to the natural 
frequency found in Section 2.4.

Note that a ‘membrane’ in the sense used here has no intrinsic bending stiffness, so it can neither 
hold a shape nor resist a force unless a tension is applied to it. In the case of the eardrum, there is no 
strong evidence that it is normally under tension (e.g., Funnell & Laszlo, 1982) and much modelling 
has ascribed much or all of its behaviour to bending stiffness. There is thus room for confusion in 
referring to it as the tympanic ‘membrane’. A thin structure controlled by inherent bending stiffness is 
referred to as a plate. The differential equation for a flat plate is more difficult to solve than that for a 
membrane. The resulting natural modes of vibration are similar in form to those for a membrane with 
the same boundary shape, but the corresponding natural frequencies are different. In real life the 
material of a drum head must have some non-zero bending stiffness, and a plate may have some tension 
applied to it because of the nature of the fixation at the boundary. Such mixed problems are obviously 
more difficult to analyze.

The eardrum is of course not flat. A plate with curvature is referred to as a shell. The curvature 
causes a shell to act more stiffly than if it were flat. It also makes analysis much more difficult.

2.9 Travelling waves and standing waves
If a plate (or a stretched membrane) is tapped at one point, a wave will spread out from that point, 
subject to the same differential equation as discussed above but with the addition of energy dissipation. 
This travelling wave will carry energy across the surface of the plate. This is easily seen in real life in 
the waves that result from dropping a pebble into a pond. A one-dimensional version of this is a 
stretched string. If an extremely (semi-infinitely) long ideal string, with no energy dissipation, is 
plucked at one end (x = 0) with the waveform F (−c t), a wave with that shape will travel along the 
string with speed c: w=F (x−c t) (d’Alembert, 1749a, 1749b).

If the string has a finite length, when the wave hits the end it will be reflected and travel back: 
w '=F ( x+ ct ). The two waves will be superimposed for a while after the reflection. The reflected wave 
will itself be reflected when it reaches the first end, and travel back toward the other end. If, instead of 
being plucked, the end of the string is vibrated up and down sinusoidally, then the resulting wave that 
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travels along the string will be sinusoidal in both position and time: w=A sin (k x−ω t). The reflected 

wave will be w '=Asin (k x+ ω t ). In the steady state these forward-travelling and backward-travelling 

waves will be superimposed, giving w=A sin (k x−ω t)+ Asin (k x+ ω t ). By a trigonometric identity, it 

turns out that this gives w=2 A cos(ω t)sin(k x ). This equation describes a standing wave, that is, a 

wave for which the spatial variation is independent of time (depending only on k x). For the spatial 
term sin(k x) to satisfy the boundary conditions that the string is fixed at both ends (i.e., sin(k 0) = 0 
and sin(k L) = 0, where L is the length of the string), k L must be an integer multiple of π. In the real 
world the waves generally die out more or less quickly because of energy dissipation as they are 
travelling and at the terminations. The result can be viewed as a combination of travelling and standing 
waves and may be characterized by a standing-wave ratio. It is instructive and entertaining to play with 
a simulation of these effects (e.g., “Wave on a String,” 2011).

If there is a gradient of the geometry or material properties of a medium (e.g., an increasing width or 
thickness of a plate from one end to the other), it can exhibit pseudo-travelling waves that look like 
travelling waves but do not actually carry energy. The basilar membrane of the inner ear is a good 
example of this, and the eardrum may also be.

2.10 Longitudinal and transverse waves
The vibrations discussed in the previous section were transverse, that is, perpendicular to the direction 
of travel of the wave. Vibrations of strings, bars, membranes and plates are (primarily) transverse. 
Transverse waves, or shear waves, can also occur within 3-D solids. Electromagnetic waves (e.g., light 
waves) are also in this category. The waves in a Slinky toy, on the other hand, are longitudinal (or 
compression) waves. Sound waves in air are also longitudinal. The wave equation for longitudinal 
sound waves in air is the same as the wave equation for transverse waves on a string (e.g., Morse, 1981, 
pp. 221–222).

The speed of waves in both solids and fluids is c=√stiffness /mass where stiffness is some relevant 
measure of stiffness, and mass is some measure of mass. The speed of sound in air, for example, is 
given by c=√P0 γc /ρ (ibid.) where P0 is the equilibrium pressure of the air, γc is the ratio of the 

specific heat of air at constant pressure to that at constant volume, and ρ is the equilibrium mass density 
of the air. The product P0γc  provides the stiffness term.

Both transverse and longitudinal waves can exhibit standing waves. Acoustical standing waves in 
the external ear canal (cf. Richmond et al., 2011) are an important example for middle-ear studies.

2.11 Non-linearity

2.11.1 Linearity and non-linearity
Everything that has been said so far has involved linear systems, that is, systems for which the output is 
linearly related to the input. By definition this means that if input1 causes output1, and input2 causes 
output2, then the response to (input1 + input2) will be (output1 + output2). More concisely, if the system 
is represented by y=F (x ), then F ( x1+ x 2)=F ( x1)+ F ( x2). Setting x 2=x 1 immediately leads to 

F (2 x1)=2 F ( x1). One can then easily show that F (3 x)=3 F (x ), F (4 x )=4 F (x ), and so on. 

Generalizing from the natural numbers (1, 2, 3 …) to all real numbers (with a certain amount of blind 
faith) gives F (α x )=αF ( x) for any constant α. (An alternative to blind faith is to include this 
multiplicative requirement as part of the definition of linearity.)
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For a system with dynamics, linearity does not imply that a particular input waveform will lead to an 
output with the same waveform, but it does imply that if the input waveform is scaled then the output 
waveform will be scaled accordingly. Furthermore, neglecting initial conditions and transients, 
linearity does imply that a sinusoidal input will lead to the same waveform at the output, that is, to a 
sinusoidal output at the same frequency, although possibly with a time delay. This assumes that the 
system is time invariant, that is, that none of its parameters or structure changes with time.

Linearity greatly simplifies the mathematical analysis of a system, and it is remarkable how many 
real-world systems behave linearly or almost so. This can be attributed to the possibility of 
approximating many general functions as Taylor series, and the fact that many systems of interest are 
operating close to equilibrium (e.g., Callen, 1960, sec. 16.4) so the behaviour can be approximated 
using only the lowest terms of the relevant Taylor-series expansion, neglecting the higher-order, non-
linear terms. The outer and middle ear, for example, is practically linear for comfortable sound pressure 
levels. However, many important systems are not linear, and the middle ear itself is decidedly non-
linear when responding to (1) the large quasi-static pressures involved in Eustachian-tube blockage, in 
tympanometry and in the rapid altitude changes experienced in airplanes and express elevators; 
(2) explosions and impact; (3) middle-ear-muscle contractions and chewing; and (4) surgical 
manipulation.

Non-linearity in the response to intense sound leads to 
distortion of the input. For example, Figure 7 shows the 
result of distorting a sine wave by a particular clipping non-
linearity. It happens that, roughly speaking, any time-domain 
function can be represented as a Fourier series, that is, as the 
sum of a number (possibly infinite) of sine and cosine 
functions of different frequencies. (Strictly speaking, the 
time-domain function must be periodic, but as long as it is 
not infinite in duration one can always pretend that it repeats itself. This use of sines and cosines is 
quite amazing, but they are not the only family of functions that can be used as basis functions in this 
way.) Thus, a distorted output signal can be viewed as a combination of frequencies that were not 
present in the input. This is known as harmonic distortion. The new frequencies can be either greater 
than the original frequency (overtones) or, less well known, less than the original frequency 
(undertones) (e.g., Dallos, 1966; Huang et al., 2010).

2.11.2 Types of non-linearity
In the modelling of mechanical systems, non-linear effects can be divided into geometrical effects and 
material effects. Geometrical non-linearities occur when the geometry changes because of large 
displacements. For example, the force due to a pressure is always perpendicular to the surface to which 
the pressure is applied, so if the surface is displaced and changes its orientation significantly, the 
direction of the force will change and the original equations describing the system will no longer be 
valid. This causes a non-linear response. Another example of a geometrical effect is contact: when 
displacements cause two separate parts of a system to come into contact, the equations change 
dramatically and the response becomes very non-linear.

Large displacements can occur even when local strains remain small everywhere. However, if the 
strains themselves become large, then material non-linearities will usually arise because the stress-
strain relationships of all materials become non-linear for large enough strains: a material may become 
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Figure  7: Clipping of a sine wave. The original 
sine  wave  (grey)  has  been  clipped  at  different 
levels on the positive and negative sides.
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stiffer as it is stretched more and more, like a rubber band or a strip of eardrum, or it may become 
softer as it fails.

2.11.3 Hyperelasticity
Young’s modulus and Poisson’s ratio are obviously not sufficient to describe such non-linear behaviour, 
and a popular generalization is the hyperelastic (or Green) formulation. This assumes that the 
mechanical properties of a material can be defined in terms of a strain-energy function, W, which 
represents the potential energy stored in the material as a result of deformation (e.g., Ogden, 1984, p. 
205). This function is a generalization of the potential energy of a spring (Equation 2) and its existence 
may be necessary for any physically reasonable material model (e.g., Carroll, 2009). The strain-energy 
function is often expressed in terms of λ1, λ2 and λ3, the principal stretches (stretch being the ratio of 
stretched length to unstretched length), or in terms of the three strain invariants (so called because they 
do not change when the coördinate system changes):

I 1 = λ1
2+ λ2

2+ λ3
2

I 2 = λ1
2λ2

2+ λ2
2 λ3

2+ λ3
2 λ1

2

I 3 = λ1
2λ2

2λ3
2

. (31)

For incompressible materials it can be shown that λ1λ2λ3=1. Much of the work on hyperelastic 

modelling has been done for rubber, with a mix of phenomenological and structural approaches, the 
former focused on conveniently fitting experimental data and the latter on building models based on the 
long-chain polymeric nature of rubber. What follows is a very brief chronological summary of a few of 
the many hyperelastic formulations that have been proposed, to give some idea of the possibilities. 
Note that in the equations for W all of the symbols on the right-hand sides (except for the I ’s and λ’s, 
and i and j) represent material parameters.

The simplest hyperelastic strain-energy function is the Neo-Hookean proposed by Rivlin (1948a): 

W= 1
6 E( I 1−3) . (32)

The Mooney (or Mooney-Rivlin) strain-energy function, with two material parameters, was proposed by 
Mooney (1940) and expressed in terms of the strain invariants by Rivlin (1948b):

W=C1(I 1−3)+ C2(I 2−3). (33)

This form has been generalized in various ways in order to better fit experimental data. For example, 
Rivlin & Saunders (1951) first generalized it by creating the polynomial strain-energy function, a 
doubly infinite series:

W= ∑
i=0, j=0

∞

C ij(I 1−3)i( I 2−3)j ,C00=0. (34)

They then concluded by generalizing it in the following form:

W=C ( I 1−3)+ f (I 2−3) (35)

where f( ) is some function. Some quite elaborate forms have been proposed, such as that of Alexander 
(1968):
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W=μ
2 (C1∫ ek( I1−3)2 d I 1+C2 ln( (I 2−3)+γ

γ )+C3(I 2−3)). (36)

Veronda & Westmann (1970), fitting experimental data from skin, proposed what may have been the 
first strain-energy function not designed for rubber:

W=c1 (eβ(I1−3 )−1)+ c2 (I 2−3). (37)

Ogden (1982, 1984) proposed the following frequently used generalization:

W=∑
i=1

N μ i

α i

(λ1
α i+λ 2

α i+λ 3
α i−3) (38)

where the αi coefficients are not restricted to being integers. Arruda & Boyce (1993), based on an 
‘eight-chain’ model of the polymer, proposed the following form which looks complicated but actually 
has very few parameters:

W=n kΘ(12 ( I 1−3)+
1

20 N
(I 1

2−32)+
11

1050 N 2 (I 1
3−33)+

19
7000 N3 (I 1

4−34)+⋯). (39)

Marlow (2003) took a quite different approach, using a non-parametric representation of W calculated 

directly from uniaxial experimental measurements. The goal of all of these approaches is to find a 
model that can be fitted to uniaxial experimental data and then used for other deformation modes such 
as biaxial and torsional.

2.11.4 Incompressibility and compressibility
All the strain-energy functions shown above are for incompressible materials. Incompressibility is quite 
a good approximation for rubber and also for soft biological tissues. When necessary, compressibility is 
usually handled by assuming that one can just add another independent term to the strain-energy 
function.

2.11.5 Isotropy and anisotropy
All the strain-energy functions above are for isotropic materials. Isotropy is a very good approximation 
for rubber and for some soft tissues, but not for the anisotropic behaviour of tissues with highly 
organized fibres. If the fibres are parallel and are embedded in an isotropic ground substance, the tissue 
can be considered to be transversely isotropic. Among a number of early works describing models of 
fibrous tissues, Lanir (1979) took into account the distribution of fibre orientations and Decraemer et 
al. (1980) took into account the distribution of fibre lengths. The mechanisms assumed to contribute to 
tissue stiffness were quite different. Lanir (1983) appears to have been the first to formulate such a 
material law using a strain-energy function. Weiss et al. (1996) treated the fibre stiffness empirically 
using an exponential function, and used the Mooney-Rivlin strain-energy function (Eqn. 33) for the 
ground substance in which the fibres are embedded. Holzapfel et al. (2000) similarly split the strain-
energy function into an isotropic part for the ground substance and an anisotropic part for the fibres, for 
which there were two different orientations:
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W iso = c
2
(I 1−3)

W aniso =
k1

2 k2
∑
i=4,6
(ek2 (I i−1)2

−1)
. (40)

Here I4 and I6 are additional strain invariants that account for the orientations of the two families of 
fibres. Gasser et al. (2006) extended this to allow for distributions of fibre orientations.

For a recent review in more depth, see Holzapfel & Ogden (2010).

2.11.6 Non-linear viscoelasticity
Non-linear viscoelasticity, or visco-hyperelasticity, the combination of viscoelasticity (as discussed in 
Sections 2.5.3 and 2.5.4) with non-linearity, makes for considerable complexity. See, for example, the 
review by Wineman (2009), and the comparison of two computational approaches by Charlebois et al. 
(2013). In practice it is often handled by means of pseudo-elasticity, using a hyperelastic material with 
artificially different properties for the loading and unloading situations, to obtain the effect of 
hysteresis. Motallebzadeh et al. (2013) showed, however, how a truly non-linear viscoelastic approach 
can match both the loading and unloading curves for strips of eardrum with a single set of parameters. 

3. Modelling

3.1 Why model?
In general, modelling can be used for purposes of understanding, prediction and control (e.g., Haefner, 
2005). Construction and exploration of a model can concisely summarize what is known about a 
system, and can lead to a better understanding of how it works. Once a model has been validated to 
some extent, it can be used for prediction. Finally, models can be used for purposes of control; in the 
context of the middle ear this could mean the design of prostheses and implants.

In the 1980’s, quantitative modelling had already led to the feeling that computational science had 
joined theoretical and experimental science and was ‘rapidly approaching its two older sisters in 
importance and intellectual respectability’ (Lax, 1986). It is true that ‘the fact that some computer code 
produces a pattern that looks like a snowflake … doesn’t necessarily tell us that the ingredients of that 
code have anything to do with the natural phenomenon it seems to depict’ (Langer, 1999) and some 
models may contain intentional fictions (as the word is used by Winsberg, 2010). Even so, however, 
such a model, once confidence in its validity has been gained, can be used to probe how a system 
works in order to build understanding. Models can be used to examine and manipulate variables that 
are not accessible (observable) or manipulable (controllable) in the real system. A quantitative model 
can often be used to perform computational experiments that are not feasible with the real system: too 
expensive, too small, too big, too fast, too slow, too many confounding factors, and so on.

3.2 Caveat lector
Readers of modelling research should beware. Zwislocki (2002) stated that ‘the history of auditory 
research is full of examples of unrealistic mathematical and conceptual models that ignore existing 
experimental evidence and contradict fundamental physical laws’. To repeat the statement here is not to 
belittle the role of modelling but rather to encourage a certain skepticism. Moreover, even if a model 
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seems fundamentally sound, ‘most mathematical models published in peer-reviewed journals are not 
reproducible: they contain the authors’ errors of commission and omission, augmented by the errors 
introduced by editors and typesetters. Therefore, an exactly reproducible model is a rarity.’ (Chizeck et 
al., 2009). Errors of commission and omission can involve:

• inappropriate approximations, e.g., linearity for an obviously non-linear system

• inadequate approximations, e.g., finite-element mesh too coarse or time step too large

• wrong geometry, boundary conditions, applied loads or material properties

• model defects, e.g., connectivity errors in finite-element meshes

• wrong units (cf. Euler et al., 2001) 

• software errors

• typographical and arithmetic errors

Even in the absence of such errors, one must continually keep in mind the assumptions, simplifications 
and constraints of a model when drawing conclusions from it. One must keep in mind also that, just as 
any scientific theory can be disproven but not proven, so a model may be shown to be wrong but 
cannot be shown to be definitively correct (e.g., Anderson & Papachristodoulou, 2009).

3.3 Approaches to modelling
In this section some of the general approaches to modelling are briefly introduced and contrasted.

Models, like measurements, can be either qualitative or quantitative. Measurements can be 
classified (Stevens, 1946) as using nominal scales (e.g., hockey-player sweater numbers), ordinal 
scales (e.g., hockey-player ranks in scoring statistics), interval scales (hockey-player birth dates) or 
ratio scales (hockey-player ages or numbers of goals). There is some question as to whether nominal 
scales involve measurement at all. In any case, quantitative modelling requires the use of interval or 
ratio scales for measuring the parameters and variables of the models, and is the only kind of modelling 
considered here.

Analytical models are those for which the behaviour can be determined using mathematical tools 
like algebra and calculus, with very little arithmetic. All of the mathematical descriptions in Section 2 
above are actually analytical models. One method for developing approximate analytical models is the 
asymptotic technique used by Rabbitt & Holmes (1986, 1988) for the outer and middle ear. It involves 
cleverly formulating an analysis using a sum of a series of terms, and then making an approximation by 
judiciously keeping only the lowest-order, simplest terms. This is conceptually related to the use of 
Taylor series and Fourier series (Section 2.11.1). Such models can be quite realistic but their 
formulations are dependent on every assumption and approximation made during the analysis, 
sometimes making it difficult either to modify assumptions or to refine approximations, and making it 
essentially impossible to use the details of actual measured geometries.

Numerical models involve less analysis and more arithmetic than analytical models. There is really a 
continuum from mostly analytical to mostly numerical. The analytical part of the treatment can handle 
continuous time and space variables, whereas the numerical part must deal with discrete time and 
space. The discretization itself involves approximations in addition to the approximations made in 
representing a real-world system analytically. Even the purest analytical model requires discretization 
and arithmetic when it comes to displaying the model’s behaviour graphically or in tabular form. The 
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more complicated is the system being modelled, the more approximations are required in the analytical 
phase, and the sooner the numerical phase becomes necessary. 

Non-parametric models represent a system simply by an array of data, like a look-up table. For 
example, the middle ear might be represented by its input/output transfer function (e.g., stapes velocity 
over canal sound pressure) sampled over some range of frequencies. Such a model would be the result 
of certain kinds of system-identification procedures, and may be useful for some purposes, but is very 
inflexible. The model might be converted into a parametric model by fitting some mathematical curve 
to the data, the parameters of the fitted curve being the parameters of the model.

Black-box models are characterized only by their inputs and outputs, and have no internal structure 
related to the components and configuration of the system being modelled. For example, if the fitted 
curve in the previous paragraph were just a polynomial chosen because it has enough degrees of 
freedom to be able to match the measured frequency response adequately, it would constitute a black-
box model. Again, such models may be useful but are inflexible. Structural models (sometimes called 
white-box models) have some internal structure established by consideration of the system being 
modelled. The mathematical descriptions in Sections 2.1 to 2.3 might be considered as parametric 
black-box models but Section 2.4 presents a parametric structural model.

Lumped-parameter models neglect the spatial extents of their components, as in Sections 2.1 to 2.6. 
(The rigid-body analysis in Section 2.6 takes spatial extent into account only in a very limited way.) 
The continuum analyses in Sections 2.7 to 2.10 represent distributed-parameter models.

Numerical, white-box, distributed-parameter models tend to be computationally expensive for 
systems of any degree of complexity. Since the 1960’s and 1970’s, the availability of increasingly 
powerful digital computers, and the development of sophisticated numerical techniques for structural 
engineering, have made such models more feasible. 

Linear dynamic systems can be modelled in either the time domain (representing signals as temporal 
sequences of values) or the frequency domain (representing signals as combinations of different 
frequencies as described in Section 2.11.1).  Although either the time-domain or the frequency-domain 
approach may be preferred in some cases, the two are practically equivalent and one can move from 
one to the other using Fourier transforms and inverse Fourier transforms. For example, simulations 
can be done in the frequency domain by calculating natural frequencies and modes of vibration. 
Frequency-domain responses to specified inputs can then be computed by combining those natural 
modes, and time-domain responses can be computed as inverse Fourier transforms. If the number of 
natural modes in the frequency range of interest is very large, as it often is for complex systems, it may 
be easier to compute a transient response (say, a step response) in the time domain and then use a 
Fourier transform to obtain the frequency response if desired.

Frequency-domain modelling is only valid for linear systems. In the case of non-linear systems, it is 
normally necessary to do the analysis in the time domain. The frequency domain may then be used to 
characterize harmonic distortion, that is, the amount of energy introduced at additional frequencies in 
response to a single-frequency input.

Multiscale models include phenomena across a range of different scales that must be treated 
differently. Winsberg (2010) described some multiscale techniques at an introductory level and 
discussed the philosophical implications, and White et al. (2009a, 2009b) presented a collection of 
articles on biomedical multiscale modelling. For example, Tang et al. (2009) linked results from full 
atomic-scale and molecular-scale modelling to a continuum theory for a fibre-reinforced composite, 
‘handshaking the fibril scale to the fiber and continuum scale’ to simulate collagenous soft tissue.

3.4 Types of models
Two-port models and circuit models have often been used for the middle ear and are discussed in some 
detail in Sections 3.5 and 3.6, respectively. Finite-element models have also often been used for the 
middle ear. The finite-element method, one of a family of approaches to boundary-value problems (as 
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introduced in Section 2.8), is discussed in Section 3.7.

Multibody models, based on rigid-body analysis (Section 2.6) supplemented by various approaches to 
modelling the elastic parts of the system, have also been used for the middle ear (Eiber & Kauf, 1994; 
Hudde & Weistenhöfer, 1997; Eiber & Freitag, 2002; Volandri et al., 2012; Ihrle et al., 2013).

State-variable (or state-space) models are expressed as sets of first-order difference equations 
involving input, output and state variables (e.g., Chen, 2010, sec. 7.6). They can be non-linear, and they 
can be used as representations of circuit models.

Mass-spring models consist of networks of ideal springs with point masses where they are connected. 
Such models might be thought of as low-end finite-element models, or as circuit models gone wild. 
They are sometimes used when computational speed is very important, as in virtual-reality 
applications. Ho et al. (2012) presented such a model for the eardrum. 

Discrete-element (or discontinuum or particle) models are formulated in terms of multiple interacting 
objects such as spheres or other shapes (e.g., Williams et al., 1985; Šmilauer et al., 2015). They have 
been used to simulate fluid flow, among many other things, and might be appropriate for modelling 
synovial fluid in the middle-ear joints. (The term ‘discrete-element’ has sometimes been used for 
multibody models (e.g., Schmitz & Piovesan, 2016).) Particle models can also be thought of as a 
special form of the more general agent-based models (e.g., Jennings, 2000, 2001).

Other types of models that are not considered further here are fuzzy models, stochastic models, rule-
based models and neural networks. 

3.5 Two-port models
Two-port models are also referred to as ‘quadripole’ (e.g., Belevitch, 1962), ‘four-pole’ (e.g., Egolf, 
1977) or ‘two-terminal-pair’ (e.g., Friedland et al., 1961) models. A two-port model consists of a black 
box containing any linear system, and characterized by an input voltage and current and an output 
voltage and current. At each of the two ports, the current out of one terminal is assumed to be the same 
as the current into the other terminal. This equality makes sense when one thinks about the connection 
of the port to the rest of the universe.

Consider the inputs to the black box to be the two voltages (v), and the outputs to be the currents (i). 
Then, since the system within the black box is assumed to be linear, it follows that the outputs must be 
related to the inputs by equations of the form

i 1=y11v1+ y12v2

i2=y21 v1+ y22 v2

 (41)

or

(i1

i2)=(
y11 y12

y21 y22)(v1

v2) (42)

where the y coefficients have the units of admittance. (It is implicitly assumed here that there are no 
energy sources within the black box.) 

By considering the case when the output port is short-circuited (v2=0), one obtains y11=i 1/v1 and 

y21=i2/v1. Similarly, if the input port is short-circuited (v1=0), one obtains y22=i2/v2 and y12=i1/v2. 
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Thus the coefficients can be thought of as short-circuit admittances.
One can equally well consider the inputs to be the currents and the outputs to be the voltages, 

leading to

(v1

v2)=(
z11 z12

z21 z22)(i1

i2) (43)

where the coefficients can be thought of as open-circuit impedances. One can express the relationships 
among the four quantities in other ways as well, including the use of the standard transfer coefficients 
to express the inputs in terms of the outputs:

(v1

i1 )=(A −B
C −D)(v2

i2 ). (44)

Such models are normally analyzed in the frequency domain, with the voltages, currents and 
coefficients all being functions of the complex frequency s. There are well-defined rules for handling 
series, parallel and cascade combinations of two-port networks.

Two-port models are sometimes convenient because they completely encapsulate the external 
behaviour of a system. The frequency-dependent coefficients can be based on an analytical model, 
either lumped or distributed; or on a numerical white-box model of any kind; or they can be non-
parametric, based entirely on measured data. In any case, once the behaviour has been represented by 
the four coefficients, the model is then treated as a lumped-parameter black box when its interactions 
with other parts of a larger system are analyzed. Since two-port models have only one scalar flow 
variable and one scalar potential variable at each port, they are well suited for modelling experimental 
data like acoustical impedance and admittance, and single-point displacement or velocity 
measurements, but they are not well suited for dealing with spatial patterns such as eardrum vibration 
patterns or high-frequency sound-pressure variations across the eardrum.

3.6 Circuit models
A powerful theory for networks (circuits) of idealized 
elements was originally developed for electrical circuits 
made up of resistors, inductors and capacitors (e.g., 
Friedland et al., 1961). A typical circuit is shown in Figure 8. 
Each branch in the circuit is assumed to be completely 
defined by a single flow variable and a single non-flow 
potential variable, and corresponds to a port in the sense of 
the previous section. For an electrical circuit, the flow 
variable is current (i) and the potential variable is voltage 
(v). Current consists of the flow of electrical charge (q).

The branches are connected at nodes and the connections 
form a set of loops. The interactions among the branches are 
completely defined by the circuit laws of Kirchhoff (1845):

• Current law: the sum of the currents at each node is zero. There will be some currents flowing 
into a node and some flowing out, and the net current will be zero. This is simply a statement of 
conservation of charge.

• Voltage law: the sum of the voltages around each loop is zero. This is a statement of 
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conservation of energy.

Each individual branch is taken to consist of an ideal electrical resistor, capacitor or inductor (or, in 
practice, of a series combination of one of each). The ideal resistor is defined by Ohm’s law: v=i R, 

where R is the resistance. The ideal inductor and capacitor are defined by v=L
di
dt

 and 

v=
1
C

q=
1
C∫ i dt, respectively, where C is the capacitance and L is the inductance. Note that R, L and 

C here are all constant, not varying with time or anything else, and that the equations are all linear. 
Note also that there are no spatial variables at all, so these are lumped-parameter circuits. The voltages 
and currents can vary with time. If they do not, the circuit is referred to as direct-current (or DC) and 
the inductor voltages and capacitor currents must be zero. If the voltages and currents vary sinusoidally 
at some fixed frequency, the circuit is referred to as alternating-current (or AC). In general, the 
voltages and currents can vary in more complex ways, as they do for example when there is a transient 
fluctuation (e.g., voltage spike or outright power failure) in an AC power system.

In addition to the resistors, inductors and capacitors, one can also have voltage sources, current 
sources and transformers. A transformer can be thought of as two branches that are coupled in such a 

way that 
v1

v2

=
i2

i1

=r  where r is the transformer ratio. This is an idealized form of the step-down 

transformers used to convert from high distribution voltages to low household voltages.
If there are b branches in the circuit then there are 2b unknowns (voltages and currents) to be found. 

Since a physical circuit must have a unique set of voltages and currents, there must therefore be 2b 
independent equations to be solved. The voltage-current relationships for the individual branches give b 
independent equations. For a circuit with n nodes, the Kirchhoff current law gives n −1 independent 
equations. There must therefore be 2b−b−(n−1)=b−n+ 1 independent voltage-law equations (e.g., 

Friedland et al., 1961, sec. 4.3). For a simple circuit it is easy to identify the required number of 
independent equations. They are then solved simultaneously to obtain all of the currents and voltages in 
the circuit. This can be done either in the time domain or in the frequency domain. If solving in the 
time domain, it is relatively easy to generalize to circuit components that are non-linear and time-
varying. If solving in the frequency domain, it is relatively easy to generalize to circuit components 
with parameters that vary with frequency.

Where all this becomes relevant to middle-ear mechanics is in the observation that the differential 
equations describing the idealized electrical circuit elements have the same form as the equations 
describing idealized springs, masses and dashpots as seen in Sections 2.2, 2.3 and 2.5.6. The analogy 
extends to idealized acoustical elements (e.g., Beranek, 1954). If voltage is taken to be analogous to 
mechanical force (or acoustical pressure) and current is taken to be analogous to mechanical velocity 
(or acoustical volume velocity), then  Table 1 demonstrates the electrical, mechanical and acoustical 
equivalences.
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Electrical Mechanical Acoustical

v voltage f force p pressure

i current u velocity U volume velocity

R resistance R resistance R resistance

L inductance m mass M mass

C capacitance 1/k compliance (spring) C compliance (volume)

v=i R f=R u p=R U

v=L
di
dt

f=m
du
dt

p=M
dU
dt

v=
1
C
∫
−∞

t

i dτ f=k∫
−∞

t

u dτ p=
1
C
∫
−∞

t

U dτ

Table 1: Electrical, mechanical and acoustical analogies.

Figure 9 shows the mechanical and acoustical equivalents of a 
series resistor-inductor-capacitor branch. The mechanical 
components have been discussed already. For the acoustical 
components, the resistance (energy dissipation) is represented by a 
fine mesh: air flowing through it will lose energy through friction 
in the small holes. The acoustical mass is represented by a tube: air 
is supposed to move in it as a whole without either compression or 
friction. The acoustical compliance is represented as a rigid-walled 
cavity with the compliance determined by the volume of the cavity 
(cf. Equation 5).

Note that the mechanical dashpot, mass and spring are shown as 
being in parallel and not in series. Since the series arrangement of 
electrical components means that each component has the same 
current, then, by the assumed association of force with voltage and 
velocity with current, the three mechanical components must be 
arranged so that they all have the same velocity. (The acoustical 
elements, on the other hand, will all have the same volume velocity when arranged physically in series, 
different from the arrangement of the mechanical elements even though the analogy seems closer.) 
Moreover, the electrical ground point, defined as having a potential of zero volts, corresponds to a 
mechanical ground corresponding to zero velocity, not force. Note also that in real electrical (and 
acoustical) systems it is easier to measure the non-flow variables, voltage and pressure, without 
disturbing the system, while in real mechanical systems it is easier to measure the flow variable, 
velocity. Because of this kind of discrepancy, the electrical/mechanical analogy is sometimes made the 
other way around, by associating voltage with velocity rather than with force, and current with force 
rather than with velocity. The electrical/acoustical analogy may also be inverted. There are advantages 
and disadvantages to the different approaches, and in fact the whole issue is more complicated than it 
first appears (Terhardt, 2000).

Note that the schematic symbol for a mechanical mass has a second part that does not correspond to 
anything physical. This is because each element needs two ends for connection to other elements. In the 
case of the acoustical compliance, however, the second (grounded) end is implicit as the outside of the 
cavity enclosure, corresponding to zero (usually atmospheric) pressure. If a real two-ended compliance 
element is required, it is possible to use a diaphragm placed across the cross-section of the mesh or tube 
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elements  (leftmost  column)  and  the 
corresponding  mechanical  (centre)  and 
acoustical (right) elements.
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(Beranek, 1954, sec. 5.5). In the case of the outer and middle ear, a rigid-walled cavity is appropriate.
When one combines different types of system in the same model, for example, mechanical and 

acoustical parts for the middle ear, it is necessary to handle the differences in the physical quantities 
represented. This can be done using transformer components to implement the changes of measurement 
units. Often the transformers are not explicitly included in the model, the conversions being handled 
implicitly by scaling the component values appropriately.

Circuit models are based on ideal components, but in the real world even specially designed 
electrical components are not ideal: resistors have non-zero inductances, inductors have non-zero 
resistance, and so on. Mechanical components are likely to be even less ideal: springs and dashpots 
have non-zero masses, for example.

One must be especially careful about the frequency range over which a model is a good enough 
approximation. For a lumped approximation of a rigid-walled cavity, for example, the dimensions 
should be much less than the wavelength of sound. For a 5% error in the acoustical impedance of a 
cylindrical cavity, Beranek (1954) calculated a maximum length of λ/16, and a maximum radius of 10/f 
that corresponds to a maximum diameter of about λ/17 (for a speed of sound in air of about 345 m/s). 
For a typical middle-ear dimension of 10 mm, this corresponds to a maximum frequency of only about 
2 kHz. This is a very conservative estimate since an error of 5% is only about 0.4 dB, much smaller 
than the errors typically found in middle-ear measurements, so a higher maximum frequency is usually 
accepted. 

Onchi (1949) was the first to present a circuit model for the middle ear. He presented a mechanical 
circuit, and an equivalent electrical circuit ‘courtesy of Charles T. Molloy’, but did not provide 
component parameters or actually do computations with the model. Zwislocki (1957) presented an 
electrical circuit model and estimated parameter values from measurements of acoustical input 
impedance.

As with two-port models, circuit models may be appropriate for data like acoustical impedances and 
single-point displacements but are not well suited for dealing with spatial patterns of pressures and 
displacements. Hudde & Weistenhöfer (1997, 2000; 2006) have introduced the notion of 3-D 
generalized circuit models in which each velocity is replaced by six velocities (three translational and 
three rotational) and each force is similarly replaced by six forces. This can be viewed (Hudde & 
Weistenhöfer, 1997, p. 536) as a small-displacement specialization of rigid-body analysis (§2.6). The 
approach is more powerful than conventional circuit models but less general than the continuum 
methods discussed in the next section.

3.7 Finite-element models

3.7.1 Methods for solving boundary-value problems
This section is a brief introduction to some of the concepts involved in using the finite-element method 
to solve boundary-value problems. Many texts are available on this topic, the first having been that of 
Zienkiewicz & Cheung (1967).

The simplest boundary-value problems can be solved by writing down the differential equations 
from consideration of the physical system, and then solving the equations (with their associated 
boundary conditions) analytically, perhaps using separation of variables to reduce a multidimensional 
problem to several one-dimensional ones. Separation of variables is possible only for a few simple 
boundary shapes, however, and for arbitrary boundaries approximate analytical methods are required, 
such as variational techniques, perturbation techniques and conformal mapping. For more complicated 
shapes, or in the presence of inhomogeneities, numerical methods become necessary. The main 
numerical methods for solving partial differential equations are numerical integration, the finite-
difference method, the finite-element method, and the boundary-element method. The first is generally 
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not used for multidimensional problems.
The finite-difference method consists of replacing the differential operators by difference operators 

in the differential equation for an entire system. Graphically this is equivalent to placing a regular grid 
over the system and considering only points at intersections of grid lines. The finite-element method 
involves conceptually dividing the system into a mesh of elements of finite size with geometries that 
are simple enough to permit analytical solution of the differential equations within individual elements. 
The mesh can be as regular or irregular as desired. Rather than needing to solve one complex problem 
all at once, one solves a series of simple problems. One takes into account inter-element effects by 
considering the various elements to be connected only at specific nodes on their boundaries. The 
boundary-element method is similar to the finite-element method but considers only elements on the 
boundary of the structure being modelled (e.g., Brebbia, 1984; Beer et al., 2008). The effects of the 
interior are taken into account implicitly by integrating over a surface rather than throughout a volume. 
This can dramatically reduce the computational expense, especially if the interior is homogeneous. The 
boundary-element method is often used for acoustical fields.

There are a number of features that make the finite-element method particularly attractive. First, in 
even its simplest form it handles irregular boundary shapes very conveniently. Second, it is relatively 
easy to handle inhomogeneities, nonlinearities, and complex geometries and boundary conditions 
systematically. Third, it is not necessary to analyze the behaviour of the whole system. All of the 
analysis is done on simple elements, and even there it is not necessary to write down the governing 
differential equations. The elements can be formulated using any method that is convenient, such as the 
variational method often used for plates and shells. Fourth, the finite-element method can be 
understood on a physical or intuitive basis. Its use is essentially an extension of the very common 
technique of analyzing mechanical or electrical systems as networks of interconnected discrete 
components.

3.7.2 Overview of the finite-element method
In the finite-element method the physical system to be analyzed is divided into a number of discrete 
elements which may or may not correspond to natural subdivisions of the actual structure. For example, 
for an assembly of plates and beams, the elements may consist of the individual plates and beams 
themselves, if these are easy enough to analyze individually. On the other hand, a single homogeneous 
plate of irregular shape may be considered to be composed of a number of triangular or rectangular 
plate elements, which together make up the overall irregular shape, but which individually are easy to 
analyze. Once one has divided the structure into elements, the mechanical behaviour of each element is 
analyzed, and its response to applied loads is expressed in terms of the displacements of its edges. This 
analysis is often based on the Rayleigh-Ritz procedure, which is discussed in Section 3.7.3. An 
example of a particularly simple element formulation is presented in Section 3.7.4; more complex 
elements are discussed briefly in Section 3.7.5.

The element analysis results in a matrix equation relating the behaviour of the element to the applied 
forces. The components of the matrix are functions of the shape and properties of the element. After the 
initial element analysis has been done, one need only substitute the shape and property definitions for 
each element into the formulæ obtained for the matrix components. In fact the user seldom needs to 
actually do the preliminary analysis at all, since such analyses have been published in the literature and 
included in computer programmes for a wide variety of element types.

Once the element matrix equations are ready, they are all combined together into one overall system 
matrix equation, as discussed in Section 3.7.6. (The boundary conditions are also included in the 
system matrix equation.) Since the behaviour of each element has been described in terms of its 
behaviour at its edges, and in fact at certain discrete nodes along its edges, this assembly of element 
matrices is simply a statement of the fact that a node shared by two elements must have the same 
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displacement when considered as part of either element, and of the assumption that the elements can 
interact only at these discrete nodes.

The actual solution of the system equations is discussed in Section 3.7.7.

3.7.3 Rayleigh-Ritz procedure
The Rayleigh-Ritz procedure was introduced by Ritz in 1908 and is a generalization (e.g., Finlayson, 
1972, pp. 223–224; Leissa, 2005) of a technique used by Rayleigh (1877). It is a common procedure 
for formulating finite-element approximations. The following discussion is based on Stakgold (1968, 
pp. 332–335) and Silvester (1969).

The procedure is based on the theorem of minimum potential energy in mechanics. This theorem 
states that if one obtains a functional giving the potential energy of a system, then the admissible 
function that minimizes the functional is the solution of the system. (A functional here can be thought 
of as a function of a function. An admissible function is one that satisfies the boundary conditions of 
the boundary-value problem, as well as certain continuity conditions.)

The differential equation for a plane membrane under tension, vibrating sinusoidally with an applied 
load is

∇2w+λ 2 w=g. (45)

This is Equation 30 with the addition of an applied pressure term g and with λ 2=σ ω 2 /T . It can be 
shown that the energy functional corresponding to Equation 45 is

F (w)= 1
2∬|∇w|2 dS+ 1

2∬λ
2 w2 dS=∬w g dS (46)

where the integrals are over the entire region of interest (e.g., over the triangular element considered in 
the next section). The three integral terms on the right-hand side represent energy due to membrane 
tension, inertia, and the applied pressure, respectively.

In practice it will be difficult or impossible to find the one function that actually minimizes the 
functional. Thus, one must limit the set of functions over which one will attempt to minimize the 
functional. The Rayleigh-Ritz procedure consists of restricting the search to a particularly simple subset 
of admissible functions, namely, the space of linear combinations of n independent admissible basis 
functions w1(x), … , wn(x). The value of n is chosen to be as small as is consistent with the accuracy 
required of the answer. The particular set of basis functions used is more or less arbitrary, as long as 
they are independent and admissible. 

Since each of the basis functions is admissible, every function in the space of linear combinations 
will also be admissible. These functions can be expressed as 

w( x)=∑
i=1

n

ci wi( x) (47)

where the ci are n constants defining w(x). Now, minimizing the functional F(w) over this set of 
functions evidently requires choosing the ci such that F (which is now a function of the ci) is minimal. 
Thus, taking the partial derivatives of F with respect to each ci in turn and setting it to zero, one ends up 
with a set of n algebraic equations in ci: 

∂
∂c i

F(∑j=1

n

c j w j)=0 , i=1 ,2 ,… , n. (48)

Thus, the boundary-value problem is reduced to the solution of n linear equations in n unknowns.
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3.7.4 A simple element analysis
As an example of the type of analysis involved in the formulation of finite elements, this section will 
consider the analysis of a very simple case consisting of a triangular plane-membrane element using 
only three basis functions.

The functional of Equation 46 is the one to be minimized using the Rayleigh-Ritz procedure. As for 
what basis functions to use, the simplest choice is a set that permits the displacement field over the 
element to be a general linear function of x and y. For this, three basis functions are needed. There are 
two ways of formulating them, one based on Cartesian coördinates and the other on so-ca1led ‘natural’ 
coördinates. The ultimate result is the same, but in some circumstances one or the other formulation 
may be superior. Both methods are presented below.

The Cartesian-coördinate method involves choosing as basis functions the set {1, x, y}. The 
displacement at any point (x,y) in the element is then given by a linear combination of these three 
functions, namely,

w( x , y )=c1+ c2 x+ c3 y. (49)

Following the Rayleigh-Ritz procedure, one then replaces w by this expression in the equation for 
F(w), carries out the double integrations, and differentiates with respect to each of the ci in turn. Setting 
the derivatives equal to zero then results in a set of algebraic equations for the ci. The equations can be 
written in matrix notation as 

A c=B g. (50)

Lower-case bold is used here for vectors, and upper-case bold for matrices. The components of g 
represent the nodal values of the pressure field g(x,y). The components of the matrices A and B are 
functions of the vertex coördinates of the triangular element, (x1,y1,x2,y2,x3,y3), and of λ. 

To be able to combine this equation with similar equations representing other elements, one must 
write it in terms of the displacements. Applying Equation 49 at each node, one obtains the 
transformation 

(w1

w2

w3
)=(

1 x1 y1

1 x2 y2

1 x3 y3
)(c1

c2

c3
) (51)

or, in matrix notation, 

w=X c. (52)

The wi are the nodal displacements, and this equation simply represents the expression of the nodal 
displacements as linear combinations of the basis functions. Solving Equation 52 for c and substituting 
it into Equation 50 gives

A X−1w=B g . (53)

Changing notation, one may write 

K ew=B g. (54)

Note that the right-hand side is actually a vector of nodal forces, so that one may also write the 
equation as 
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K ew= f . (55)

The components of the matrix Ke are evidently ratios of forces over displacements, and Ke is known as 
the element stiffness matrix.

The natural-coördinate method (e.g., Zienkiewicz et al., 
1969, p. 390 ff.; Desai & Abel, 1972, pp. 88–91) expresses 
the location of any point in the triangular element by the area 
coördinates (ζ1, ζ2, ζ3), where ζ i=Ai/A; A is the total area of 

the triangle, and the Ai are as shown in Figure 10. (Note that 
the three ζi are not independent, since ζ1+ ζ2+ ζ3=1.) It can 

be shown that the relationship between Cartesian coördinates 
and these ‘natural’ coördinates is given by

(1xy)=(
1 1 1
x1 x2 x3

y1 y2 y3
)(ζ1
ζ2
ζ3
)=X ' ζ . (56)

The area coördinates {ζ1, ζ2, ζ3} may now be used as the set of basis functions. It can easily be seen that 
in this case the coefficients ci become the nodal displacements wi. Following the Rayleigh-Ritz 
procedure again leads to an equation in the form of Equation 55.

3.7.5 More complex elements
In the simple example presented above, the basis functions for the displacements were linear, that is, 
linear interpolation was used to determine the displacements along the boundary and within the area of 
each element. One can, however, develop elements based on higher-order functions, for example, 
quadratic polynomials. Two points may be worth highlighting about such elements. First, the 
coefficients of the higher-order basis functions (the ci) include, in addition to the displacements at the 
vertices of the triangle, the displacements at a number of extra nodes along the edges and in the interior 
of the triangle. For example, a third-order element has two extra nodes on each edge and one in its 
interior. These extra nodes need not add to the difficulty of defining the physical problem to the 
computer since they can easily be generated automatically. 

The second point is to justify the use of more complex high-order elements instead of a larger 
number of simple low-order elements. The order of the system of equations to be solved is the same if 
one uses nine first-order elements, for example, instead of one third-order element. It can been shown, 
however, that the accuracy in the latter case will be considerably superior. This is analogous to the fact 
that if one wishes to use three degrees of freedom to approximate an arbitrary curve, then it is generally 
better to use one second-order polynomial than to use two straight-line segments.

The element in the previous section was a 2-D membrane element; 2-D elements for plates and 
shells are also used, and can be triangular or quadrilateral. Beams and pipes are examples of 1-D 
elements. In 3-D, elements can be tetrahedra (triangular pyramids) or hexahedra (brick-like). Special 
formulations can be used to couple different types of problems: mechanical, acoustical, thermal, 
electromagnetic, etc. Fluid-structure interactions (acoustical plus mechanical) are particularly relevant 
to middle-ear modelling. 
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3.7.6 Assembly of system equation
The previous section outlined the analysis for a simple triangular 
element. Suppose that a system to be studied consists of two such 
elements interconnected as shown in Figure 3. For the first 
element, suppose that substituting the vertex coördinates and 
material properties into the formulæ obtained from the 
analysie3ws gives the stiffness (S) matrix components aij for the 
equations relating the nodal displacements wi to the nodal loads fi:

(a11 a12 a13

a21 a22 a23

a31 a32 a33
)(w1

w2

w3
)=( f 1

f 2

f 3
). (57)

(The fi are the individual nodal loads due to a distributed load applied to the triangle..) Similarly, 
suppose that for the second element the following matrix equation is obtained:

(b11 b12 b13

b21 b22 b23

b31 b32 b33
)(w2

w3

w4
)=(g2

g3

g4
). (58)

Now, since the elements are connected at nodes 2 and 3, the w2 and w3 in the first equation are the same 
as the ones in the second equation. Therefore one can combine the two equations as follows:

(
a11 a12 a13 0
a21 a22+b11 a23+b12 b13

a31 a32+b21 a33+b22 b23

0 b31 b32 b33
)(

w1

w2

w3

w4
)=(

f 1

f 2+g2

f 3+g3

g4
). (59)

In practice this can be done for thousands or millions of elements. The result is

K w= f , (60)

analogous to Equation 1, and similar to Equation 55 but with the much bigger system stiffness matrix 
K.

The system boundary conditions now consist of prescribed values for some of the displacements. 
The constraints can be implemented in various ways.

Recall that the force terms on the right-hand side of this equation represent nodal forces due to 
surface forces (or body forces like gravity) acting on the various elements. One can also add further 
nodal force terms representing specified point loads on the system. The equation then represents the 
entire boundary-value problem, and is solved as discussed in the next section.

3.7.7 Solution of system equations
The actual nodal displacements for a static problem are obtained by solving Equation 60, that is, by 
inverting the matrix, giving
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w=K−1 f . (61)

For undamped vibrations the force on the right-hand side of Equation 60 is replaced by a term 
involving frequency, mass and displacement (cf. Equation 14):

K w=ω2 M w. (62)

This is treated as an eigenvalue problem: simplifying somewhat, an eigenvector v of a matrix A is 
defined as a vector such that multiplying the matrix and vector together results in a vector that is the 
same as the original vector except for a scale factor, λ: A v = λ v. Comparing this with Equation 62, 
one can see that the eigenvectors of the matrix M−1K correspond to displacement vectors w and that the 
eigenvalues correspond to squares of the vibration frequencies ω. These frequencies are the natural 
frequencies of the system and the corresponding displacement vectors describe the natural mode shapes 
of the system. A system like the middle ear, which has many degrees of freedom and is very 
asymmetrical, will have large numbers of very closely spaced natural frequencies.

There are many ways of computing the inverse of a matrix and of computing its eigenvalues and 
eigenvectors, including both direct and iterative methods (e.g., Desai & Abel, 1972, pp. 19–24). The 
choice of method is a fine art but the user is generally rather insulated from the details by the finite-
element software.

For a damped vibration problem the system of second-order differential equations is

K w+C ẇ+M ẅ= f  (63)

(cf. Equation 21). Since knowledge of the damping is often poor anyways, the calculations are often 
simplified by assuming Rayleigh damping, that is, assuming that C=αK +βM where α and β are 
parameters relating the damping matrix to the stiffness and mass matrices.

The frequency response for this system can be computed by combining natural modes, but this tends 
to be inefficient for a system like the middle ear with large numbers of closely spaced modes. The usual 
method is to calculate the system response in the time domain, step by step. As a simple illustration, 
consider the first-order differential equation

d x
dt
= f (x ) (64)

where x is a function of time. This is solved numerically at discrete values of t, so the value of x at time 
ti is denoted by xi. The derivative dx/dt is approximated using the difference between the values of x at 
consecutive times:

x i+1−xi

Δt
 (65)

where Δt is the time step selected for the 
calculation. The differential equation is thus 
converted into a difference equation. The choice 
of Δt is very important: making it very small 
requires a lot of computation, but making it too 
large can lead to inaccuracy and even instability. 

The algorithms for solving a difference 
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Implicit Explicit

Solve completely at 
each time step? 

Yes No 

Speed/time step Slow Fast 

Step size Large Small

Stability Unconditional Conditional 

Table  2:  Comparison  of  implicit  and  explicit  integration 
schemes.
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equation may be classified as explicit or implicit (Table 2). The explicit method uses a forward 
difference at time ti:

x i+1−xi

Δt
= f (x i). (66)

This leads to an explicit equation for xi+1 in terms of the already known value for xi:

xi+1=xi+ f (x i)Δt . (67)

The implicit method uses a backward difference at time ti+1:

x i+1−xi

Δt
= f (x i+1). (68)

This leads to an equation for xi+1,

xi+1=xi+ f (x i+1)Δt , (69)

which is said to be implicit because the unknown xi+1 appears as the argument of f( ) and not just by 
itself. The explicit method requires fewer calculations at each time step, but it requires very small steps 
in order to produce stable results. The implicit method requires more calculations at each time step but 
larger (and fewer) time steps can be used; if the time steps are too large, the method will still be stable 
but will have the effects of suppressing the higher-frequency components of the system response and of 
introducing a frequency shift. (This is sometimes referred to as low-pass filtering or as numerical 
damping.) There are also variations on these methods, including the use of central differences and the 
semi-implicit symplectic method.

If the system is non-linear, then the system stiffness matrix depends on the displacements and must 
be recalculated repeatedly as the system responds to the load. This is conceptually straightforward but 
numerically delicate and computationally expensive. The load is usually applied in small increments to 
avoid numerical problems, and the matrices and displacements are calculated iteratively at each time 
step until the results converge.

Once a time-domain response has been calculated, a Fourier transform can be used to calculate the 
frequency response if the system is linear.

3.7.8 Conclusion
Many choices are available for finite-element software, with costs ranging from zero to thousands of 
dollars. Examples of well-supported free software are FEBio (mrl.sci.utah.edu), Code Aster 
(www.code-aster.org), CalculiX (www.calculix.de) and Cast3M (www-cast3m.cea.fr).

A finite-element model comprises geometrical information, material properties, boundary conditions 
and applied loads. In our review of middle-ear models (Funnell et al., 2013) we discuss the handling of 
geometry and material properties, as well as the issues of model verification and validation.
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